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[bookmark: GrindEQpgref53560fd91]1  Introduction
 This paper contains examples of MS word functionality. The purpose of this paper is not to provide readers with sensible content or proper logic. The theorems and definitions used in this paper may therefore appear not to make sense. The purpose is, however, not to provide the correct theorems and definitions, but rather to provide examples of these entities. The examples demonstrate how the standard environments and elements are created within MS Word. This paper also provides examples of the preferred format in which equations, references and other standard elements are handled.
The examples provided in this paper are not exhaustive. Should an author wish to include specific or exceptional situations in a paper, the ORSSA editorial team can be contacted for guidance.



Below is an example of a table. Note that all tables should have captions, see e.g. Table 1.

	
	Based on 2001 statistics
	Based on 2011 estimates
	% change

	Premature infants requiring PDB per year
	80 404
	89 391
	11.18%

	Bottles of PDB required per year
	1 608 080
	1 787 822
	



Table 1: Example of a table with a caption

[bookmark: GrindEQpgref53560fd92]2  Text
 To solve LPs with the help of the simplex algorithm, knowledge of linear algebra is required. Amongst other things, the concept of linearly dependent vectors is important.  If  with  is a set of vectors, then the equation 
	
will have at least one solution, which is . If this is the only solution, the set, , is called linearly independent. If other solutions exist, the set is called linearly dependent.  A set of column vectors, , with , is linear independent or linearly dependent. Assume the set of vectors is linearly dependent. Under these circumstances it is possible to reduce the number of positive variables step by step until the columns which correspond with the remaining positive variables are linearly independent. If , with , is linearly dependent, real numbers  (not all equal to zero) exist, so that  
		(1)
 Equation (1) can be used to reduce an , say , in  
		(2)
 to zero. Suppose any vector  of the  vectors in equation (1), for which , can be expressed in terms of the remaining  vectors. Thus  
		(3)
 Substitute equation (3) into equation (2), so that  
		(4)
 This solution does not have more than  non-zero variables. If  is selected arbitrarily, there would be no assurance that some of the variables may not perhaps be negative. If  is, however, selected carefully, the remaining  variables will still be non-negative. Select  so that  
		(5)

For any , where , equation (5) will automatically hold. If , then equation (5), divided by , will give one of the following inequalities:  
		(6)
		(7)
 From (6) and (7) follows that  can not be greater than any  and also not less than any . If we choose the vector  so that  
		(8)
 then all the variables in equation (4) will be non-negative. A feasible solution with no more then  non-zero variables has been found. If this process of reduction is continued, the remaining ’s will eventually be linearly independent and the solution will be a basic feasible solution.
The theorem which summarises the theory of the solution of LPs with the simplex algorithm, is the fundamental theorem of LP. 

Theorem 2 (Fundamental theorem of linear programming (LP)) This theorem consists of two parts:  
1. If a feasible solution exists for an LP, a basic feasible solution exists. 
2. If an optimal solution exists for an LP, an optimal basic feasible solution exists. 
  Only a partial proof for Theorem 2 is presented.
 Proof:   Assume that a feasible solution exists with  variables having, a positive value. Number these variables in such a way that the first  variables have a positive value. The solution can then be formulated as 
	
with  where  and  for . The vectors  which are associated with the positive values can either be linearly independent or linearly dependent [6]. For a more detailed proof, see [4].

[bookmark: GrindEQpgref53560fd93]3  Algorithms
 The binary search algorithm starts its search in the centre of an alphabetical list of words. The algorithm compares the word in the middle of the list with the word that must be found (WRD) to test whether the middle word is, in fact, WRD. If this is not the case, it means that WRD is either after or before the word in the middle of the alphabetical list. If WRD comes alphabetically before the middle word, the word halfway between the first word and the middle word is tested to determine whether that word is WRD, while the other half (after the middle word) of the list is discarded. If WRD comes after the middle word, the word halfway between the middle and the last word is tested, while the first half of the list is discarded. This process of dividing the remaining list in half is repeated until the word is located or the list has been exhausted. This implies that only one half of the list has to be tested after the first step, one quarter of the list after the second step, one eighth of the list after the third step, etc. (The middle word is the word in the -th position in the list.) 

Algorithm 3 (Binary search algorithm) Find a word in an alphabetical list of words by comparing the middle word with the word that must be found and by dividing the list, if required, into sublists.  
1. Let  and  be the first and last positions of the sublist. Initially  and . Thus  and . WRD  “the word to be located". 
2. Repeat this step until , else go to 3.  
a. Determine , the middle position (between  and ). 
	
b. If  = WRD, stop. Output: . 
c. If WRD  , then . Go to 2a. 
d. If WRD  , then . Go to 2a. 
3. Stop. Output: “Not in the list". 
 
Let us examine the (worst case) complexity of the binary search algorithm. Note that step 1 and step 3 are both performed only once. In both of these steps, a constant number of calculations are performed. This means that the complexity of these steps is . Let  be the maximum number of times that step 2 must be repeated. After step 2 has been performed for the first time, the remaining list will have a maximum of  elements to consider. This means that  
		(9)
 We use induction to prove that
		(10)
 for each positive integer . Equation (10) applies if . Accept that this result holds for an integer, . We must then show that this inequality holds for . We therefore accept that  
		(11)
 From equation (9) we know that 
	
but from equation (11) it follows that 
	
We also know that 
	
This means that 
	
	
	
 which gives the desired result that .


[bookmark: GrindEQpgref53560fd94]4  Matrices
 The variable, , enters the base with a value of , which is smaller than or equal to the upper bound. Thus a simplex iteration can be performed. The column below  is given by 
	
The elementary matrix is given by 
	
We can then calculate 
	
After the iteration, the respective values are given by 
	
The current right hand sides are given by 
	
The basic variables ,  and  have the values 20, 50 and 80 respectively. None of these variables occur at a value above their upper bounds.
Step 6:
All the right hand sides are positive, which means that an optimal solution has been found.
The optimal solution is given by  
	
	
	
	
	
	
 The optimal objection function value is  
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