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Abstract

The toroidal slide-puzzle Wrapslide is reminiscent of Rubik’s celebrated cube and is available
for (free) download on all smart devices. It consists of a 4 × 4, 6 × 6, or 8 × 8 grid of tiles in
two, three or four different colours (depending on the player’s desired level of difficulty). The
objective of the game is to group tiles of the same colour into the four quadrants in as few moves
(and little time) as possible, one colour per quadrant, by executing a series of finger sliding
moves on the smart device. Each move involves horizontal toroidal translation of either the top
or bottom half of the grid, or vertical toroidal translation of either the left or right half of the
grid.

An enumeration approach is followed in this project to determine some of the the so-called
God numbers for Wrapslide. The God number of the puzzle is the minimum number of moves
required to solve any of its scrambled states. It took thirty six years and a massive parallel
computing effort by Google to determine the God number for Rubik’s cube as twenty. This
was done by showing that some scrambled states of Rubik’s cube require a minimum of twenty
moves to solve, but that there exists no scrambled state of the cube requiring twenty one or more
moves to solve. The same type of analysis approach is followed in this project for Wrapslide.
A heuristic solution procedure is also designed (and implemented on a computer) for solving a
Wrapslide mixed state in an optimal or hopefully near-optimal number of moves. This heuristic
may contribute to future estimations of the values of or conjectures on upper bounds for as yet
unknown God numbers.
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Uittreksel

Die torus-gebaseerde spel Wrapslide herinner sterk aan Rubik se gevierde kubus en is (kosteloos)
aflaaibaar op enige slimfoon of tablet. Dit bestaan uit ’n 4× 4, 6× 6 of 8× 8 skikking van teëls
in twee, drie of vier verskillende kleure (afhangend van die moeilikheidsgraad deur die speler
vereis). Die doel van die spel is om teëls van dieselfde kleur in die kleinste aantal skuiwe (en
so gou as moontlik) in die vier kwadrante van die skikking saam te groepeer, een kleur per
kwadrant, deur ’n reeks vingergly-aksies op die slimfoon of tablet uit te voer. Elke skuif behels
horisontale torus-gebaseerde translasie van die boonste of onderste helfte van die skikking, of
vertikale torus-gebaseerde translasie van die linker of regter helfte van die skikking.

’n Enumerasiebenadering word in hierdie projek gevolg om sommige van die sogenaamde God-
getalle vir Wrapslide te bepaal. Die God-getal van die spel is die kleinste aantal skuiwe waarmee
enige van die geskommelde toestande daarvan opgelos kan word. Dit het ses en dertig jaar en
’n massiewe parallelle berekeningspoging deur Google vereis om die God-getal vir Rubik se
kubus as twintig vas te pen. Hierdie waarde is bepaal deur aan te toon dat daar sommige
geskommelde toestande van Rubik se kubus bestaan wat minstens twintig skuiwe vereis om
op te los, maar dat daar geen geskommelde toestand bestaan waarvoor die oplossing een en
twintig of meer skuiwe vereis nie. Dieselfde soort analitiese benadering word in hierdie projek
vir Wrapslide gevolg. ’n Heuristiese oplossingsprosedure word ook ontwerp (en op ’n rekenaar
gëımplementeer) waarvolgens enige geskommelde Wrapslide toestand in ’n optimale of hopelik
byna optimale aantal skuiwe opgelos kan word. Hierdie heuristiek mag in die toekoms bydra
tot afskattings van die waardes van of die formulering van vermoedens oor bogrense vir huidig
onbekende God-getalle.
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ECSA Exit Level Outcomes Reference

Reference
Outcome Section Page

1. Problem solving: Demonstrate competence to
identify, assess, formulate and solve convergent
and divergent engineering problems creatively and
innovatively.

All All

5. Engineering methods, skills and tools, includ-
ing information technology: Demonstrate com-
petence to use appropriate engineering methods,
skills and tools, including those based on informa-
tion technology.

3,4 & 5 19–51

6. Professional and technical communication:
Demonstrate competence to communicate effec-
tively, both orally and in writing, with engineering
audiences and the community at large.

All All

9. Independent learning ability: Demonstrate
competence to engage in independent learning
through well developed learning skills.

2,3,4,5 & 6 9–56

10. Engineering professionalism: Demonstrate
critical awareness of the need to act professionally
and ethically and to exercise judgement and take
responsibility within own limits of competence.

All All
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CHAPTER 1

Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Project Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Project Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Background

In 1974, Professor Erno Rubik (see Figure 1.1(a)) gave the world what is arguably the most
successful and engrossing recreational puzzle in history — Rubik’s cube, shown in Figure 1.1(b).
Rubik’s cube, however, turned out to be much more than a child’s game. With its 43 quintillion
possible configurations, the cube has fascinated mathematicians — perhaps far more than it ever
entertained any child. One of the most common questions pestering mathematicians studying
Rubik’s cube was this: What is the smallest number of moves with which any of the cube’s
possible scrambled states can be solved?

The sheer volume of calculations required to answer this question was so overwhelming that it
was said only the mind of a Deity could possibly find this value. Thus, the term God number
was coined, denoted here by ΘR. The search for the value ΘR started almost immediately and
by 1980 the lower bound ΘR ≥ 18 had been established [24]. This lower bound follows from
the fact that certain scrambled states of Rubik’s cube require at least eighteen moves to solve.
Shortly thereafter, in 1981, Morwen Thistlewaite proved that ΘR ≤ 52. The development of
more efficient solution procedures allowed for the continual improvement of upper bounds on
ΘR(shown in Table 1.1) until finally, in July 2010, thirty six long years after first posing the
question, the value of ΘR was found. Tomas Rokicki, Herbert Kociemba, Morley Davidson and
John Dethridge [24] proved that all of the approximately 43 quintillion scrambled states can be
solved in twenty moves or fewer, whereas certain scrambled states require at least twenty moves,
yielding the value ΘR = 20.

They accomplished this admirable feat by employing several innovative devices. First, they
partitioned the scrambled states of Rubik’s cube into 2 217 093 120 mutually exclusive sets of

1



2 Chapter 1. Introduction

(a) Prof Erno Rubik (b) Rubik’s cube

Figure 1.1: Rubik and his cube.

19 508 428 800 states each [24]. Secondly, they reduced the number of sets that needed to be
solved to 55 882 296 by eliminating symmetries and using set covering techniques. The third
element of their approach was that they did not search for optimal solutions to each scrambled
state. Instead, they looked only for solutions involving twenty moves or fewer. These solutions
were found using a computer program they wrote to solve the states of a single set (containing
19 508 428 800 scrambled states) in about twenty seconds. Finally, using the strategy described
above, as well as 35 CPU years donated by Google, they solved each of the approximately 43
quintillion possible states, thus ending the long search for the ΘR.

Fortunately, mathematicians were not sentenced to an eternity of tedium now that Rubik’s
cube had been beaten. The age of the smart device brings with it a new opportunity for
mathematicians to try their hand, or rather brain, at finding the God number for the “Rubik’s
cube” of the technological age — Wrapslide [3]. The puzzle Wrapslide was developed by Dr.
Alewyn Burger, shown in Figure 1.2(a), and released in 2014. It can be played on any Apple or
Android device and is available free of charge from the App Store [3] and Google Play [12].

To start the game, the player selects a grid size and a number of colours. The level of difficulty
increases with an increase in grid size and/or the number of colours selected. The grid sizes
available are 4 × 4, 6 × 6 and 8 × 8, and the number of colours can be selected as two, three
or four. Once these selections have been made, Wrapslide scrambles the colours as shown in
Figure 1.2(b), and a timer starts.

The player can now make the following moves: (S)he can slide the top or bottom half of the
grid left or right and/or (s)he can slide the left and right half of the grid up or down. This
is accomplished by sliding one’s finger over the touch screen of a cellular telephone or tablet.
The results of these moves can be anticipated as Wrapslide is a toroidal sliding block puzzle.
This means that the top and bottom rows of each half are virtually “joined,” and the left-most
column of a half is similarly “joined” to its right-most counterpart. Therefore, if a player slides
a half-row over the top-most boundary of the grid, it reappears at the bottom. Similarly, when
the player slides a half-column off the right-hand side of the grid, it reappears on the left-hand
side. This wrapping property of moves gave rise to the name of the puzzle. An example of four
successive moves on a 4× 4 grid with four colours is provided in Figure 1.3 to clarify the above
explanation.

The objective of the puzzle is to move all the blocks of the same colour into a quadrant, as
shown in Figures 1.2(c) and 1.3(a). It does not, however, matter which colour is grouped in
which quadrant. Ultimately, a player should aim to achieve this unscrambled state in as few
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Table 1.1: The progression of bound improvement on the value of the God number for Rubik’s cube [24].

Date Lower bound Upper bound Gap Due to

July, 1981 18 52 34 Morwen Thistlethwaite
December, 1990 18 42 24 Hans Kloosterman
May, 1992 18 39 21 Michael Reid
May, 1992 18 37 19 Dik Winter
January, 1995 18 29 11 Michael Reid
January, 1995 20 29 9 Michael Reid
December, 2005 20 28 8 Silviu Radu
April, 2006 20 27 7 Silviu Radu
May, 2007 20 26 6 Dan Kunkle and Gene

Cooperman
March, 2008 20 25 5 Tomas Rokicki
April, 2008 20 23 3 Tomas Rokicki and John

Welborn
August, 2008 20 22 2 Tomas Rokicki and John

Welborn
July, 2010 20 20 0 Tomas Rokicki, Herbert

Kociemba, Morley David-
son, and John Dethridge

moves as possible.

God’s number for Wrapslide on an n× n grid (where n ∈ {4, 6, 8}) with c ∈ {2, 3, 4} colours is
denoted by ΘW (n, c) and is defined similarly as for Rubik’s cube. It is the smallest number of
moves with which any scrambled state can be solved, where a move is defined as a single finger
slide over the touch screen over any distance. Burger himself demonstrated that any scrambled
state of the 4 × 4 grid with four colours can be solved in at most twelve moves [6]. Since the
scrambled state in Figure 1.4(b) requires at least twelve moves to solve, however, the value of
one of the God numbers for Wrapslide is known, namely ΘW (4, 4) = 12.

Although the value of ΘW (n, c) for n ∈ {6, 8} and c ∈ {2, 3, 4}, as well as ΘW (4, 2) and ΘW (4, 3),
are still unknown, some progress has been made in establishing the value of ΘW (6, 4). A pair
of Dutch students have, for example, proved that each of the possible

36!

(9!9!9!9!)
= 21 452 752 266 265 320 000

6× 6 grid states is reachable by a succession of moves from the unmixed state [10]. Building on
this discovery, Burger [6] established the bounds

21 ≤ ΘW (6, 4) ≤ 31. (1.1)

The lower bound was established through the discovery of the state in Figure 1.4(a), which
cannot be solved in twenty moves or fewer. The upper bound was determined by showing that
any colour can be grouped into a quadrant in twelve moves or fewer. The remaining sub-puzzle
of arranging the other three colours can furthermore be completed in nineteen moves or fewer,
even when only shifting quadrants downward and/or to the left. Summing these two values
results in the upper bound of thirty one mentioned above. It is anticipated that the bounds in
(1.1) will have to be improved several times in order to find the value of ΘW (6, 4) (just as the
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(a) Dr. Alewyn Burger (b) Scrambled state (c) Solved state

Figure 1.2: The inventor and two states of the puzzle Wrapslide. (a) Dr. Alewyn Burger, (b) a scrambled
state of the 6× 6 instance with four colors and (c) the corresponding solved state.

Rubik’s cube bounds were adjusted thirteen times before the final value, ΘR = 20, was obtained,
as illustrated in Table 1.1). The iterative improvement of these bounds will require an efficient
approach to solving the numerous mixed states of the puzzle Wrapslide.

1.2 Problem Statement

The aim of this project is twofold: first, to design, implement and demonstrate an enumeration
approach that allows for the implicit exploration of a search space consisting of all the distinct
Wrapslide states for a grid of small dimensions and secondly to design, implement and demon-
strate a computer-implemented heuristic solution procedure capable of solving scrambled states
of the puzzle Wrapslide in an optimal or near-optimal number of moves. The demonstration
of the latter includes the solution of a number of Wrapslide scrambled states as well as the
recording and analysis of the statistics generated by the heuristic. This enumeration approach
and heuristic have the potential to establish (or aid in the conjecturing of) good bounds on the
values of the God number ΘW (n, c) for the pairs (n, c) = (4, 2), (4, 3) and (6, 2).

1.3 Project Objectives

The following ten objectives are pursued in this project:

I To conduct a methodological study of the literature related to:

(a) symmetry, isometries and equivalence classes,

(b) the various symmetries generated by tilings in the plane and on a torus,

(c) the well-known branch and bound (B&B) method for solving combinatorial optimi-
sation problems,

(d) the best-known tree traversal protocols commonly used in conjunction with the
method of Objective I (c) and,

(e) computations that have been performed to determine the currently best-known God
number bounds.
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(a) Original state (b) Top half: finger slide one
block to the right

(c) Right half: finger slide three
blocks down

(d) Bottom half: finger slide
two blocks to the left

(e) Left half: finger slide one
block up

(f) Top half: finger slide one
block to the right

Figure 1.3: A succession of four moves away from the solved state of a 4× 4 Wrapslide grid with four
colours.

II To establish an enumeration framework for the solution space of Wrapslide instances which
is capable of eliminating tiling symmetries.

III To employ the enumeration framework of Objective II in order to establish bounds on the
God numbers for small Wrapslide instances.

IV To formulate an objective function capable of quantifying the degree of colour heterogene-
ity in the four quadrants of a (mixed) Wrapslide state.

V To design a heuristic procedure for solving a Wrapslide scrambled state in an optimal or
hopefully near-optimal number of moves.

VI To implement the enumeration framework of Objective II and the heuristic of Objective
IV in a suitable software environment. The software implementation of the enumeration
framework should be capable of generating all the distinct states of a small Wrapslide grid
dimension when all tiling symmetries are eliminated. The software implementation of the
heuristic should be capable of storing and analysing statistics generated by the heuristic
solution procedure (such as the computation time and number of Wrapslide moves required
to arrive at a solution).

VII To demonstrate the working of the implementation of Objective VI by applying it to a
number of Wrapslide instances.
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(a) A scrambled state of the 6 × 6 grid
with four colours used to establish the cur-
rently best lower bound on the God number
ΘW (6, 4)

(b) A scrambled state of the
4 × 4 grid with four colours
requiring at least 12 moves to
solve

Figure 1.4: Two states of the puzzle Wrapslide. (a) A scrambled state of the 6×6 grid with four colours
used to establish the currently best lower bound on the God number ΘW (6, 4) and (b) a scrambled state
of the 4× 4 grid with four colours requiring at least 12 moves to solve.

VIII To evaluate the efficiency and the degree of optimality of solutions obtained by the heuristic
implementation of Objective V in the context of the puzzle instances of Objective VII.

IX To develop a graphical user interface (GUI) for the heuristic implementation of Objective
VI which will allow users to input a Wrapslide mixed state and will return, as output,
the computation time, an upper bound on the number of moves required to arrive at a
solution and the actual move sequence generated by the heuristic implementation.

X To identify future courses of action which may contribute to the determination of God
numbers for Wrapslide.

XI To recommend further areas of study related to the subject matter of this project.

1.4 Research Methodology

The execution of this project consists of six stages. The first phase comprises a methodological
study of the literature related to the topics mentioned in Objective I of §1.3. The literature
on symmetry, isometries and equivalence classes mentioned in Objective I (a) forms the ini-
tial foundation of the author’s understanding of the mathematical characteristics of the puzzle
W rapslide.

One of these important characteristics of Wrapslide is the existence of tiling symmetries which
give rise to the existence of isometric states. Isometric states are states obtained by consideration
of several transformations of a given scrambled state. These specific transformations (such as
90◦, 180◦ and/or 270◦ rotation of the entire grid around a vertical axis perpendicular to the
grid and through its centre point, or reflection about an axis within the grid through its centre
point) result in states that appear different from the original state but are, in fact, equivalent
to the original state for the purposes of determining the optimal solution sequence length from
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the scrambled state to a solved state. The literature study therefore covers the exploration of
the symmetries generated by tilings in the plane and on a torus, in pursuit of Objective I(b).

The next part of the literature review — a study of the well-known B&B method and the best-
known tree traversal protocols commonly employed in conjunction with the B&B algorithm —
provides a starting point for the establishment of an enumeration framework in fulfilment of
Objective II. The literature study concludes with an overview of studies of the properties of
Wrapslide that have already been established.

The second phase of the project — development of a Wrapslide state enumeration framework
and heuristic solution procedure — is carried out in pursuit of Objectives II–IV of §1.3. It
commences with the conceptualisation of a suitable method for representing Wrapslide states
mathematically. This is followed by the development of techniques aimed at reducing the number
of states that have to be examined before a solution attempt is made, by avoiding consideration
of states that are isometric. These techniques reduce the number of calculations that need to be
performed, consequently reducing the processing and time requirements of the heuristic solution
procedure.

The products of the above-mentioned efforts are utilised to generate a state enumeration tree
which allows for the implicit exploration of each distinct state of a given Wrapslide grid, in
fulfilment of Objectives II–III. These products are also used in the design a suitable heuristic
which may be used to solve a given Wrapslide mixed state (approximately). This phase also
includes the development of software functions capable of simulating the execution of all the
possible player moves during solution of a puzzle instance.

The elements of the second project phase are used in the third phase to implement the designed
state enumeration framework and heuristic solution method in a software environment, in ful-
filment of Objective V of §1.3. The storage and analysis of statistics generated by applying the
solution procedure to small puzzle instances allows for the inspection and possible improvement
of the heuristic employed. The third phase of the project also includes a detailed demonstration
of the working of the heuristic Wrapslide solution procedure in the context of a number of puzzle
instances.

The fourth phase of the project consists of the evaluation of the Wrapslide solution procedure
developed. Examining the efficiency of the heuristic and the degree of optimality of the solutions
thus obtained (in terms of the number of moves required to solve a given scrambled Wrapslide
state) enables the author to determine the potential of the solution procedure with respect to
its contribution to the improvement of the currently best-known bounds on God numbers for
the puzzle. Finally this phase also includes the establishment of bounds on God numbers for
small Wrapslide grid sizes, as described in Objective III of §1.3.

The penultimate phase consists of the development and implementation of a user-friendly GUI
in fulfilment of Objective VIII.

The project concludes in the sixth stage which consists of a documentation of suggestions for
further areas of study and recommendations in respect of future courses of action in pursuit of
the improvement of God number bounds for Wrapslide, in fulfilment of Objectives IX and X of
§1.3.

1.5 Scope

The focus in this project is on the development of a heuristic solution procedure for the puzzle
Wrapslide. In order to reduce the complexity of the associated problem, only the 4 × 4 and
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6 × 6 grids containing two, three and four colours are considered. Although this leaves the
8× 8 grid unexamined, the complexity of such large Wrapslide instances places large instances
beyond the scope of a fourth-year project. Furthermore, the determination of the exact minimum
number of moves required to solve any given scrambled Wrapslide state falls outside the scope
of this project. Instead, the primary project aim is to contribute a heuristic capable of quickly
solving the puzzle in a satisfactory or, if possible, near-optimal number of moves. Finally, the
determination of the exact values of all the God numbers for Wrapslide grids of the dimensions
mentioned above is beyond the scope of this project, although the establishment of good bounds
on these numbers for small puzzle instances is a secondary project aim.

1.6 Timeline

The timeline associated with the execution of the five project phases, discussed in §1.4, is
represented in Gantt chart form in Appendix A.

1.7 Project Organisation

This report consists of five further chapters, excluding the current introductory chapter. Chap-
ter 2 is a review of literature related to the topic of the project. The third chapter contains a
description of how concepts explored in Chapter 2 may be applied to find equivalence classes of
states of the puzzle Wrapslide and how branch and bound state enumeration trees may be gener-
ated to establish God numbers for small Wrapslide grids. Chapter 4 focusses on the development
of a heuristic solution procedure for the puzzle Wrapslide which is capable of solving a mixed
Wrapslide state in an optimal or near-optimal number of moves. The fifth chapter is devoted
to the description of the development of a GUI for the software implementation of the heuristic
described in Chapter 4. The final chapter, Chapter 6, contains a project summary, suggestions
for future work and the author’s reflections on the skills acquired during the completion of this
project as well as the benefit it may hold for society.
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An important element in the development of a solution procedure for the puzzle Wrapslide
is the identification and representation of “equivalent” states of a given Wrapslide instance.
This chapter contains brief overviews of various basic concepts such as symmetry, isometries,
the plane and the torus as topological objects, and tilings of the plane and the torus. It also
includes a brief description of the well-known branch and bound method for solving optimisation
problems and two of its commonly employed tree traversal protocols. The chapter closes with a
description of academic research conducted in the context of the puzzle Wrapslide up to date.

2.1 Symmetry, Isometries and Equivalence Classes

This section opens with an overview of basic notions related to the concept of symmetry, as most
readers will be more familiar with, and have a better intuitive understanding of, symmetry than
of isometries. These notions are then used to aid in an explanation of the concepts of isometries
and of equivalence classes, both of which are used extensively in the remainder of this project.

Before the concept of symmetry may be introduced, however, it is necessary to define the notion
of a transformation. A transformation of an object may be described as a formula that defines
the change(s) affected to a geometric shape, point or line in order to produce a specified new
object. Athough many different types of transformations exist, the focus in this section falls on
transformations that produce symmetries in the plane, where the word plane refers here to the
Euclidian plane parametrised by ordered pairs of real numbers (x, y) and denoted by <2 [13].

According to Stewart I & Golubitsky M [26], a symmetry may be described as a trans-
formation of an object that leaves it apparently unchanged. The adjective ‘apparently’ is used
to communicate that although the object resulting from an application of the transformation
appears to be identical to the original object it has, in fact, moved. For instance, although
the shape resulting from reflecting the hexagon in Figure 2.1(a) around a vertical axis through

9
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(a) (b)

Figure 2.1: An example of a reflection transformation. (a) The original hexagon with a vertical line
through its centre point and (b) the reflection of the hexagon in (a) around the vertical line thourgh its
centre point.

its centre point (as indicated by the dashed line) looks identical to the original, each point on
the object is no longer in its original position. The change in positions of the coloured vertices
on the hexagon corners from Figure 2.1(a) to Figure 2.1(b) illustrate the movement of certain
points on the object that has taken place.

By applying this transformation, called a reflection, two symmetries of an object are obtained:
the original object (occasionally called the identity) and the reflected object. Other transforma-
tions may produce more symmetries, depending on the properties of the object. For instance,
rotation of the hexagon in Figure 2.1(a) about an axis through its centre point and perpendicular
out of the page produces a symmetric object for each 60◦ rotation of the object around its centre
point, yielding a total of six symmetries (including the original object). These symmetries are
shown in Figure 2.2.

(a) Original (b) 60◦ (c) 120◦ (d) 180◦ (e) 240◦ (f) 300◦

Figure 2.2: The six symmetries of a hexagon. The hexagon in (a) is the original shape and the others
are the symmetries of rotation transformations applied through multiples of 60◦.

Another transformation used to produce symmetries of an object is translation. A translation
transformation occurs when each point on a shape in the plane moves the same distance up or
down and/or left or right. Thus if, for instance, the centre point of the hexagon in Figure 2.1(a)
is moved five units to the right every point on the hexagon will move five units to the right if a
translation is applied to the hexagon.

An important concept when considering the objects produced by the transformations mentioned
above is that of a unique object. In this context, the descriptor unique is used to convey the fact
that there is at least one point on the object that is not in the original position. To clarify this
statement, consider Figure 2.3. It is evident that four 90◦ rotations, as shown in Figure 2.3(b),
are equivalent to a 360◦ rotation and therefore produce the identity of the original object.
Similarly, a 420◦ rotation, shown in Figure 2.3(d), produces the identity of the 60◦ rotation
in Figure 2.3(c). Thus a 60◦ rotation of the hexagon produces a unique object, while a 420◦

rotation transformation does not.

The last type transformation that may be used to produce a symmetry of an object in the
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(a) Original (b) 4× 90◦ (c) 60◦ (d) 420◦

Figure 2.3: Examples of identities, unique isometries and non-unique isometries. (a) An original
hexagon (identity), (b) the original hexagon rotated 4 × 90◦ = 360◦ resulting in the identity, (c) an
isometry of the original hexagon obtained by a 60◦ rotation of the identity, and (d) a 420◦ rotation of
the original hexagon or a 360◦ rotation of the isometry in (c), both yielding the same hexagon.

plane is glide reflection. Glide reflections are produced by the combination of a reflection and
a nonzero translation in the direction of the axis of reflection [9]. Glide reflections are not,
however, relevant in the context of this project and are therefore not considered in more detail.

The first three types of transformations mentioned above are, however, extremely relevant in the
context of this project, particularly in respect of isometries. An isometry may be described as a
transformation h: <2 7→ <2 that preserves distance. Thus, if h is an isometry, ||h(v)−h(w)|| =
||v−w|| for all vectors v and w in <2 [9], where || · || is a norm. Similar to the observations made
for symmetry it should be noted that while all translations are isometries, the same cannot be
said of reflections and rotations. Generally, only rotations about the origin and reflections about
an axis through the origin are isometries. Furthermore, it has been shown that all isometries of
the plane, excluding the identity, may be classified as one of the four types of transformations
mentioned above [8]. Therefore, all the isometries of a plane can be found using one or a
combination of these isometries.

The last important concept considered in this section is that of an equivalence class. To support
a description of this concept, the notion of a symmetry group is first considered. According
to Stewart I & Golubitsky M [26], a group is a closed system of transformations that, if
combined, produce another member of the same group. If each of the transformations in such
a group produces a symmetry of a given object in the plane, this group is called the symmetry
group of the object. If, for instance, the 60◦ and 120◦ rotation symmetries of the hexagon form
part of a symmetry group, then that group must also include the 180◦ rotation symmetry since
the combination of the 60◦and 120◦ rotations result in the 180◦ rotation symmetry. In simpler
terms, any combination of transformations in a symmetry group must produce the apparently
unchanged object since, as Stewart I & Golubitsky M [26] explain, if one leaves an object
“unchanged” twice (or n ∈ {2, 3, . . . ,∞} times), it remains “unchanged.”

Applying the same reasoning to isometries it is evident that the combination of two or more
isometries produce yet another isometry. The number of unique objects that can be produced
are, however, limited. These unique isometries may be used to form an equivalence class of
objects. An equivalence class is a subset S= {y ∈ X | y ∼ x} of a set X, where the equivalence
relation on X is a relation denoted by ∼ and satisfies the following: x ∼ x for all x (the so-called
reflexive property), x ∼ y if y ∼ x (the so-called symmetric property) and finally, x ∼ y and
y ∼ z imply x ∼ z (the so-called transitive property) [25]. In other words, S may be described as
the set of all elements that are equivalent to x. All the objects in such a class may be considered
equal for the purposes of analysis and can be represented by a single object, called the canonical
form or class representative. Thus, once a class representative has been identified, calculations
performed in respect of the class representative may be used to predict the behaviour of all the
other objects in its class. The considerable utility of this principle will become evident in the
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succeeding chapters of this report.

2.2 Tilings of the Plane and the Torus

According to Schwartz RE [25], the notion of a square torus is a compromise between the
Euclidian plane considered in §2.1 and the unit sphere in <3. This description is used to convey
that, while the square torus is flat at every point on the plane (like the Euclidian plane), it is
also bounded like the sphere. Schwartz RE [25] clarifies this concept by alluding to a virtual
two-dimensional being, call it a bug, that crawls across the square torus. If the bug were to
crawl over the top-most edge of the torus, it would “reappear” at the bottom of the torus in the
same horizontal position. Similarly, should the bug crawl off the left-hand side of the torus, it
would “reappear” on the right-hand side in the same vertical position. The reason this would
occur becomes evident when the unit cell in Figure 2.4(a) is embedded on a torus, as shown in
Figure 2.4(b). The edges of the unit cell labelled, N, E, S and W, correspond to the “edges”
indicated on the torus.

(a) (b) (c) (d)

Figure 2.4: Subunits of the plane and the torus. (a) A unit cell, (b) the unit cell embedded to a torus,
(c) 2× 3 unit cells embedded in the plane and (d) m× n unit cells embedded on the torus [20].

Larger structures, containing m unit cells in the vertical direction and n unit cells in the horizon-
tal direction, may similarly be created, as shown in Figure 2.4(c). Figure 2.4(d) demonstrates
how such an m× n plane may be embedded on a torus.

The above decomposition of the torus into finite sized subsets may also be achieved by viewing
the unit cells as tesselations or tilings on the surface of the torus, where a tiling of a surface
is a covering of the surface by non-overlapping shapes with no spaces in-between [14]. Some
examples of tilings are shown in Figure 2.5. The classification of features on the surface of a
torus as tilings allows for two important realisations. First, all the subsets or tiles do not have
to be identical, as is the case in Figures 2.5(c) and 2.5(d). Secondly, if the torus is composed
of tiles, tiling symmetries may exist. Thus, the principles of symmetry, isometries and their
equivalence classes, as discussed in the previous section, may be applied to find a set of tori
“equivalent” to a given torus.

2.3 Tree Search Protocols

One of the most commonly used methods for solving combinatorial optimisation problems is
the celebrated branch and bound (B&B) method [7]. This method, first proposed by Land
AH & Doig AG [18] in 1952, can be applied to problems having a combination of discrete
and continuous decision variables and guarantees the identification of an optimal solution as
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(a) (b) (c) (d)

Figure 2.5: Examples of tilings. (a) An example of a periodic tiling, (b) an example of a hexagonal
tiling, (c) an example of a tiling occuring in nature formed by dried mud, and (d) a close-up of the veins
on a leaf which form leaf subsections analogous to a tiling.

output [7]. The general B&B method may be described by considering an objective function
f(x), of decision variables x = (x1, x2, . . . , xn), which must be minimised over a region of
feasible solutions, S. This region, called the search space or feasible region, contains all values
of the decision variables which produce candidate solutions and is determined by some set of
constraints defined for the optimisation problem.

The B&B method explores this search space by employing an iterative process to generate a
data structure resembling a rooted tree, as shown in Figure 2.6. The root, or starting node,
(at the top) of the tree represents the full set of candidates in the solution space. The first
iteration of the solution process partitions this solution space into smaller convex1 subspaces,
called nodes, by employing the first of the two main B&B procedures, called branching. The
branching procedure partitions a given set into two or more smaller, mutually exclusive subsets
(whose union is the original set) [7]. The subsets are represented by new nodes in the search
tree and an upper bound on the minimum of the objective function value over each is obtained.
The order in which the nodes in the B&B tree are traversed (and consequently the order in
which the minimum objective function value for each set is bounded from above) depends on
the tree search protocol employed. The branching process is repeated for each node until one
of two termination criteria are met, in which case a node is said to be fathomed. The first
termination condition is met when no feasible solution exists for the objective function over the
subset associated with the node in question. The second termination condition is determined
by the second main process employed by the B&B algorithm, called bounding [7].

The bounding procedure is used to allow for partial or selective enumeration of the solution
space in order to reduce the number of computations, and consequently, the amount of time
required to find an optimal solution. This is accomplished by comparing the bound on the
minimum objective function value associated with the current node of the search tree with the
best feasible solution found so far over all the previous nodes. This value is called the incumbent
upper bound. If the objective function value of the current node is better (smaller) than the
incumbent upper bound, the objective function value of this solution becomes the new incumbent
upper bound. If, however, the current solution has an objective function value at least as large
as the incumbent upper bound, then the node in the search tree associated with the solution is
terminated, thus discarding the corresponding subset of solutions associated with the node. The
process terminates when all the nodes have either been branched or fathomed, at which point
the incumbent upper bound is taken as the objective function value of an optimal solution [21].

The computational time required to reach this solution is, however, intricately linked to the
order in which the nodes are traversed or ‘visited,’ as dictated by the so-called traversal protocol

1A convex subset or subspace, S ⊆ <n, is a set for which a line segment between any two points in S lies
completely in S [11].
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Figure 2.6: An example of a rooted tree data structure produced by the application of the B&B method.

selected for the problem. Several traversal protocols have been developed for such search trees,
of which the Breadth First Search (BFS) and Depth First Search (DFS) protocols are arguably
most commonly used. According to the BFS, the nodes of the search tree are explored in order
of increasing distance from the starting node. It partitions the tree into layers, L0, L1, L2, . . .,
such that the shortest path from the root to each node in layer Li is i [15]. The BFS protocol
dictates that each node in a level is visited, and either branched or fathomed, before any of the
nodes in further levels are visited. Furthermore, the order in which nodes are visited within a
level is determined by the objective function value calculated for each node. Nodes are visited in
order of decreasing desirability. That is, for the minimisation problem being considered, nodes
are visited in order of increasing objective function values. Figure 2.7 illustrates the first three
iterations of the generation of the search tree in Figure 2.6 when the BFS protocol is employed.
The node being considered during each successive iteration is coloured grey, where consideration
of a node entails calculation of its objective function value and either termination or branching.

(a) 1st iteration (b) 2nd iteration (c) 3rd iteration

Figure 2.7: Partial search trees generated by the first three iterations of the B&B method employing
the BFS traversal protocol to construct the search tree in Figure 2.6.

It may intuitively be seen that the BFS protocol will always find the shortest path in the search
tree from the root to the optimal solution which can, for instance, be used to compute the
minimum number of moves necessary to solve a given puzzle. There are, however, two obvious
disadvantages of the BFS protocol. First, an optimal solution far from the root will typically
require a large amount of computation time. Secondly, since each node in the current level of
the search tree must be stored in order to be able to generate the next level, implementation
of the BFS protocol on a computer may require an excessive, possibly even infeasible, amount
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of memory, depending on the size of the problem’s solution space [16]. A number of alternative
traversal protocols, including the DFS protocol, have been designed to alleviate this problem.

As the name suggests, the DFS protocol explores the maximum possible depth along a branch
of the search tree before backtracking and exploring another path. Thus if, for instance, the
branching procedure has just been applied to node a to produce two child nodes b and c, the next
node to be considered will be node b (the left-most2 child node is generally considered first). If
node b is not fathomed, branching is applied to find its child nodes. Once again, the left-most of
the child nodes of b, call it d, is considered first and if it too is not fathomed, branching is applied
to d. This process is continued until the node being considered is fathomed or the maximum
depth of the tree has been reached, at which point the search backtracks to the closest node
that has not yet been considered, and the process is repeated. Figure 2.8 illustrates how the
search tree in Figure 2.6 would be generated when employing the DFS protocol rather than the
BFS protocol. Once again, the node being considered during each of the successive iterations is
coloured grey.

(a) 1st iteration (b) 2nd iteration (c) 3rd iteration

Figure 2.8: Partial search trees generated by the first three iterations of the B&B method when
employing the DFS traversal protocol to construct the search tree in Figure 2.6.

An important characteristic of the DFS protocol is that implementation of this protocol on a
computer requires the storage of a stack3 containing only the nodes along the path from the
root to the current node. It is obvious that the maximum required length of such a stack for
a particular search tree is the depth of the tree. As the depth of a search tree is often much
smaller than its maximum breadth (number of nodes in a level), the DFS protocol is often
considered much more memory-efficient than the BFS protocol which, as previously mentioned,
requires each node on a level to be stored in order to generate the nodes of the succeeding level.
Another advantage of the DFS protocol is that it can find an optimal solution far from the root
much faster than the BFS protocol, given that the optimal solution lies on the left-hand side
of the search tree. Unfortunately, however, if the search tree is quite deep and the solution lies
more towards the right-hand side of the search tree, the DFS protocol might take a considerable
amount of time to find this solution, even if it lies extremely close to the root. Therefore, the
selection of a suitable traversal protocol is crucial when solving large optimisation problems,
especially if a limited computational budget is available for their solution.

2According to some pre-selected ordering applied to rank alternatives from left to right.
3A stack is a data structure commonly used in digital implementations of the B&B algorithm. It is helpful to
consider a stack as a container from which objects are removed and into which objects are inserted according to
the LIFO (Last-In-First-Out) principle. Elements may be added or removed from the top of the stack only. It
should also be noted that a stack is a recursive data structure; it is either empty or it consists of a top element
and the remaining elements which make up another stack [2].
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2.4 Prior Investigations Related to the Puzzle Wrapslide

The number of prior investigations into the puzzle Wrapslide reflects the relative recency of its
release, in September 2014, compared to, for instance, Rubik’s cube. Not only are the number
of investigations limited, all possible colour and grid size combinations have not even been
considered. Investigations have rather tended to focus on the 4× 4 and 6× 6 four-colour grids.
These investigations have, however, yielded valuable insights. The most relevant such insight
in the context of this project, includes a proof that all the possible mixed states of the 6 × 6
four-colour grid are reachable from the unmixed state [10], the discovery of the God number
ΘW (4, 4), and the establishment of upper and lower bounds on the God number ΘW (6, 4).

As mentioned in the previous chapter, the value of ΘW (4, 4) was determined by the creator of the
puzzle [6]. He accomplished this feat by employing the B&B method discussed in §2.3. In order
to generate the necessary search tree, the unmixed state was taken as the root (starting node) and
the branching procedure was employed to generate every representative of the equivalence class
of isometries of the 4×4 square torus state that could be reached from the current state (node) by
executing a single move. Therefore, the level of a given state (equivalence class representative)
in the search tree is the minimum number of moves required to reach the unmixed state from
that state. Consequently, the minimum number of moves necessary to solve any possible state
was determined by computing the distance from the state (equivalence class representative)
furthest from the unmixed state in the search tree. It is evident that the state furthest from the
unmixed state would lie in the last level of the search tree. The value of, ΘW (4, 4) is therefore
equivalent to the depth of the search tree. By applying this reasoning, the value ΘW (4, 4) = 12
was found [5].

This method could not be applied to the 6 × 6 four-colour grid as time constraints and the
processing and storage capabilities of the equipment available limit the size of a search tree that
can feasibly be generated. The method could, however, be used to establish bounds on the God
number ΘW (6, 4). For instance, by applying a similar method to only one of the four colours in
the 6×6 grid, it was established that any colour can be grouped into a quadrant in twelve moves
or fewer. Similarly, Burger AP [6] proved that the remaining three colours can be grouped into
separate quadrants in nineteen moves or fewer, even when only moving quadrants downward
and/or to the left. By summing these values he determined the currently best available upper
bound of thirty one on the value of ΘW (6, 4). As mentioned in the previous chapter, a lower
bound was established through the discovery of the state in Figure 1.4(a) which cannot be solved
in twenty moves or fewer. Therefore, the currently best bounds are 21 ≤ ΘW (6, 4) ≤ 31.

Further research in the context of the 6×6 four-colour grid has also been conducted by Professor
Bruce MacKenzie [19] who applied notions from group theory in an attempt to find the diameter4

of the state graph5 of the puzzle Wrapslide and to determine the likely depth distribution of
the search tree for the 6× 6 four-colour grid. These methods have, thus far, not contributed to
the establishment of a better bound on the value of ΘW (6, 4), and so this line of research is not
discussed in further detail.

4The diameter of a graph is the largest distance between two vertices of the graph.
5The state graph of the puzzle Wrapslide is a graph whose vertices correspond to class representatives of the
game’s states and in which two vertices are adjacent (joined by and edge) if the corresponding states can be
reached from one another within a single game move (finger slide).
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2.5 Chapter Summary

This chapter contains a review of the concepts necessary for the development of a solution pro-
cedure for the puzzle Wrapslide, as well as for the establishment of bounds on and values of its
associated God numbers. It opened with descriptions of basic concepts related to the notions
symmetry, isometries and equivalence classes in §2.1. This was followed by descriptions of the
plane and the torus as topological objects, as well as tilings of the plane and the torus, in §2.2.
The next section, §2.3, contained a description of the popular B&B method for solving com-
binatorial optimisation problems coupled with an explanation of the best-known tree traversal
protocols employed in conjunction with the B&B algorithm. The chapter closed with an outline
of prior academic investigations related to the puzzle Wrapslide in §2.5.
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The determination of God numbers for the various Wrapslide grids requires the exploration of
several extensive search spaces. As in the approach followed to find the God number for Rubik’s
cube, methods may be developed to reduce the size of these search spaces. To this end, this
chapter contains an exposition on the methods used to identify and represent equivalence classes
of given Wrapslide states. The chapter opens in §3.1 with a description of the process followed to
convert a Wrapslide state to a numerical representation. The focus in §3.2 is on the transforma-
tions and colour permutations that produce states belonging to the equivalence class of a given
Wrapslide state. Next, the feasibility of generating B&B enumeration trees for Wrapslide states
is explored. Section 3.3 opens with an explanation of how the B&B method may be applied to
identify an optimal move sequence for solving a mixed Wrapslide state. Furthermore, §3.4 sees
the implementation of the techniques introduced in previous sections to demonstrate how smaller
B&B enumeration trees, yielding comparable results, may be generated. Detailed descriptions
of the branching procedure and termination criteria are included. The penultimate section con-
tains a description of a method whereby the values of the God numbers ΘW (4, 2),ΘW (4, 3) and
ΘW (4, 4) may be found. The chapter closes with a brief summary.

3.1 Encoding of Wrapslide States

Recall, from §1.1, that a Wrapslide God number is the smallest number of moves with which
any scrambled state of the puzzle can be solved. It is evident that, in order to find such a God
number by brute force, each of the possible mixed states of the puzzle must be considered. The
number of possible mixed states for an n×n Wrapslide grid containing c colours is given by the
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multinomial coefficient1

(
n2

︸ ︷︷ ︸
c− 1 entries

(n2 )2, . . . , (n2 )2, (5− c)(n2 )2

)
=

(n2)!

[(n2 )2!]c−1[(n2 )2(5− c)]!
. (3.1)

For example, as mentioned in §1.1, the 6× 6 grid containing four colours has

36!

9!9!9!9!
= 21 452 752 266 265 320 000

distinct states. The numbers of distinct Wrapslide states are tabulated in Table 3.1 according
to (3.1) for the various possible grid sizes and numbers of colours. Exploring search spaces of
the sizes shown in Table 3.1 by brute force would require a prohibitive computational budget
and memory storage capacity. This problem may be alleviated partially by the implementation
of the concepts of equivalent states and class representatives, as described in §2.1.

Table 3.1: The number of distinct Wrapslide states for various possible grid sizes and number of colours.

Grid size Two colours Three colours Four colours

4× 4 1.820× 103 9.009× 105 6.306× 107

6× 6 9.414× 107 4.412× 1014 2.145× 1019

8× 8 4.885× 1014 1.102× 1027 6.621× 1035

In order to perform the calculations that allow for the identification of such equivalent states
and their associated class representatives, however, a means of representing or encoding a given
Wrapslide state is required. The puzzle state encoding adopted in this project involves arbitrarily
assigning each colour a numeric value from one to c, as shown in the first column of Table 3.2.
A given state may therefore be represented by an n × n array containing values from the set
{1, . . . , c}, as illustrated in Figure 3.1(b) for the state shown in Figure 3.2(a). This state encoding
convention facilitates efficient performance of a large portion of the required calculations and
permits natural visualisation of a state, due to the similar dimensions of the array and its
corresponding state, coupled with the simple mapping between the set of colours and the set
{1, . . . , c}.

Timeous identification of a class representative requires the construction of an equivalence class
and an efficient means of comparing the states within this equivalence class. In order to ac-
complish this, each equivalence class state is converted to a natural number. This is achieved
by assigning one or two bits to each numeric value in the game state encoding described above.
With the aim of minimising memory requirements, only one bit (a 1 or 0) is assigned to a colour
when the grid contains only two colours, whereas grids containing three or four colours require

1Let n1 + n2 + · · ·+ nc = m, and define the so-called multinomial coefficient(
m

n1, n2, . . . , nc

)
=

m!

n1!n2! · · ·nc!
.

Then the
(

m
n1,n2,...,nc

)
represents the number of distinct partitions of m distinct objects into c distinct groups

of respective sizes n1, n2, . . . , nc. In the n × n Wrapslide puzzle with c ∈ {2, 3, 4} colours, there are ni = (n
2

)2

squares of colour i for all i ∈ {1, 2, . . . , c− 1} and nc = (5− c)(n
2

)2 squares of colour c in any solved game state,
for n ∈ {2, 3, 4}. Furthermore, m = n2. The number of distinct game states is therefore the number of distinct
partitions of the n2 Wrapslide grid cells into c colour classes of respective sizes n1 = (n

2
)2, . . . , nc−1 = (n

2
)2 and

nc = (5− c)(n
2

)2.
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Table 3.2: An example of colour code assignment for a grid containing two, three and four colours.

Colour Number Two colour grid Three colour grid Four colour grid

Red 1 1 00 00
Green 2 0 01 01
Blue 3 — 10 10
Yellow 4 — — 11

the assignment of two bits per colour. Examples of colour code assignments for the two-, three-
and four-colour grids are shown in the last three columns of Table 3.2. These bits are concate-
nated into a bit string which is easily converted to a decimal value. Figure 3.1 shows an example
of the implementation of this method. The bit string, ‘10110100000111101011101100010001’,
in Figure 3.1(e) is obtained by reading out lexicographically the game state encoding in Fig-
ure 3.1(d). When viewed as a binary number, the game state encoding therefore corresponds to
the decimal representation 3 021 912 849. A 4× 4 Wrapslide state containing four colours may,
for instance, be represented by a 32-bit string, which corresponds to a natural number when
viewed as a number in the binary system.

(a) (b) (c) (d)

(e)

Figure 3.1: The first steps of the method used to represent a graphical state as a binary number.
(a) A mixed state, (b) its representative numeric array, (c) the corresponding binary array and (e) the
concatenated bit string.

The length of the bit string required depends on the dimensions and number of colours contained
in the grid. For instance, a 4 × 4 grid with two colours will only require a bit string of sixteen
bits, as each colour can be represented by a single bit and the grid contains sixteen cells. A 6×6
grid containing four colours, however, requires a bit string of 2× (6× 6) = 72 bits to represent
a state (because each colour is assigned two bits and the grid contains 6× 6 = 36 cells).

It should be clear that the conversion from a graphical to a decimal representation of a Wrapslide
state, as described above, is reversible.
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3.2 The Equivalence Class of a Given Wrapslide State

The method of Wrapslide game state encoding, as described in §3.1, efficiently facilitates con-
struction of an equivalence class of states for any particular state. This is achieved by applying
the isometries (distance-preserving transformations) discussed in §2.1 to the original state and
exploring all colour combinations that result in states that are equivalent to the original state.
This process is described here by referring to the four transformations of rotation, translation,
reflection (described in §2.1) and colour permutation, in the order mentioned. The equivalence
class construction process is elucidated throughout this discussion in the context of the game
state in Figure 3.1(a), referred to as the original state for the purpose of discussion.

The original state in Figure 3.1(a) may be successively rotated clockwise through 90◦, to produce
a total of four states, including the original, as shown in Figure 3.2. The resulting states are
isometric to the original state and may therefore be considered equivalent to the original state.
A practical motivation for the equivalence of these states may be obtained by visualising the
puzzle on an electronic device such as a smartphone. Suppose the original state in Figure 3.2(a)
is what the puzzle would look like when seen on the smartphone in its normal orientation. The
second state, shown in Figure 3.2(b), shows the same puzzle state as viewed when the phone
is rotated clockwise to lie on its right-hand side. Similarly, Figures 3.2(c) and 3.2(d) show the
same puzzle state as viewed when the phone is upside-down and lying on its left-hand side,
respectively.

(a) Original (b) 90◦Rotation (c) 180◦Rotation (d) 270◦Rotation

Figure 3.2: Four Wrapslide states that are isometric to the state in Figure 3.1(a) produced by clockwise
rotation of that state.

To obtain the second set of equivalent states, the torus described in §2.2 is considered. As shown
in §2.2, a grid of cells in the plane may be embedded on a torus. This process may be reversed
by “cutting open” the torus. The same torus may be “cut open” differently, resulting in grids
that look different when embedded in the plane but which, in fact, represent the same torus
tiling. Combining this principle with the fact that a certain colour does not have to be grouped
into any specific quadrant in order to reach a solved Wrapslide state, four equivalent states are
obtained for each of the four equivalent states produced when cutting open the torus. This
claim is illustrated in Figure 3.3. The green and red lines in Figures 3.3(e)–3.3(h) indicate the
different paths along which the toroidal embedding of a Wrapslide state may be “cut open” to
generate equivalent plane tilings. Figures 3.3(a)–3.3(d) show the states that result from cutting
open the torus embedding corresponding to the original state in Figure 3.1(a) along the paths
indicated in the figures directly below them. Cutting the toroidal embedding of the original
state in Figure 3.1(a) along the outer central ring (indicated by the red line in Figure 3.3(f))
and along the vertical ring (indicated by the green line) directly opposite the original centre
point (indicated by the black dot) to embed the tiling in the plane, for example, results in the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.3: Equivalent states produced from a toroidal tiling by “cutting open” the torus differently.

state shown in Figure 3.3(b).

The third row of images in Figure 3.3 illustrate why the four cutting paths in Figures 3.3(e)–
3.3(h) produce equivalent states for the puzzle Wrapslide. Each of the states in Figures 3.3(i)–
3.3(l) have been produced by taking Figure 3.3(i) as the original state and cutting its torus as
indicated in the figure directly above. Therefore, the same “transformation” that was applied to
produce the corresponding figure in the first row, was applied to find each of these states. Con-
sequently, the moves required to reach the state in Figure 3.3(j) from the state in Figure 3.3(i)
are the same as the moves required to reach the state in Figure 3.3(b) from the state in Fig-
ure 3.3(a). It can be seen that, although the states look different, each colour is still grouped
into a single quadrant. As the puzzle Wrapslide does not require the colours to be grouped into
a specific quadrant to achieve a solved state, the states in Figures 3.3(i)–3.3(l) are all considered
solved and consequently equivalent for the purposes of finding God numbers.

While the torus model illustrates why the states in Figures 3.3(a)–3.3(d) may be considered
equivalent, identifying them by embedding the original state in Figure 3.1(a) on a torus, cutting
it in four different ways and embedding each of these tilings in the plane again is a cumbersome
process. Fortunately, the same results may be obtained by sliding the n

2 left-most cells upward,
n
2 cells to the left and sliding the entire grid n

2 cells upward and n
2 cells to the left (with toroidal

wrapping). The corresponding movement of the (partial) black dot in Figures 3.3(a)–3.3(d)
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Figure 3.4: Sixteen Wrapslide states that are isometric to the state in Figure 3.1(a) produced by
successive 90◦ clockwise rotation and translation. The states shown in the first row are the states
produced by clockwise rotation of the state in Figure 3.1(a). The states in the second row are produced
by moving the right and left halves, of the corresponding state in the first row, two cells up. The states
in the third row are obtained by moving the top and bottom halves of the corresponding first row state
two cells to the right. The fourth row states are obtained by moving the right and left halves of the
corresponding first row state two cells up and moving the top and bottom halves two cells to the right.

illustrates these cell movements.

The transformations described above produce four isometric states for each of the four equivalent
states produced by rotation in Figure 3.2. Thus, at this stage, a total of 4× 4 = 16 states that
are equivalent to the original state have been identified. These states are shown in Figure 3.4.

The last type of isometry used to identify members of an equivalence class is reflection. Each of
the sixteen equivalent states obtained thus far may be reflected around a vertical axis through
the grid centre within its plane to produce a total of thirty two equivalent states. Once again,
a practical motivation for the equivalent states thus produced follows by visualising each state
in Figure 3.4 on a smartphone. The reflected state shows what the grid would look like if it
were possible to view the puzzle from the back of the smartphone. Reflecting each of the sixteen
equivalent states in Figure 3.4 therefore gives rise to a total of 16× 2 = 32 equivalent states, as
shown in Figure 3.5.

These are the only transformations that result in equivalent states. Further equivalent states
may, however, be obtained by considering alternative colour combinations. Since the specific
quadrant into which a colour is grouped in the solved state is irrelevant (as long as each cell
of that colour is in the same quadrant), swapping, for instance, all the red cells with all the
blue cells will not affect the number of moves required to reach a solved state. Therefore, the
states in which the positions of the blue and red cells are reversed may be considered equivalent.
Permuting the colours, it follows that 4! = 24 equivalent states arise for each of the thirty two
equivalent states in Figure 3.4, giving rise to a total of 768 states that are all equivalent to the
state in Figure 3.1(a). These 32 × 24 = 768 states form an equivalence class whose members
may be considered the same for the purposes of computing God numbers.

The number of states in such an equivalence class will, of course, be smaller for smaller grids
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Figure 3.5: Thirty two Wrapslide states that are isometric to the state in Figure 3.1(a), produced by
rotation, translation and reflection. The states to the left of the dashed line are produced as described in
the caption of Figure 3.4. The states to the right of the dashed line are obtained by reflecting the states
on the right about an axis represented by the dashed line (within the page). Thus the right-most state in
any row of the figure is the reflection of the left-most state in that same row about a vertical axis within
the page through its centre point.

or for grids containing fewer colours. For instance, each of the states of a 4 × 4 three-colour
grid will have at most 32 × 2! = 64 states in its equivalence class. Figure 3.6 illustrates an
example of an instance where the transformations that are employed to produce an equivalence
class generate identical states. For this instance permuting the yellow and green cells will also
produce identical states. Therefore, the number 64 in this instance is, in fact, an upper bound
on the number of states in an equivalence class rather than the exact number.

3.3 Generation of a Branch and Bound State Enumeration Tree

It has been established that, in order to find the value of ΘW (n, c), the optimal move sequence
for every possible mixed state of an n × n c-colour Wrapslide grid must be considered (either
implicitly or explicitly). This can be done by constructing a so-called game tree for every possible
state of a given Wrapslide grid.

A game tree [1] is an example of a B&B search tree where the root of the search tree represents
the mixed state to be solved, the branching procedure represents the moves that may be executed
and the search terminates when the solved state is encountered. Either the DFS or the BFS
protocol may be used for the construction of a game tree, although the DFS protocol does not
facilitate the elimination of duplicate nodes as effectively as the BFS protocol, may become
stuck along a path that does not contain the solved state and hence fail to terminate and, most
importantly, is not guaranteed to yield an optimal move sequence (a shortest move sequence
to the solved state). The BFS protocol, on the other hand, will always find the shortest path
from the root of the search tree to the optimal solution (see §2.3). Therefore, in the context of
a Wrapslide game tree, the BFS protocol will find a shortest move sequence between the given
mixed state and the desired solved state. Figure 3.7 contains an excerpt of the game tree for
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Figure 3.6: Thirty two Wrapslide states that are isometric to the 4 × 4 three-colour state in the top
left corner, produced by rotation, translation and reflection. The states were generated according to the
method described for Figure 3.5. Note that there are only eight distinct states in the figure and hence
any state in the figure is a member of an equivalence class of cardinality eight.

Figure 3.7: An example of a game tree for a mixed 4× 4 four-colour Wrapslide state.

a 4 × 4 four-colour mixed state with an optimal move sequence (consisting of two moves) for
reaching the solved state indicated in red.

It is clear that the breadth of the search tree will increase exponentially as the lengths of optimal
move sequences (the depth of the search tree) increases. More specifically, when no equivalent
states are eliminated from the game tree, a branching factor2 of (n− 1)4 can be expected. The
rate of expansion of the breadth of the game tree may, however, be reduced by employing the
techniques described in the previous sections. These techniques are implemented to design a
branching procedure which eliminates any equivalent states from the search tree. The branching
procedure accomplishes this by performing two steps every time it is executed.

The first step involves generating all the states (as opposed to class representatives) that can
be reached from the current node by executing a single move (these states are referred to as the
child states of the node). The number of child states produced for a node depend on the size
of the grid. Since a player can choose to move the top, bottom, left or right half of an n × n
grid 1 to n− 1 cells up, down, left or right (moves involving more than n− 1 cells will produce
duplicate states), 4(n− 1) not necessarily distinct child states are obtained for the current node

2The branching factor refers to the number of child nodes generated for a given node [1].
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Figure 3.8: A conceptual illustration of a state enumeration tree which shows why it is impossible for a
class representative to reappear more than two levels below its first occurrence, if the state enumeration
tree is generated correctly. Each block denotes a class representative, the black blocks denote the same
class representative and the red block denotes a class representative one move away from the class
representative denoted by the black blocks. Since the class representative denoted by the red block is only
one move away from the class representative denoted by both black blocks and the BFS protocol always
produces the shortest path between two nodes (when duplicates are discarded) the class representative
denoted by the red block should already appear in Level 1.

by executing single moves.

These child states are not necessarily class representatives, nor do they necessarily belong to
different equivalence classes, which results in an unnecessarily large game tree. To remedy
this, the second step of the branching procedure involves converting each child state to its
class representative and removing any duplicates from the current node’s list of child class
representatives. In effect, siblings are compared for equivalent states during this second step of
the branching procedure. These steps are repeated when the next node in the level is visited
as dictated by the BFS protocol. If, however, the most recent node to be branched upon
is the last node of the current level, an additional test is performed before proceeding to class
representatives in the next level. This test involves comparing all the class representatives in the
next level (the children of the current level’s nodes) to each other, the nodes of the current level
and the nodes of the previous level. Once again, any duplicates are discarded. The remaining
children make up the next level of nodes. The same results are thus obtained as would have been
found if the child nodes were to be compared to all the higher level nodes in the search tree,
but as a significant decrease in computation and storage requirements. Figure 3.8 illustrates
why it is impossible for a class representative to reappear more than two levels below its first
occurrence, if the tree is generated correctly. The black blocks in the figure represent repeating
class representatives. Since the black blocks in Level 0 and 3 are the same class representative,
the red block in Level 2 must be one move away from both black blocks. Furthermore, the
BFS protocol produces the shortest path between any two nodes when duplicates are discarded.
Thus, the class representative denoted by the red block should already have appeared in Level
1, a contradiction. Consequently, it is not necessary to test for duplicate class representatives
more than two levels higher than the level currently being considered.

If no new nodes originate from a current level node, the node is fathomed. The branching
procedure is repeated until there are no more unfathomed nodes or the class representative of
the solved state is reached.

A method of solving any mixed state within a minimum number of moves has thus been es-
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tablished — a solution of the root state of the tree, involving the smallest possible number
of moves, may be traced out as the unique path from the root of the game tree to the class
representative of the solved state on the largest numbered level of the tree. This procedure
alone is, however, not enough to find the value of the God number ΘW (n, c). As mentioned
before, minimum numbers of moves to the solved state from every mixed state must be known
in order to establish the value of ΘW (n, c). It is, however, not necessary to construct a game
tree for every possible mixed state. Rather, game trees need only be generated for each state
equivalence class (taking the class representative as the root of the search tree), because the
minimum number of moves required to solve a mixed state is the same for each member of its
equivalence class. Nevertheless, constructing a game tree for each equivalence class of the grid
is at present computationally infeasible. For instance, the 6× 6 four-colour grid has

36!

(9!)4(32)4!
= 27 933 271 180 033 000

equivalence classes. Generating such a large number of game trees, some of which may already
be quite extensive, is not realistic given the storage and processing limits of the computing
technology currently available.

In order to circumvent this problem, two modifications are made to the game tree construction
process so as to generate an entire state enumeration tree. First, the solved state is instead
selected as the root of the search tree. Secondly, the branching procedure no longer terminates
when a certain state (the solved state in the context of the game tree) is reached. Rather, the
recursion stops when there are no more unfathomed nodes. Since each mixed state may be
reached from the solved state [10], the process will only terminate once the search tree contains
each class representative of the grid. Furthermore, as was shown for game trees, the depth of
a node in the state enumeration tree is the minimum number of moves required to solve any
state in the equivalence class represented by that node. The mixed state(s) with the largest
number of moves in their optimal solution sequence will, therefore, be represented by a node
in the largest numbered level of the state enumeration tree, called the height of the tree. It
follows that ΘW (n, c) equals the height of the state enumeration tree. An example of a state
enumeration tree generated by this method is shown in Figure 3.9.

3.4 Selection of Class Representatives

The process of generating a Wrapslide state enumeration tree discussed in the previous sec-
tion utilises the notion of a class representative, as described in §2.1. Section 2.1 does not,
however, contain an explanation of how the class representative is chosen. This choice is, of
course, arbitrary. The establishment of a convention by which a class representative is chosen
may nonetheless facilitate an efficient computer implementation of the methods described. The
following convention was adopted for class representative selection in this project: the class
representative of a given equivalence class is the state, within that equivalence class, with the
smallest corresponding decimal value.

Finding and comparing the decimal value of each state in an equivalence class may, however,
become very time-consuming when the equivalence class is sizeable. This concern is addressed
by exploiting a certain characteristic of the method used to find the decimal value of a state.
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Figure 3.9: The state enumeration tree for the 4× 4 two-colour Wrapslide grid. The height of this tree
is six, yielding the God number ΘW (4, 2) = 6.
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Consider the array

A =


1 3 1 3
2 4 2 4
1 3 4 2
2 4 3 1


which represents the game state in Figure 3.1(a) according to the colour enumeration convention
of Table 3.2. A total of 4! = 24 states equivalent to that in Figure 3.1(a) may be obtained by
means of colour permutations. These twenty four equivalent states are shown in Figure 3.10.
It is evident that switching, for instance, all the blue and green cells or all the red and blue
cells will result in equivalent states. These specific permutations result in the states shown in
Figures 3.10(b) and 3.10(j), respectively.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u) (v) (w) (x)

Figure 3.10: Twenty four equivalent states of a 4 × 4 two-colour Wrapslide scrambled state produced
by considering all the possible colour permutations for the given state.

It follows that the array obtained by switching the positions of, for instance, all the twos and
threes or all the ones and twos in A represents another array also representing an equivalent state
to that in Figure 3.10(a). The decimal value associated with each of these arrays will, however,
differ. In order to find the smallest decimal value, the numbers in the array must be permuted
so that they appear in the array in ascending order when the array is read lexicographically.
For instance, in A the number 1 appears first, therefore no changes are made. The next number
to appear, however, is 3 although a 2 has not yet appeared. Thus, all the twos and threes may
therefore be swapped in A to produce the equivalent array representation

B =


1 2 1 2
3 4 3 4
1 2 4 3
3 4 2 1


of a state equivalent to that represented by A.

To understand why this array will yield the smallest decimal value among all the decimal value
representations of states in the equivalence class of the state in Figure 3.10(b), consider the
following k-bit binary number to decimal value conversion method. First, the values of 2x are
calculated for x ∈ {0, 1, . . . k − 1}. For instance, to convert an 8-bit binary number to a decimal
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value, Table 3.3 is constructed. Next, each bit in the binary number is visited, starting at the
last digit and working backwards. If the bit is a 1, a value of 2x is recorded for the x-th bit thus
considered. Otherwise, for a 0-digit a value of zero is recorded. The decimal value representation
is obtained by summing the recorded values together. Thus, the later a 1 appears in the binary
number, the less it increases the value of the decimal number so that the smallest decimal
number will correspond to the binary number in which the first 1 appears the latest (when
comparing binary numbers of the same length). Referring to Table 3.2, it may be seen that
the bit assignment convention adopted will produce a binary number with the first 1 occurring
at the latest possible digit when the numbers (form one to four) appear in ascending order in
the array representation of a Wrapslide state. Employing this method, the class representative
decimal value can be identified by finding the minimum of thirty two decimal values, as opposed
to considering the full set of 768 decimal values of the equivalence class. It is now possible to
determine whether or not two states are equivalent by comparing the decimal values of their
class representatives. If the class representatives have the same decimal value representation,
the states belong to a single equivalence class; otherwise, they do not.

Table 3.3: Binary to decimal conversion calculations: (01001101)2 = (77)10.

Binary number 0 1 0 0 1 1 0 1

2x 27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1
Recorded value 0 64 0 0 8 4 0 1

3.5 God Numbers for Selected Wrapslide Grids

The methods described in the previous sections were implemented by the author in Python
3.5 [22] in order to construct state enumeration trees for the 4× 4 two-, three- and four-colour
Wrapslide grids. The numbers of class representatives on each enumeration tree level, the total
numbers of class representatives present in each enumeration tree, and the time and memory
required to construct each enumeration tree are shown in Table 3.4. The computation times
shown in Table 3.4 were obtained on a personal computer with an Intel i7 5820k core, running
at 4GHz with 8GB RAM and Dual R9 390 GPUs within a Windows 7 operating system.

It follows from the second column of Table 3.4 that there are twelve 4× 4 two-colour Wrapslide
state equivalence classes which require at least six moves for their solution, but that there are
no equivalence classes which necessarily require at least seven moves for their resolution. The
following novel result has therefore been established.

Theorem 3.1 The God number for the 4× 4 two-colour Wrapslide puzzle is ΘW (4, 2) = 6.

The following novel result similarly follows from the third column of Table 3.4.

Theorem 3.2 The God number for the 4× 4 three-colour Wrapslide puzzle is ΘW (4, 3) = 10.

As was already mentioned in §2.4, the God number ΘW (4, 4) was established in 2014 by
BurgerzAP [6]. His result may be confirmed from the fourth column of Table 3.4 as follows.

Theorem 3.3 (BurgerzAP [6]) The God number for the 4× 4 four-colour Wrapslide puzzle
is ΘW (4, 4) = 12.
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Table 3.4: The numbers of state equivalence classes in the various levels of the state enumeration trees
generated for the 4×4 two-, three-, four-colour and 6×6 two-colour Wrapslide grids. Computation times
are represented in the format hours:minutes:seconds.

Level
4× 4

Two-colour
4× 4

Three-colour
4× 4

Four-colour
6× 6

Two-colour

0 1 1 1 1
1 1 3 1 1
2 2 7 3 5
3 10 28 9 47
4 24 107 34 356
5 28 445 126 2 489
6 12 1 684 523 17 484
7 — 5 160 2 261 109 672
8 — 6 260 9 389 525 914
9 — 825 30 472 ≥ 1
10 — 3 37 256 ?
11 — — 4 085 ?
12 — — 14 ?
13 — — — ?

Total state equiva-
lence classes

78 14 523 84 174 ≥ 655 968

Computation time 00:00:11.66 01:09:35.61 07:41:31.78 62:07:25.69
RAM requirement 3.46GB 4.02GB 5.32GB 7.09GB

Although the state enumeration tree for the 6 × 6 two-colour Wrapslide puzzle is too large to
confirm the God number ΘW (6, 2) in this project, the following bound follows from the last
column of Table 3.1.

Theorem 3.4 The God number for the 6× 6 two-colour Wrapslide puzzle is ΘW (6, 2) ≥ 9.

As mentioned in §2.4, BurgerzAP proved that any colour in a 6 × 6 four-colour grid can be
grouped into a quadrant in twelve moves or fewer [6]. This was done in order to help establish
an upper bound on the God number for the 6 × 6 four-colour Wrapslide grid. The minimum
number of moves required to group the cells of any colour into a single quadrant (for a 6 × 6
four-colour grid) may also be used to deduce the God number of the 6× 6 two-colour Wrapslide
puzzle.

To elucidate the above statement, consider Figure 3.11. The red cells in the states shown in
Figures 3.11(a) and 3.11(c) have the same configuration. Therefore, the same minimum number
of moves are required to group the red cells of the states shown in Figures 3.11(a) and 3.11(c)
into single quadrants (resulting in Figures 3.11(b) and 3.11(d), respectively). Since the state
in Figure 3.11(c) contains only two colours, grouping all the red cells in this state into a single
quadrant results in a solved state, as shown in Figure 3.11(d). From the result obtained by
BurgerzAP that any colour in a 6× 6 four-colour grid can be grouped into a single quadrant
in twelve moves or fewer and the fact that the red cells in Figure 3.11(a) cannot be grouped
into a single quadrant in fewer than twelve moves [6] it may be deduced that solution of the
state in Figure 3.11(c) requires at least twelve moves. It follows that the God number of the
6× 6 two-colour Wrapslide puzzle is ΘW (6, 2) = 12. This result could not be confirmed in this
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(a) (b)

(c) (d)

Figure 3.11: Examples of 6 × 6 two- and four-colour Wrapslide states whose red cells are identically
distributed.

project due to the limited computer memory available to the author. The value ΘW (6, 2) = 12,
however, satisfies the lower bound established in Theorem 3.4.

3.6 Chapter Summary

This chapter was devoted to a description and application of techniques required to generate
state enumeration trees containing all Wrapslide class representatives. Section 3.1 contained
a discussion on a method for representing a Wrapslide state as a decimal value. This was
followed in §3.2 by an illustration of the techniques used to generate the equivalence class of a
given Wrapslide state. The focus in §3.3 shifted to the actual construction of Wrapslide state
enumeration trees that allowed the author to establish the God numbers for two Wrapslide grids
and confirm that for another grid. The section also included an overview of the notion of a game
tree as well as comprehensive descriptions of the branching and termination criteria employed
in the generation of such trees. Section 3.4 was devoted to a description of the conventions and
methods used to identify class representatives, and the last section, §3.5, saw the establishment
of the values of three Wrapslide God numbers upon application of the techniques described in
the chapter.



34 Chapter 3. State Enumeration Trees of the Puzzle Wrapslide



CHAPTER 4

A Heuristic Solution Procedure for
the Puzzle Wrapslide

Contents
4.1 Assignment of Objective Function Values to Wrapslide States . . . . . . . . . . 35

4.2 Proposed Heuristic for Solving Wrapslide States . . . . . . . . . . . . . . . . . 36

4.3 A Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

This chapter contains a description of the methodology developed to solve a Wrapslide mixed
state in an optimal or near-optimal number of moves. It opens in §4.1 with an explanation of the
approach used to associate an objective function value with a Wrapslide state which measures
the degree of colour heterogeneity in each of the state quadrants. A heuristic solution procedure
is next put forward in §4.2. The functioning of the heuristic solution procedure is partitioned
into two components: a game tree component and a state enumeration tree component. The
branching and termination procedures implemented in the game tree component of the heuristic
and the technique used to find the moves contained in an optimal solution sequence provided
by the state enumeration tree component are described in some detail. The focus of the section
finally shifts to the potential contribution of such a heuristic in respect of the establishment
of unknown God number values for Wrapslide grids. The chapter finally closes with a brief
summary in §4.3.

4.1 Assignment of Objective Function Values to Wrapslide States

The development of a heuristic solution procedure for solving a mixed Wrapslide state requires
a means of measuring the degree of colour heterogeneity in each of the state’s four quadrants.
This may be accomplished by the assignment of an objective function value (described in §2.3)
indicative of the degree to which a given mixed state resembles a solved state.

In this project, the objective function value associated with a state is determined by considering
the numerical representation of the state, as shown in Figure 4.1(b). The objective function
value of the state represented by the numerical representation is the sum of the absolute dif-
ferences between adjacent cells in the various quadrants. This sum is taken over the top two
quadrants (which are henceforth referred to as quadrants one and two) and the lower-left quad-
rant (henceforth referred to as quadrant three). For instance, the objective function value of the
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(a) (b) (c)

Figure 4.1: An objective function value associated with a Wrapslide state.

state in Figure 4.1(a) may be obtained by summing together the absolute differences between the
numeric values joined by blue lines in Figure 4.1(c) for each of the first three quadrants (whose
boundaries are indicated in red). This yields a value of |1− 3|+ |1− 2|+ |2− 4|+ |3− 4| = 6,
|1− 3|+ |1− 2|+ |2− 4|+ |3− 4| = 6 and |1− 3|+ |1− 2|+ |2− 4|+ |3− 4| = 6 for the first,
second and third quadrant, respectively. The objective function value associated with the state
in Figure 4.1(a) is therefore 6 + 6 + 6 = 18.

States with small objective function values are expected to require fewer moves, on average, in
order to reach a solved state than states with large objective function values. This intuitive
expectation is based on the fact that an objective function value of zero would require the sum
of the absolute differences between all the numeric values in a quadrant to be zero, for each
of the first three quadrants. This will be the case when, for three of the four numeric values,
all the cells with a given numeric value (and consequently all the cells of a certain colour) are
grouped together in a quadrant. Only three quadrants are considered in the computation of
the objective function value associated with a game state since, if three of the quadrants’ sums
of absolute differences equals zero, then the fourth quadrant cannot contain cells with differing
numeric values (and so a solved state has been reached).

4.2 Proposed Heuristic for Solving Wrapslide States

The heuristic developed to solve a mixed state of the puzzle Wrapslide in an optimal or hopefully
near-optimal number of moves consists of two components. The first component employs the
B&B algorithm (described in §2.3) and the BFS tree traversal protocol (also described in §2.3)
to generate pairs of game trees which, as mentioned in Chapter 3, take a user-specified mixed
state as the root of each game tree. An example of such a game tree pair is shown in Figure 4.2,
where the red block denotes the mixed state to be solved. The tree generation procedure used is
similar to the generation procedure described for game trees in Chapter 3. There are, however,
some key differences in respect of the branching and termination processes. First, while the
branching procedure once again generates child states that may each be reached by executing a
single move on the parent state, each level of the search tree is now generated by executing either
vertical (that is to say sliding the left or right half of the puzzle up or down) or horizontal moves
(sliding the top or bottom half of the puzzle to the right or left). The type of move (vertical
or horizontal) according to which states are generated alternates between the levels of each
tree in the game tree pair. Thus, if the states in the current level were generated by executing
horizontal moves on states in the previous level, then the states in the next level are generated by
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executing vertical moves on states in the current level. The first level of the branching procedure
in the first game tree generates states that may be reached from the root state by executing
horizontal moves (as indicated by the directions of the arrows in Figure 4.2(a)), while the first
level of the branching procedure for the second game tree generates states that may be reached
from the root state by executing vertical moves (as indicated by the directions of the arrows in
Figure 4.2(b)).

(a)

(b)

Figure 4.2: A conceptual representation of a pair of partial game trees generated by alternately exe-
cuting either vertical or horizontal moves for the mi best states in the level i, where m1 = 2 and m2 = 4.
The mixed state to be solved is denoted by the red block, the best states in each level are denoted by
black blocks and the types of move used to generate the states in levels 1 and 2 of each game tree are
indicated by the directions of the arrows. (a) The states in the odd numbered levels (the root lies in
level 0) are generated by horizontal moves, while the states in the even numbered levels are generated
by vertical moves. (b) Conversely, the states in the odd numbered levels are generated by vertical moves
and the states in the even numbered levels are generated by horizontal moves.

The branching procedure also differs in another regard. Instead of executing the branching
procedure for each state in a level, as is done for game trees, the branching procedure is only
applied to the mi best states in the i-th level, where the descriptor best refers to the states
associated with the smallest objective function values. For instance, in Figure 4.2 the branching
procedure is applied to the m1 = 2 and m2 = 4 best states (represented by the black blocks) in
levels one and two, respectively. This approach is followed to reduce the computation time of the
heuristic. The values of mi adopted in this project for 6× 6 game states containing two, three
or four colours are shown in Table 4.1. These values were obtained empirically by weighing the
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improved solution quality associated with larger values of mi against the accompanying increase
in computation time. For instance, using the mi-values in Table 4.1, it was found that the final
solution quality decreased imperceptibly (when compared to the application of the branching
procedure to every state of a level), while the computation time decreased significantly from
fifteen minutes to approximately 0.8 seconds for a six-level game tree of one of the 6× 6 grids.

Table 4.1: The number of states, mi (where i denotes the level), for which the branching procedure
must be executed in different levels of the partial game trees generated for the heuristic solution procedure
in the cases of 6× 6 two-, three- and four-colour Wrapslide grids.

mi Two colours Three colours Four colours

m1 3 3 3
m2 8 8 8
m3 13 13 13
m4 16 16 16
m5 — 25 25
m6 — 30 30
m7 — — 40
m8 — — 55

The tree generation process terminates when the game tree reaches a predetermined maximum
depth or when the solved state, represented by a green block in Figures 4.3–4.4, is found.
Recommended maximum allowable depths of the game trees were determined by considering
the average rate of convergence to a minimum objective function value and the increase in
computation time for larger game trees. Maximum allowable depths of four, six and eight were
established empirically as suitable for the 6 × 6 two-, three- and four-colour Wrapslide grids,
respectively.

If the tree generation process terminates because the search trees have reached the specified
maximum depth, the k states with the smallest objective function values, represented by purple
blocks in Figures 4.3–4.4, are chosen as the roots of k new pairs of game trees. The selection
of k states, as opposed to the single state with the smallest objective function value, somewhat
helps to prevent the heuristic from becoming trapped in local optima. The process is repeated
until a state with an objective function value of zero (i.e. a solved state) is found. The values
of k adopted in this project for the 6 × 6 two-, three- and four-colour Wrapslide grids are ten,
fifteen and twenty, respectively.

Figure 4.3 illustrates how this technique may yield an optimal or near-optimal move sequence
according to which a given game state may be solved. The red block in the figure once again
represents the original mixed state, taken as the root of the first pair of search trees, while the
purple block represents one of the k best states, selected from the first pair of search trees, once
they had reached the maximum allowable depth (note that, not all of the k best states will
necessarily lie in the last levels of the search trees, as in this example). The process terminates
when the solved state, represented by the green block, is reached. The solution sequence,
therefore, consists of the moves represented by the bold red branches. The first component of
the heuristic solution procedure is therefore, in fact, analogous to the construction of a partial
game tree. This partial game tree is generated by selecting and integrating several incomplete
game trees generated during the execution of the solution procedure.

Despite the selection of k best states for further inspection, as opposed to only the best state,
there remains a considerable probability that the heuristic might become trapped at states with
small objective function values, from which the solved state cannot be reached within a number
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Figure 4.3: A conceptual representation of the execution of the first component of the heuristic solution
procedure, showing how a solution path (indicated by the red branches) may be obtained.

of moves fewer than or equal to the specified maximum depth of a single search tree. In such
cases, the solved state will never be reached and the heuristic will enter an infinite loop. This
problem is remedied by the second component of the heuristic which makes use of incomplete
state enumeration trees rather than game trees. While the state enumeration trees of the 6× 6
and 8×8 grids are too large to generate in full (due to a limited memory capacity), the methods
described in Chapter 3 may be utilised to generate the first few levels of these state enumeration
trees. Since these state enumeration trees will look the same each time they are generated, the
incomplete state enumeration tree of a given grid need only be generated once and stored. The
relevant stored incomplete state enumeration tree may then be consulted whenever the infinite
loop situation described above is encountered. Once the objective function values of the k best
states have not decreased for a specified number of iterations of the partial game tree generation
procedure described above, these k best states are converted to their class representatives and
compared to the class representatives contained in the stored state enumeration tree. If one
or more of the class representatives are present in both the list of class representatives of the
k best states generated by the first component of the heuristic and the relevant partial state
enumeration tree of the second component, the length of a heuristic move sequence may be
determined according to which the original state can be solved.

To elucidate the above description, consider Figure 4.4. Once again, the red block in the figure
represents the mixed state to be solved and the purple block denotes one of the k best states
selected to be the root of a new pair of partial game trees. The green and grey blocks in the
lower levels of the figure denote an upturned version of the first levels of the relevant partial
state enumeration tree. Therefore, optimal move sequences from each of the states in these
lower levels to a solved state, are known. The blue block represents the class representative of
one of the k best states generated by the first component of the heuristic which is also contained
in the stored state enumeration tree. Since a move sequence from the mixed state to the state
represented by the blue block is known and an optimal move sequence from the solved state to
the state represented by the blue block is known, a move sequence from the mixed state to the
solved state is also known. This path, shown in red, provides an upper bound on the number of
moves required to solve the original mixed state.
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Figure 4.4: A conceptual illustration of the integration of the output generated by the first component
of the heuristic (denoted by the red, black and white blocks) and a stored partial state enumeration tree
(denoted by the green, grey and blue blocks) yielding an upper bound on the number of moves required
to solve the given (red) mixed state (denoted by the bold red branches).

The path generated by the first component of the heuristic consists of moves that may be
identified simply by comparing two states joined by a single branch of the tree and finding
the move which will generate the second state when applied to the first (the moves that need
be considered are either horizontal or vertical, depending on the levels in which the states
lie). This is not, however, the case when considering the section of the path contained in the
(incomplete) state enumeration tree. Recall that the states belonging to a certain equivalence
class are considered equal for the purposes of finding God numbers, because their optimal
solution sequences are of equal length. Their solution move sequences do not, however, contain
identical moves. Consequently, the state enumeration trees do not explicitly specify the actual
moves that must be executed in order to reach a solved state. This is evident in the state
enumeration tree in Figure 3.9, where, for instance, no single move can be executed to reach
the first state in the third level from its parent state in the second level. Nevertheless, as was
mentioned in §3.2, a solution move sequence involving the smallest number of moves may be
found by considering the strategy obtained when tracing the unique path from the root of the
state enumeration tree to the current state. This path is, essentially, an ordered list of the class
representatives of the states that lie along an exact solution sequence. Thus, the exact moves in
the solution sequence may be found by means of the following method. Given the ordered list
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of class representatives, start at the mixed state and sequentially consider two adjacent states,
call them A (the current state) and B (the succeeding state), at a time. Find all the states
belonging to B’s equivalence class and generate all the child states that result when executing a
single move from each of B’s equivalent states. Store the move associated with each child state.
Suitable moves may now be determined by searching for duplicates of A in the list of child states
and storing the relevant move. Finally, execute this move on A to find the new orientation of
B. This process must be repeated, each time taking the previous B as the new A and obtaining
the new B from the list of class representatives, until the solved state is reached. Combining
this move sequence with the move sequence obtained as output from the first component of the
heuristic, a complete move sequence may be generated.

Despite this additional computational burden, consulting the stored (incomplete) state enu-
meration tree is significantly faster than generating a larger number of game tree generation
iterations. Also, the state enumeration tree method always gives the smallest number of moves
required to reach the solved state from the current state, while the game tree generation compo-
nent of the heuristic only produces an upper bound on the minimum number of moves required
to solve the given mixed state. Therefore, consulting the state enumeration tree will always
yield an equal or superior quality final solution. To exploit this fact, when a 6 × 6 two-colour
state with an objective function value of two is encountered, the heuristic automatically refers
to the incomplete state enumeration tree of the 6 × 6 two-colour Wrapslide grid. This is the
case because an objective function value of two is only possible when all the colours are grouped
into quadrants with only two cells in the wrong quadrant, one of which must be the fourth
(bottom-right) quadrant. This state represents a local minimum in respect of the objective
function in §4.1. In addition, Burger AP [5] proved that any two cells of the 6 × 6 grids can
be swapped in eight moves or fewer. Two examples of such eight-move sequences that may be
used to exchange two cells are shown in Figure 4.5. If the stored state enumeration tree contains
(at least) the first eight levels of the complete enumeration tree, every state associated with an
objective function value of two will belong to one of the equivalence classes contained in the
stored tree and hence an optimal move sequence from the state representing a local minimum
described above to the solved state can be found (from the state enumeration tree).

The heuristic may also be used to determine an upper bound on the length of an optimal move
sequence without specifying the exact moves contained in this move sequence. The heuristic
is capable of providing this result in a fraction of the time required to find the precise moves
involved. Since the value of a God number is determined by considering the lengths of the
optimal move sequences, not the actual move sequences themselves, this output may be used
profitably in pursuit of establishing Wrapslide God numbers. For instance, for an unknown
God number, the heuristic may be employed to solve a large number of random Wrapslide
instances so as to determine the distribution of the corresponding optimal move sequence lengths.
This distribution may then be compared to the optimal move sequence length distributions of
Wrapslide grids whose God numbers have already been determined in order to gauge the likely
value of or conjecture an upper bound on the unknown God number value. Furthermore, such a
distribution may possibly be used to determine the suitability of proposed methods for finding
the God numbers of larger Wrapslide grids.

4.3 A Worked Example

In order to clarify the working of the heuristic described in the previous section, this section
contains a comprehensive worked example of the steps followed to determine the moves asso-
ciated with the sequence of states provided as output by the two components of the heuristic.
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(a)

(b)

Figure 4.5: Two move sequences that may be implemented to exchange two cells, without changing the
groupings of the remaining cells.

The techniques described in §4.2 are applied to the top-most state in Figure 4.6(a).

The first component of the heuristic generates partial game trees whose integration yield the
first section of a solution. This solution section is shown in Figure 4.6(a). The last state in
Figure 4.6(a) has an associated objective function value of 3. Three remains the best objective
function value when an additional set of game tree pairs is generated, and so the heuristic may be
assumed to be trapped at a local optimum. Consequently, the second component of the heuristic
is initiated. As mentioned in §4.2, the second component of the heuristic compares the class
representatives of the best states generated by the first component of the heuristic to the class
representatives in the relevant partial state enumeration tree. In order to compare these states,
the k = 10 best states generated by the first component of the heuristic must be converted to their
class representatives. Figure 4.6(b) shows the last state of the first component of the solution
(generated by the first component of the heuristic), outlined in red in Figures 4.6(a)–4.6(b) and
henceforth referred to as the coupling state. The class representative of the coupling state is
outlined in green in Figures 4.6(b)–4.6(c). The heuristic searches for this class representative
in the partial state enumeration tree. Once this class representative has been found, the path
from that class representative (in the state enumeration tree) to the class representative of the
solved states is recorded. The path thus recorded for this example is shown in Figure 4.6(c).

For the states shown in Figure 4.6(a), the exact moves required to reach each state from its
parent state are stored while the partial game trees are generated (this may be done since
memory requirements do not have to be minimised for the heuristic as for the state enumeration
trees). Therefore, no additional computations are required and the first two moves of the move
sequence have been identified. They are bottom half: 3 cells left and right half: 5 cells up. As
mentioned in §4.2, however, this is not the case for the path shown in Figure 4.6(c), obtained
from the state enumeration tree. The conversion of the solution sequence extracted from the
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(a) (b) (c)

Figure 4.6: (a) A move sequence generated by the first component of the heuristic, (b) the conversion
of the coupling state to its class representative and (c) the corresponding list of ordered states obtained
from the stored (incomplete) state enumeration tree. The result is a guarantee that the original state
can be solved in seven moves or fewer.
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Figure 4.7: Conversion of the ordered list of class representatives (obtained from the state enumeration
tree) to generate an actual move sequence of states.
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(a) (b) (c)

Figure 4.8: Combination of the move sequences produced by (a) the first component and (b) the second
component of the heuristic so as to obtain (c) a complete move sequence.



46 Chapter 4. A Heuristic Solution Procedure for the Puzzle Wrapslide

state enumeration tree path (shown in Figure 4.6(c) and henceforth referred to as the ordered
list of class representatives) to the states in the second part of the actual move sequence is
illustrated in Figure 4.7.

The first column of states in Figure 4.7 contains the ordered list of class representatives and
the second column of states contains the first pair of states (from the ordered list of class
representatives) to be considered. Recall, from §4.2, that the two states taken as input for each
iteration of the method used to convert the list of ordered class representatives to the states of
an actual move sequence are referred to as states A and B, respectively. In the third column of
Figure 4.7 it is shown that the class representative of the coupling state must be converted to the
coupling state (once again outlined in red), before attempting to find the state in the equivalence
class represented by the second class representative (in the ordered list of class representatives)
which may be reached by executing a single move. The coupling state is therefore the first state
A while the second class representative in the list of ordered class representatives is the first
state B. The states in the fourth column of Figure 4.7 show the coupling state and the state
that belongs to state B’s equivalence class, which is reachable from state A by a single move.
It may be seen, from the fifth column of states, that the equivalence class state obtained in the
step illustrated in the fourth column is taken as state A during the next iteration of the process.
This process is repeated until each class representative has been converted to the relevant state
so as to obtain the actual move sequence of states shown in the last column of the figure. The
moves associated with the sequence of states in the last column of Figure 4.7 are bottom half: 4
cells left, left half: 1 cell up, bottom half: 4 cells left, right half: 5 cells up and bottom half: 4
cells left.

As illustrated in Figure 4.8, the complete move sequence may therefore be found by combining
the list of states obtained from the first component of the heuristic (shown in Figure 4.8(a)) and
the move sequence produced by the second component of the heuristic (shown in Figure 4.8(b))
to obtain the move sequence shown in Figure 4.8(c). The complete list of moves is as follows:
bottom half: 3 cells left, left half: 5 cells up, bottom half: 4 cells left, left half: 1 cell up, bottom
half: 4 cells left, right half: 5 cells up and bottom half: 4 cells left.

4.4 Chapter Summary

This chapter was devoted to a description of a heuristic solution procedure capable of solving
a Wrapslide mixed state in an optimal or hopefully near-optimal number of moves. The initial
focus in §4.1 was on the assignment of an objective function value to a given Wrapslide mixed
state. Thereafter, the focus shifted in §4.2 to a description of the heuristic solution procedure
developed to solve mixed Wrapslide states. Section 4.2 included detailed discussions on the two
main components of the heuristic, namely a game tree component and a state enumeration tree
component. These discussions elucidated the branching and termination criteria of the game
tree component, the determination of optimal move sequences from the state enumeration tree
component and the integration of the two components into a single heuristic. A comprehensive
worked example was presented in §4.3 in order to demonstrate the working of the procedure.
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This chapter is devoted to a description of a computer implementation of the heuristic developed
in Chapter 4. It opens in §5.1 with a description of the programming environment used to
implement the heuristic. The focus of the section then shifts to a description of the graphical user
interface (GUI) developed to enable users unfamiliar with computer programming environments
to utilise the heuristic. The required user inputs, the output options available to the user and
the formats of the GUI windows are explained. Thereafter, the results obtained by implementing
the heuristic for a number of randomly generated Wrapslide states are described in §5.2. These
results include average computation times required and average move sequence lengths uncovered
by the heuristic. The chapter closes in §5.3 with a concise summary.

5.1 User Interface Design

The heuristic described in Chapter 4 was implemented by the author in Python 3.5 [22] using
the PyCharm integrated development environment (IDE). Two different implementations of the
heuristic were established. Both take a numeric array representing a user-specified mixed state
to be solved as input and produce the computation time and the length of the solution move
sequence found by the heuristic as output. There are, however, two key differences between the
implementations. The first important difference is the additional output element of the second
implementation, namely the exact moves contained in the solution sequence. The second notable
difference is a consequence of this additional output element — an increased computation time
for the second implementation.

In order to obtain the length of and actual moves within a solution sequence for a given mixed
Wrapslide state, a numeric array representing that state is required by both the Python imple-
mentations of the heuristic(s) as described above. This requirement might make the heuristic
inaccessible to users unfamiliar with Python, or programming environments as a whole. In order
to remove this obstacle, a GUI was therefore developed, using the Python tkinter package [23],
to facilitate a more intuitive method of specifying the mixed state to be solved.

47
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On opening the GUI, the user is presented with the window shown in Figure 5.1(a). The user
may now select the dimensions of the grid to be solved as well as the desired output. The grid
dimension selection is made by clicking on one of the buttons labelled Four by four or Six by
six. The output selection is made by clicking the button labelled Move sequence length only
(faster) or the button labelled Entire move sequence (slower). Once a selection has been made,
the corresponding button will appear sunken. For instance, clicking the Six by six and Complete
move sequence (slower) buttons produces the window shown in Figure 5.1(b).

The user must make a selection in terms of both the dimensions of the grid to be solved and the
desired output before clicking on the Generate grid button. This action will produce a blank
grid (of the selected dimensions) and a bar of coloured cells, as shown in Figure 5.2(a). The user
may now colour the cells of the blank grid so that it represents the mixed state to be solved.
First, the colour to be inserted into the grid is selected. This is done simply by clicking on the
desired colour in the colour bar. The user may then click on any of the cells in the blank grid in
order to assign the selected colour to that cell. The colour of the white cell will change as soon
as it is clicked upon. The same colour will be assigned to each cell clicked on until a new colour
is chosen from the colour bar.

Once each cell has been assigned a colour, such as in the grid shown in Figure 5.2(b), the
Solve button may be clicked. Clicking the Solve button will prompt the implementation to
input the current configuration of the grid and convert it to the required numeric array format.
Depending on the user’s selection between the Move sequence length only (faster) and Entire
move sequence (slower) buttons, the input array will be taken as input for the execution of the
desired heuristic implementation. If the button labelled Move sequence length only (faster) was
clicked, the heuristic described in Chapter 4 is executed to find the length of an optimal or near-
optimal move sequence for the mixed state specified by the user. As indicated on the button
label, this implementation outputs only the length of the move sequence found and executes
much faster than the second implementation. The output thus produced for the mixed state in
Figure 5.2(b) is shown in Figure 5.3(a). If, however, the user clicked the button labelled Entire
move sequence (slower), the second implementation is executed. While slower, this option will
produce the output shown in Figure 5.3(b) for the mixed state in Figure 5.2(b), specifying the
computation time, the length of the move sequence found by the heuristic and the exact moves
contained in this move sequence.

The solution sequence moves are denoted by a string of letter-and-integer pairs, as shown in
Figure 5.3(b). The letter in each pair may be either a T, B, R or L, indicating movement of
the top (T), bottom (B), right (R) or left (L) half of the grid. The integer, whose value may
range from one to three for the 4 × 4 grid or from one to five for the 6 × 6 grid, indicates the
number of cells over which the half is moved. In this project, the convention adopted is that
all moves are either upward or to the left. That is to say, Ts and Bs represent leftward moves
of the top and bottom halves, respectively, while Rs and Ls denote upward moves of the right
and left halves, respectively. For instance, the string ‘B3 R5 T4’ represents the move sequence
where the bottom half is moved three cells to the left, the right half is moved five cells up and
the top half is moved four cells to the left. Moves shifting cells downward or to the right need
not be included in any move sequence since the toroidal nature of the puzzle dictates that the
states reached by moving a half down or to the left may also be obtained by moving that half
up or to the right. For instance, the state obtained by moving the top half of any 6 × 6 grid
two cells to the right may also be obtained by moving the top half of that same grid 6− 2 = 4
cells to the left. Furthermore, whether the half is moved two cells or twenty it is still considered
a single move, thus executing only left and/or downward moves will not increase the length of
the solution sequence obtained.
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(a)

(b)

Figure 5.1: The input and output options presented to the user upon launching the GUI.

(a) (b)

Figure 5.2: (a) A blank grid of the dimensions selected by the user and (b) an example of a specified
mixed state for which the Solve button may be clicked.
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(a) (b)

Figure 5.3: The output window generated for the mixed state in Figure 5.2(b) when (a) the Entire
move sequence (slower) button or (b) the Move sequence length only (faster) button is clicked to indicate
the preferred output.

5.2 Results Obtained by the Heuristic

Both implementations of the heuristic were executed for (the same) hundred randomly generated
mixed states of the 4 × 4 two-, three- and four-colour grids and for the 6 × 6 two-, three- and
four-colour grids. The results thus obtained are shown in Tables 5.1 and 5.2.

Since the complete state enumeration trees have been generated for each of the 4 × 4 grids,
the average optimal move sequence length for each grid may be calculated. The averages of
the optimal move sequence lengths (obtained from the state enumeration trees) are 4.45, 7.34
and 9.35 for the 4× 4 two-, three- and four-colour grids, respectively. Comparing these average
optimal move sequence lengths to the average move sequence lengths shown in the second column
of Tables 5.1 and 5.2, one may obtain an indication of the degree of optimality of results returned
by the heuristic. For instance, from the third rows of Tables 5.1 and 5.2 it may be seen that
the average move sequence length obtained by the heuristic for a hundred random instances of
the 4× 4 two-colour grid is 4.16. This is smaller than the average optimal move sequence length
of 4.45 calculated utilising the state enumeration trees. Since the heuristic was only applied
to a hundred randomly generated states, an average move sequence length that is smaller than
the average optimal move sequence length is possible (as opposed to if the heuristic were to
be applied to every possible state, in which case the average move sequence length obtained
by the heuristic would necessarily have been larger than or equal to the average optimal move
sequence length). The small difference between the average move sequence length obtained by
the heuristic and the optimal move sequence length calculated from the state enumeration tree
for the 4 × 4 two-colour grid indicates a high degree of optimality of solutions obtained by the
heuristic for the 4 × 4 two-colour grid. Similarly, the average move sequence length of 7.58
(in the fourth rows of the tables) obtained for the 4 × 4 three-colour grid is very close to the
optimal move sequence length of 7.34 determined from the state enumeration tree of the 4 × 4
three-colour grid, once again indicating a high degree of optimality. The degree of optimality
decreases slightly for the 4 × 4 four-colour grid for which an average move sequence length of
10.82 was obtained by the heuristic implementation, as shown in the fifth rows of Tables 5.1 and
5.2, compared to an average optimal move sequence length of 9.35.

Nevertheless, the average move sequence lengths obtained for the 4×4 grids are all smaller than
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the corresponding God numbers. This is not, however, the case for the 6 × 6 two-colour grid.
Although the complete state enumeration tree for the 6× 6 two-colour grid was not generated,
meaning that the actual average optimal move sequence for the 6× 6 two-colour grid could not
be calculated, it may still be deduced that the degree of optimality of solutions obtained by the
heuristic is worse than for the 4 × 4 grids since an average move sequence length of 12.59 was
obtained by the heuristic, while the God number of the 6× 6 two-colour grid is known to have
a value of twelve. Therefore, a decrease in the degree of optimality is observed not only with an
increase in the number of colours, but also in the size of the mixed state.

Although the God numbers of the 6 × 6 three-colour and four-colour grids are unknown it is
therefore reasonable to assume that the degree of optimality will continue to decrease as the
number of colours increase. Therefore, it is expected that, not only are the average optimal
move sequence lengths for the 6× 6 three- and four-colour grids smaller than the average move
sequence lengths obtained by the heuristic, but so also are the God numbers. The following
conjecture is therefore put forward.

Conjecture 5.1 The God number for the 6× 6 three-colour grid satisfies ΘW (6, 3) ≤ 21.

Similarly, from the fifth columns of Tables 5.1 and 5.2, the following conjecture is put forward.

Conjecture 5.2 The God number for the 6× 6 three-colour grid satisfies ΘW (6, 4) ≤ 28.

The average move sequence length values in Tables 5.1 and 5.2 are identical since both imple-
mentations of the heuristic were executed for the same hundred states randomly generated for
each colour and grid size combination. When comparing the computation times recorded in
the last columns of Tables 5.1 and 5.2, it may be seen, as expected, that the implementation
which does not provide an actual move sequence executes significantly faster. It may be seen
that the difference between the average computation times obtained for the first and second
implementation of the heuristic increase linearly, relative to the number of states in the solution
sequence obtained (approximately 2.018 seconds per state).

Furthermore, the average computation time increases for larger grid size and more colours.
The increase in computation time is not, however, a linear function of the increase in size of
the associated search spaces. For instance, the search space of the 6 × 6 three-colour grid is
4.412×1014

9.414×107
= 4.687 × 106 times larger than the search space for the 6 × 6 two-colour grid. The

corresponding computation time in Tables 5.1 and 5.2 only increase by factors of 175.33
69.12 = 2.54

and 232.96
115.53 = 2.016, respectively. The relatively small increase in computation time (when

compared to the increase in the size of the search space) may be attributed to the unique
branching procedure and termination criteria of the heuristic, as described in Chapter 4. This
tailored branching procedure and termination criteria is, however, most likely also the cause of
the decreasing degree of optimality observed. This trade-off is considered acceptable due to the
large increase in computation time that is expected to result for a slight increase in optimality,
as mentioned in §4.2.

5.3 Chapter Summary

This chapter was devoted to a description of implementations by the author of the heuristic
solution procedure described in Chapter 4. This description opened in §5.1, with a high-level
description of the two Python implementations of the heuristic aimed at generating an upper
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Table 5.1: The average move sequence length achieved and average computation time expended by
executing the first heuristic implementation described in §5.1 for 100 randomly generated mixed states
of the 4× 4 two-, three- and four-colour grids and 6× 6 two-, three- and four-colour grids. Computation
times are represented in the format minutes : seconds.

Average move sequence length Average computation time

4× 4 6× 6 4× 4 6× 6

Two colours 4.16 12.59 00 : 00.80 00 : 18.79
Three colours 7.58 21.06 00 : 01.42 01 : 09.12
Four colours 10.82 27.82 00 : 02.34 02 : 55.33

Table 5.2: The average move sequence length achieved and average computation time expended by
executing the second heuristic implementation described in §5.1 for 100 randomly generated mixed states
of the 4× 4 two-, three- and four-colour grids and 6× 6 two-, three- and four-colour grids. Computation
times are represented in the format minutes : seconds.

Average move sequence length Average computation time

4× 4 6× 6 4× 4 6× 6

Two colours 4.16 12.59 00 : 08.38 00 : 43.65
Three colours 7.58 21.06 00 : 16.69 01 : 55.53
Four colours 10.82 27.82 00 : 24.24 03 : 52.96

bound on the length of an optimal move sequence for a given Wrapslide mixed state. The focus
shifted in §5.2 to a description of the working of the GUI designed to make the heuristic more
accessible to non-technically inclined users. Thereafter, the results obtained by applying these
two implementations to a hundred randomly generated mixed states were presented in §5.2.
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6.1 Project Summary

The report comprises six chapters. The introductory chapter was devoted to the project back-
ground, a problem statement, the project scope delimitation, the research objectives pursued
and the research methodology employed in the project.

In fulfilment of Objective I in §1.3, Chapter 2 contained a thorough review of the concepts
necessary for the development of a solution procedure for the puzzle Wrapslide as well as for
the establishment of bounds on and values of its associated God numbers. The initial focus of
the chapter was on the notions of symmetry, isometries and equivalence classes. Thereafter, the
focus shifted to descriptions of the plane and the torus as topological objects, as well as tilings
of these surfaces. The review continued with an explanation of the celebrated B&B algorithm
coupled with a description of the best-known tree traversal protocols employed in conjunction
with this method. The review closed with an overview of prior academic investigations related
to the puzzle Wrapslide.

Chapter 3 was devoted to the description and development of techniques required to generate
state enumeration trees containing all Wrapslide class representatives. The chapter opened with
an explanation of the methodology employed to encode a Wrapslide state and represent it as
a decimal value, in fulfilment of Objective II. The next section contained a description of how
this encoding methodology was implemented in combination with the notions described in the
literature review in order to generate equivalence classes for Wrapslide states. Thereafter, an
account followed of the construction of state enumeration trees (in fulfilment of Objective III),
which enabled the author to establish the God numbers for two Wrapslide grids and confirm
that for another. This account included an outline of the notion of a game tree as well as detailed
descriptions of the branching and termination criteria employed in the generation of such trees.
The penultimate section was devoted to a description of the convention followed to identify class
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representatives and the last section saw the establishment of the values of three Wrapslide God
numbers.

The objective in Chapter 4 was the design of a heuristic solution procedure capable of solving
a Wrapslide mixed state in an optimal or hopefully near-optimal number of moves. The initial
discussion centred around the association of an objective function value with a given Wrapslide
mixed state as a means of measuring the degree of colour heterogeneity in each of a state’s
four quadrants. Thereafter, a heuristic solution procedure was put forward in fulfilment of
Objective IV. For clarity of explanation the heuristic was partitioned into two components: a
game tree component and a state enumeration tree component. Both components’ branching
and termination criteria were described in some detail. A comprehensive worked example was
also included to elucidate the working of the heuristic. The focus of the chapter finally shifted
to the potential contribution of such a heuristic in respect of the establishment of unknown God
number values for Wrapslide grids.

Two implementations by the author of the heuristic designed in Chapter 4 within a software
environment were described in the penultimate chapter, in fulfilment of Objective V. The chapter
contained a description of the GUI developed, which aims to make the heuristic accessible
to a larger, non-technical audience. Thereafter, some statistics gathered by applying these
implementations to a number of random Wrapslide states were presented in the second section
of Chapter 5, in fulfilment of Objectives VI and VII.

6.2 Suggestions for Future Work

Although two novel God numbers were established during the completion of this final year
project, the values of the God numbers of several Wrapslide grids remain unknown. Several
future courses of action and areas of further study that may contribute to the establishment of
bounds on or the actual values of these unknown God numbers have been identified.

The most easily implementable suggestion is to execute the existing implementations of the
heuristic of Chapter 4 on better hardware. For instance, a computer memory capacity of 16GB
RAM (as opposed to the 8GB RAM available to the author) would likely allow for the confir-
mation of the God number of the 6× 6 two-colour grid. If a researcher has access to even more
powerful computational resources (with larger storage capacities and improved processing capa-
bilities), the implementation for the generation of state enumeration trees may be used as-is to
determine the values of ΘW (6, 3), ΘW (8, 2) and hopefully even ΘW (6, 4). It is therefore evident
that the acquisition of better computational resources is a vital step in the pursuit of Wrapslide
God numbers. After all, despite years dedicated to the development of techniques for reducing
the size of the search space, the determination of the value of the God number for Rubik’s cube
required 35 CPU years (donated by Google).

Future researchers may also aim to increase the speed of the heuristic of Chapter 4 by, for
instance, increasing the speed at which a state enumeration tree is searched for a particular
class representative. One method commonly employed for similar purposes is the bisection,
or binary search, method which finds an item in an ordered list by repeatedly partitioning the
section currently being considered into two halves and selecting the half which might contain the
sought-after item for further consideration. The execution time of the heuristic implementations
might also be sped up by alterations to the source code. Alternatively, researchers may consider
increasing the speed at which the current implementation executes by increasing the processing
speed of the computer it is executed on. This may be done by disabling CPU parking (specifically
for Windows 7 operating systems) or over-clocking the computer on which the implementations
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are run. These efforts will enable the heuristic to solve a much larger number of randomly
generated states. If a larger number of randomly generated states is considered, the average move
sequence length produced by the heuristics will be a better representation of the actual average
move sequence length of the population (in other words all the distinct states of a Wrapslide
grid). Increased accuracy of the average move sequence length should, in turn, translate to
better conjectures on the values of as yet unknown God numbers.

Future research efforts may also focus on the identification, study and implementation of suitable
algorithms for the solution of Wrapslide mixed states, such as the the IDA* algorithm employed
to find optimal solutions of random instances of Rubik’s cube [17].

Finally, there remains room for improvement in respect of the GUI. The GUI currently does not
contain any protocols preventing users from, for instance, clicking the Solve button before the
selecting both a grid size and preferred output or entering an impossible grid configuration (for
instance, a user may currently colour a 6 × 6 grid to contain 11 cells of one colour and 25 of
another colour, which would be impossible to solve). Should an invalid input event occur, the
GUI should stop executing. For this purpose, safety nets aimed at preventing erroneous user
inputs should be incorporated into the GUI.

6.3 What the Author has Learnt

The author’s academic knowledge horizon was considerably widened by exposure to the notions
of symmetry, isometries, equivalence classes and tilings of the plane and the torus, to name but
a few. The author also gained a deeper understanding of the well-known B&B method and the
best-known tree traversal protocols used in conjunction with the B&B algorithm. Furthermore,
completion of the project has led to a considerable increase in the author’s programming skills
and the development of a working knowledge of the Python software environment.

The most valuable skill acquired by the author during the course of this project was the abil-
ity to think innovatively. The problem considered in this project is relatively novel and was,
at its initial presentation to the author, completely unknown (to the author). Unlike some
well-known combinatorial optimisation problems, like the travelling salesman problem (TSP) or
the various types of facility location problems, the problem considered in this project has not
been documented and reported on extensively, which required the development of completely
new approaches to solve some of the problems encountered during this project. Many of the
methods employed in this project may seem overly simple and obvious in hindsight, but their
conception required imaginative thinking. Two small examples include the encoding method
used to represent a Wrapslide state as a decimal value and the technique used to associate an
objective function value with a mixed Wrapslide state.

Other problem-solving approaches adopted in this project were inspired by the literature. For
instance, the reduction of the number of states that needed to be included in the state enumer-
ation tree through the implementation of the notion of equivalence classes, was inspired by the
methodology employed in establishment of the God number for Rubik’s cube. The method used
to generate equivalence classes for Rubik’s cube could not, however, be applied directly to the
puzzle Wrapslide. The author therefore needed to integrate theoretical knowledge related to the
puzzle Wrapslide and the ideas employed in the establishment of the God number for Rubik’s
cube in order to produce original techniques capable of producing similar results.

Completion of the project also resulted in improved reasoning skills borne out of the need to,
for instance, motivate why a class representative cannot reappear more than two levels below
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its first occurrence in a Wrapslide state enumeration tree.

The author also learned how to conduct a research project over a sustained period of time, which
demanded the development of effective time management skills and self-discipline. Finally, the
author’s communications skills improved considerably during the course of this project. This
may be attributed to the need to communicate complicated principles and results clearly and
concisely. The author’s writing skills improved due to the writing of this report while her
oral presentation skills were developed in preparation for the presentation of some of the work
contained in this report at the 45th Annual Conference of the Operations Research Society of
South Africa.

6.4 How this Final Year Project may Benefit Society

The puzzle Wrapslide may be viewed as a combinatorial optimisation problem. If it is, for
instance, considered as an instance of the well-known assignment problem, the methodology
developed to generate the state enumeration tree may be used to generate all possible assignment
combinations. Once the list of possible assignment configurations has been generated, it may
be stored and consulted when necessary. Alternatively, a Wrapslide state may be considered
as a discretised solution space for a facility location problem, where the different colour cells
represent different types of facilities. Once again, the methods employed in the project may be
implemented to generate the complete set of possible facility distributions.

The primary contribution made in this project is, however, the theoretical support and hopefully
stimulation of continued research. The work contained in this project could only be completed
due to a foundation that was already laid by the efforts of BurgerzAP [6] and the two Dutch
students who proved that all possible mixed states of the puzzle Wrapslide may be reached
from a solved state [10]. Similarly, the work conducted in this project may support the work
of some future researcher. Ultimately, such a series of academic contributions may lead to the
development of methods or areas of study that have widespread practical applications. For
instance, Lattice theory was put forth as a purely theoretical concept in 1940 by Birkhoff [4]
and was subsequently studied for many years before it was ever used in programme analysis and
verification as it is so widely applied today.
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APPENDIX A

Project Timeline

The expected timeline is given in Figure A.1 in Gantt-chart form.
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Figure A.1: Project timeline in Gantt-chart form.
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