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Chapter 1

Introduction

Ebola virus disease (EVD) has captured the imagination of the public and experts alike. This
fascination is partly due to its overall rare occurrence and typically very few outbreaks, the severe,
often graphic symptoms associated with EVD and the extremely high case-fatality rates, ranging
anywhere between 25% and 90% [13]. Moreover, the identity of the natural Ebola virus reservoir
remains unknown. This lack of knowledge means that the effect of novel Ebola virus introductions
into human populations cannot easily be discerned or predicted, let alone prevented, adding to the
enigma of the virus in the public’s eye.

Health officials have been aware of Ebola Virus since 1976, but its history of sparse small outbreaks
led to scepticism of its potential to cause large-scale damage. The death of a toddler in South-
Eastern Guinea, believed to have been infected by bats in December 2013, evolved to be the
largest Ebola Virus Disease outbreak documented in history. Spanning 2014 to 2016, the outbreak
predominantly affected the West-African countries of Guinea, Liberia and Sierra Leone. Over
28,600 cases, and over 11,300 deaths resulting from Ebola were reported during the outbreak.
In comparison, there were 2,427 reported cases and 1,597 deaths in all other known cases and
outbreaks of Ebola since 1976 combined [13].

In June 2018, sporadic cases were identified and confirmed to be EVD in the Democratic Republic
of Congo. As of August 29, 2018, a total of 116 EVD cases including 77 deaths have been recorded
there. The nature of the virus makes it unlikely that it will ever exert such a tragic effect in
developed countries. Factors frequently identified as contributing to the unprecedented scale of
the outbreak include the slow identification of the virus and initial response by authorities, high
population mobility across porous borders and into dense urban areas, damaged public health
systems, severe shortages of health care workers, cultural beliefs and behavioural practices [64]. In
summary, the threat of Ebola has not subsided, and the virus continues to prey on the damaged
infrastructure of countries whose resources are already strained as they continue to control various
other infectious diseases such as HIV, Tuberculosis and Malaria. Further investigation of the
poorly-understood mechanisms driving the sporadic reappearance of the disease may contribute to
more efficient control of Ebola outbreaks in future.

Furthermore, the challenges associated with containing the 2014 - 2016 outbreak provided crucial
lessons applicable to disease management in general. The outbreak is said to have "demonstrated
the lack of international capacity to respond to a severe, sustained, and geographically dispersed
public health crisis" [64]. Additionally, it provided a desperate reminder of the gravity of contextual
consideration in public health response. With the exponential advances in medicine and the growing

9



10 CHAPTER 1. INTRODUCTION

capability to provide accessible health care, we neglect the importance of individual and community
buy-in. Our faith and high regard in science, does not always translate to useful solutions on the
ground. For these reasons, Ebola Virus Disease provides a valuable case study in understanding
the dynamics of unfamiliar infectious diseases, and determining appropriate response in highly
contextual environments.

Mathematical modelling has become an integral tool for aiding our understanding of the dynam-
ics of infectious diseases, and its application has helped decision-makers to investigate potential
outcomes and strategies. An important benefit of mathematical modelling is the ability to en-
act exogenous change on the modelled system in order to predict the impact of interventions
without committing any real resources; a key benefit in a setting with scarce resources and time
constraints.

This study aims to use mathematical models to simulate Ebola Virus Disease transmission in
order to better understand the key forces that govern an epidemic and assess the impact of control
measures on disease outcomes. Of the three countries, significantly more cases were recorded in
Sierra Leone (>14,100) and Liberia (>10,600) than in Guinea (>3,800). Consequently, due to
constraints in time and computational power, this analysis exclusively focused on modelling EVD
in Sierra Leone and Liberia. Explicitly, the research objectives for this study are:

• To develop a model for the transmission dynamics of EVD, as it presented in Sierra Leone
and Liberia during 2014 - 2016, and estimate the key parameters that drove it’s behaviour
from data.

• To estimate the basic reproductive number as a measure of outbreak severity.

• To assess the impact of intervention and control measures, and the timing thereof.

• To explore the role of culture and context in shaping the course of an epidemic.

In answering these questions surrounding the dynamics of EVD transmission, two deterministic
mathematical models with compartmental structures are presented. The first model captures
many of the more nuanced features of the Ebola virus but proved to be too complex to uniquely
estimate the multiple unknown parameters from the limited data. Therefore, to preserve model
identifiability a second, simpler, model was developed. This model extends from the traditional
Susceptible-Infectious-Recovered (SIR) framework to include the essential features of EVD with the
least number of unknown parameters. The known latency period of EVD is incorporated through
the inclusion of an exposed compartment. Additionally, the gravity of death in EVD transmission
and the importance of burial practice in West Africa motivated the inclusion of two death-related
states: one in which a deceased victim of EVD is still infectious and another, in which they are
safely buried or cremated and no longer capable of infecting others. This model subsequently
provides the basis for assessing the inclusion of intervention measures.

Chapter 2 presents an extensive literature review on the Ebola virus history, biology and control, as
well as a detailed description of the 2014 - 2016 West Africa outbreak, with a focus on Sierra Leone
and Liberia. Existing research and applications in the mathematical modelling of Ebola virus are
discussed. Chapter 3 describes the recorded case data available for the outbreak as provided by
the Centre for Disease Control (CDC). This is the secondary dataset that is used throughout
the study to inform the mathematical models. Chapter 4 forms an extensive discussion of the
sequential development of compartmental disease models, ordinary differential equation modelling
(the main methodology employed in the mathematical models) and use of the base reproductive
number. Chapter 5 presents parameter estimates, model predictions and parameter sensitivity for
both of the final models fitted to the epidemic data. Additionally, the impact and timing of both
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intervention measures deployed and alternative solutions are discussed. Chapter 6 synthesises the
obtained model results with insights from literature and other sources, in a summary of the lessons
provided by the 2014 - 2016 West Africa outbreak of EVD.
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Chapter 2

Literature Review

2.1 History of Ebola Virus Disease

Ebola Virus Disease (EVD) was first identified in 1976, when two simultaneous outbreaks of fatal
haemorrhagic fever were recorded in different parts of Central Africa. The first outbreak occurred
in Yambuku, Democratic Republic of Congo (DRC, formerly Zaire) in a village near the Ebola
River; from which the virus takes its name. The second outbreak occurred in what is now Nzara,
South Sudan, approximately 850 km away [71]. Owing to the proximity of the two outbreaks,
public health officials initially assumed that they were a single event associated with an infected
person who travelled between the two locations. However, they were subsequently found to be
caused by two genetically distinct strains of the virus, which were later named: Zaire ebolavirus
and Sudan ebolavirus [17]. Viral and epidemiological research suggests that Ebola virus existed
before these two outbreaks were recorded [13].

The causative agent of Ebola virus is an RNA virus of the family Filoviridae, which includes three
genera: Cuevavirus, Marburgvirus, and Ebolavirus [22]. Within the genus Ebolavirus, five strains
have been identified: Zaire, Sudan, Bundibugyo, Ivory Coast (Taï Forest) and Reston. Reston
ebolavirus has only been observed to infect non-human primates. Since its discovery in 1976, 29
sporadic outbreaks or case reports of EVD have been reported in predominantly African countries
[17]. Zaire ebolavirus, Bundibugyo ebolavirus, and Sudan ebolavirus are the three species of Ebola
virus responsible for the larger outbreaks in Africa. Zaire ebolavirus was associated with the 2014-
2016 outbreak in West Africa, the most severe Ebola outbreak to date with over 28,600 cases
identified. Prior to this, outbreaks and cases were predominantly limited to rural communities in
Sudan, Democratic Republic of Congo, Republic of Congo, Gabon and Uganda. Most of these
outbreaks were small in size with just seven outbreaks involving more than 100 cases. The largest
of the outbreaks before 2014 occurred in Uganda in 2000–2001 with 425 cases and 224 deaths
(Sudan strain) and DRC (Kikwit) in 1995 with 315 cases and 250 deaths (Zaire strain) [17, 13].
Bundibugyo ebolavirus, discovered in 2007, was associated with two outbreaks, one in DRC and
the other on the border of DRC and Uganda. Taï Forest ebolavirus, the only other Ebola virus
discovered in West Africa, was the cause of a single case identified in Côte d’Ivoire [13].

13
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Figure 2.1: Ebola Virus Outbreaks by Species and Size, since 1976 [13])

2.2 Ebola Virus Disease

Ebola virus disease (EVD), formerly known as Ebola haemorrhagic fever, is a severe and deadly
disease when presented in humans. Outbreaks from the same Ebola virus strain have resulted
in varying case fatality estimates, but there is consensus that the Zaire ebolavirus is the most
virulent among the five species and historically, also the most common. Since 1976, it has caused
multiple outbreaks in Africa, with fatality rates ranging between 25% - 90% [27, 13, 71]. Despite
the considerable international attention the 2014 - 2016 outbreak in West Africa received, the
pathogenesis of the disease remains remarkably poorly understood.

2.2.1 Virus Transmission

It has not been established exactly where the Ebola virus originates. However, based on the nature
of similar viruses, it is believed that the virus is animal-borne. Evidence strongly implicates bats
as the natural reservoir hosts (source animal) for ebolaviruses [71]. Bats carrying the virus can
transmit it to other animals, like apes, monkeys, duikers, porcupines and humans [13]. Scientists
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continue to search for conclusive evidence of the bat’s role in the transmission of Ebola. However,
one explanation is that when bats drop partially eaten fruits and pulp, land mammals such as
gorillas and duikers feed on these fallen fruits and are consequently infected [22]. This possible
chain of events could serve as an indirect means of transmission from the natural host to other
animal populations [74].

It is believed that infection from the animal population to humans occurs through close contact
with the blood, secretions, organs, or other bodily fluids of infected animals, such as a fruit bats or
non-human primates. This is called a spillover event. Factors like population growth, encroachment
into forested areas, and direct interaction with wildlife (such as bush meat consumption) may have
encouraged this type of contact and led to the spillover of the Ebola virus [13].

The virus spreads amongst people when human-to-human transmission occurs through direct con-
tact with broken skin such as wounds, or mucous membranes (in the eyes, nose, mouth or vagina,
for example) with the following:

• blood or body fluids (including but not limited to urine, saliva, sweat, faeces, vomit, breast
milk, and semen) of a person who is sick with - or has died from - Ebola,

• objects (like needles and syringes), surfaces, and materials (e.g. bedding, clothing) that have
been contaminated with body fluids from a person who is sick with Ebola, or the body of a
person who has died from Ebola,

• infected fruit bats or primates (apes and monkeys, e.g. consumption of bushmeat)

• possibly from contact with semen from a man who has recovered from Ebola (for example,
by having oral, vaginal, or anal sex) [13, 71]

Ebola virus is not an airborne disease, it requires an intimate level of direct contact with an
infected individual who is almost certainly symptomatic, in order for the virus to spread. In
general, transmission is unlikely to occur during the incubation period and the transmissibility
increases with the duration of disease [2]. Health-care workers have frequently been infected while
treating patients with suspected or confirmed EVD. Caring for EVD patients often requires very
close contact and when control precautions are not strictly practised, the virus will almost certainly
infect a caretaker.

During the 2014 - 2016 outbreak, a Liberian man infected with EVD travelled to the United States
and managed to infect two Dallas nurses that cared for him prior to his death, despite stringent
control measures. It is believed that an inconspicuous control breach such as incorrect removal
of the protective gear resulted in their infection [75]. If transmission is possible in a developed
well-functioning hospital despite the nurses wearing protective masks, gowns, shields and gloves -
as well as working in a bleach washed environment - it is clear that there is great danger associated
with patients being cared for in the family home. It is estimated that 74% of transmission occurred
between close relatives during the 2014 - 2016 outbreak [13].

People remain infectious as long as their bodily fluids contain the virus and the viral load increases
as the infection progresses, making direct contact with the bodies of those who died from EVD one
of the most dangerous – and effective – methods of transmission [27]. Burial rituals and practices
are another highly significant factor, and intimate ceremonies in many African countries (where
religion and belief in an afterlife are common) pose another serious potential risk for transmission
and infection.

Ebola virus can remain in certain bodily fluids after a person has recovered from the infection
[13]. While there is no known risk of getting EVD through casual contact with an Ebola survivor,
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the virus can possibly remain in immunologically privileged sites of the body for several months
following acute infection. These are sites where viruses and pathogens, like the Ebola virus, are
shielded from the survivor’s immune system, even after being cleared elsewhere in the body. These
areas include most notably the semen of males, as well as the interior of the eyes, and the central
nervous system, particularly in the cerebrospinal fluid. It is not yet established whether the virus
does in fact spread through sex post-recovery, or exactly how long it takes to clear the virus, but
theoretically it is possible and the World Health Organisation (WHO) advises to abstain from sex
or to use condoms for at least three months after the patient has recovered. EVD survivors are
subjected to the regular testing of bodily fluids after recovery to ensure the virus is eventually fully
cleared [13]. The virus can also survive for several hours on dry surfaces such as doorknobs and
counter tops, and at least several days in bodily fluids, like blood, at room temperature.

2.2.2 Natural history and Symptom Development

Ebola is a severe acute viral illness often characterised by the sudden onset of common flu-like
symptoms such as fever, fatigue, joint and muscular pain, sore throat, and headaches [71]. Initial
symptoms typically appear between 8 and 10 days after exposure to the virus, but the incubation
period can span 2 to 21 days [13]. Humans are not infectious until they develop symptoms. Typ-
ically vomiting, diarrhoea, and a rash follow as symptoms worsen, along with decreased function
of the liver and kidneys. At this stage, in some cases people begin to bleed both internally and
externally (e.g. bleeding from the eyes, nose, gums and mouth or blood in the stools). Ebola virus
disease was initially named Ebola haemorrhagic fever due to first descriptions of Ebola in 1976
stating that up to 75% of patients had experienced haemorrhagic manifestations. Subsequently
however, bleeding has not been noted as often and is not considered a universal feature of the illness
[41]. That being said, these complications are common causes of death in fatal cases [27].

The most common signs and symptoms reported in West Africa during the 2014 - 2016 outbreak
(beginning from symptom onset to the time the case was detected) include: fever (87%), fatigue
(76%), vomiting (68%), diarrhoea (66%), and loss of appetite (65%) [13].

Patients with fatal disease usually develop more severe clinical signs early on during infection and
die typically between days 6 and 16 of complications including multi organ failure and septic shock
(mean of 7.5 days from symptom onset to death during the 2014 - 2016 outbreak in West Africa)
[13]. In non-fatal cases, patients may have fever for several days and improve, typically around
day 6. Normally symptoms dissipate 9.4 days after symptom onset in survivors.

There was speculation about the possibility of sub-clinical (asymptomatic) EVD exposure and
infection in non-survivors. A study done by Glynn and colleagues [29] that followed up on the
contacts of people with proven EVD in Sierra Leone showed that asymptomatic Ebola virus in-
fections occur extremely rarely, even when individuals have direct contact to others infected with
Ebola virus. This result is in line with the observation that individuals infected with Ebola virus
typically experience grave and often lethal symptoms [36].
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2.2.3 Diagnosis

EVD can be difficult to initially identify even in a well-functioning health system because its early
symptoms closely mimic those of other common illnesses, including malaria, dengue fever, typhoid
fever, viral illness, meningitis and gastroenteritis [71, 23, 22]. Thus, in an already weakened health
system, the task of quickly but correctly identifying and isolating Ebola patients before laboratory
test results are available, is particularly challenging. This fact can result in missed opportunities to
isolate infectious patients (through incomplete screening sensitivity) and expose non-Ebola patients
to nosocomial infection (through incomplete specificity) [46].

Confirmation that symptoms are caused by Ebola virus infection are made using the following
diagnostic methods: [71]

• antibody-capture enzyme-linked immunosorbent assay (ELISA)

• antigen-capture detection tests

• serum neutralisation test

• reverse transcriptase-polymerase chain reaction (RT-PCR) assay

• electron microscopy

• virus isolation by cell culture.

Currently, the most common laboratory test to identify EVD relies on a reverse transcription PCR
[46, 60], which is not a rapid point-of-care (POC) test but instead requires substantial laboratory
infrastructure. In the West Africa outbreak, patient blood samples were typically sent to off-site
laboratories set up through the international response. Although the test itself can be done in hours,
the round trip from a health facility to the laboratory often took over three days, especially during
the peak of the epidemic [60]. Although a few rapid POC EVD diagnostics were developed and
field-tested during this outbreak, they are not yet ready for widespread commercial use [46].

In lieu of rapid POC EVD tests to identify EVD-positive cases, a standardised EVD case definition
from the WHO was used during the epidemic as the primary tool for initially identifying potential
EVD patients [66]. Because false negatives for EVD put patients and their communities at great
risk, this case definition is broad (high sensitivity/low specificity). A broad case definition is also
useful for epidemic surveillance [46]. The case definitions will be presented in more detail in Chapter
3.1. Patients meeting these case definitions, based on broad symptom and/or exposure criteria,
were sent to holding centres for EVD testing and isolation. However, the broad case definition
meant that negative and positive EVD patients were mixed together, often for days, until their
test results were available and treatment facilities had beds for the positive patients. Although
some holding centres tried to separate suspect patients based on wet (i.e. diarrhoea or vomiting)
versus dry symptoms, this crude separation can expose Ebola-negative patients, particularly those
with wet symptoms, to a higher risk of nosocomial infection [46].

2.2.4 Treatment and Vaccines

There is as yet no proven treatment or licensed vaccine. The course of treatment for infected
patients primarily involves supportive care: providing symptomatic relief and ensuring rehydra-
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tion while the body fights the infection. Intravenous fluids, antibiotics, and oxygen are usually
employed. Treatment may also include the use of medications to control fever, help the blood clot,
and maintain blood pressure. A range of potential treatments including blood products, immune
therapies, and drug therapies are currently being evaluated, but these were not available during
the outbreak [71]. Although fatality rates remained high, there is some evidence indicating that
supportive care was effective in improving survival.

In a small study of 391 suspected, probable, or confirmed EVD cases in Bong County, Liberia by
Weppelmann et. al [62], a 74% reduction in the risk of short term mortality was observed for
patients hospitalised, compared to those not given medical intervention and after adjusting for
age. The authors attribute this increase in survival to the fact that since less than 5% of the cases
in the sample experienced unexplained bleeding and haemorrhage, hospitalisation likely helped to
prevent intra-vascular volume depletion and replacement of electrolytes, which greatly reduces the
potential for complication arising from hypovolemic shock.

A number of experimental vaccines have been in development since the late 1970s [39] but because
EVD outbreaks are rare, and have, until 2014, been controlled quickly, commercial vaccine manu-
facturers demonstrated little urgency in advancing vaccines through clinical trials. That changed
in 2014, with several vaccines previously tested only on animals being fast-tracked into Phase One
clinical trials [58].

One such experimental vaccine known as rVSV-ZEBOV was introduced in a ring vaccination
strategy - despite being unlicensed - in March 2016 when a flare-up of EVD was reported in
Guinea. This was the first time that an Ebola vaccine had been used during an outbreak setting
outside of a clinical trial [30]. The vaccine is reported to have been used and further investigated
during the ongoing outbreak in the Democratic Republic of Congo, which has resulted in 87 cases
between 1 - 16 August 2018 [70, 69]. The WHO has reported rVSV-ZEBOV to have been 100%
effective in a ring vaccination protocol in a trial in Guinea during 2015. However, this effectiveness
remains disputed given the lack of proper clinical trials [44].

Evidence shows that individuals who recover from Ebola infection develop antibodies that last
for at least 10 years, possibly longer. It is not known if people who recover are immune for life
or if they can become infected with a different species of Ebola. Some survivors have developed
long-term complications, such as joint and vision problems [13].

2.2.5 Tools Against Ebola

In the absence of a licensed vaccine or a specific treatment during the large 2014-2016 outbreak,
control and prevention strategies were focused on case management and minimizing direct con-
tact with the infectious. This predominantly involved contact tracing, travel restrictions and
quarantine, teams to facilitate safe burials and collaborating with local authorities to encourage
cooperation and behavioural changes through education.



2.3. TIME LINE OF THE 2014-2016 WEST AFRICA OUTBREAK 19

2.3 Time Line of the 2014-2016 West Africa Outbreak

Figure 2.2: Geographic district-level map of total confirmed case in Guinea, Sierra Leone and
Liberia during 2014 - 2016 outbreak [17], adapted from [68]

In December 2013, it was reported that an 18-month-old boy from Meliandou village within the
Guéckédou prefecture located in South-Eastern Guinea (Figure 2.2) - bordering both Sierra Leone
and Liberia - died after having been infected by bats [13, 21]. The toddler is suspected to have been
the index case. Retrospective analyses traced the initial transmission chain from those infected
by the toddler; this is provided in Appendix A.1. After five additional cases of fatal diarrhoea
occurred in that area, an official medical alert was issued on January 24, 2014, to the district
health officials. The Ebola virus soon spread to Guinea’s capital city of Conakry, and on March
13, 2014, the Ministry of Health in Guinea issued an alert for an unidentified illness. Shortly after,
the Pasteur Institute in France confirmed the illness as EVD caused by Zaire ebolavirus. On March
23, 2014, with 49 confirmed cases and 29 deaths, WHO officially declared an outbreak of EVD.
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The identification of these early cases marked the beginning of the West Africa Ebola epidemic,
the largest in history [13].

Initial efforts to control the outbreak were considered to be succeeding when in late April, a dip
in reported cases in Guinea gave hope that the epidemic was beginning to subside and could
be confined to largely one country. That hope was abandoned as the virus crossed international
borders into neighbouring countries, and the initially small number of confirmed cases in bordering
parts of Liberia and Sierra Leone rose sharply during May 2014 [21]. Weak surveillance systems
and poor public health infrastructure contributed to the difficulty surrounding the containment of
this outbreak and by July 2014, the outbreak had spread to the capitals of all three countries. This
was the first time EVD extended out from more isolated, rural areas and into densely populated
urban centres, providing an unprecedented opportunity for transmission [13].

On August 9, 2014, the World Health Organization declared the deteriorating situation in West
Africa to be a Public Health Emergency of International Concern (PHEIC), which is designated
only for events with a risk of potential international spread or that require a coordinated interna-
tional response [68].

A country needs to be 42 days without any new cases to be declared Ebola-free by WHO [71]. The
epidemic time frame and the end of the outbreak differed between the countries affected. Liberia
was first declared Ebola-free in May 2014. However, additional cases appeared and the peak of
transmission only occurred between August - September where Liberia was reporting between 300
- 400 new cases every week. Again, the epidemic seemed to abate and the outbreak was declared
over on May 9, 2015 - only to re-emerge seven weeks later when a 17-year-old man died from the
disease and additional cases followed. The same happened in September 2015. On January 14,
2016, WHO declared Liberia Ebola-free and no additional cases have been detected since.

After an initial declaration in November 2015, Sierra Leone announced it was Ebola-free on March
7, 2016. A preliminary statement in December 2015 was retracted when additional cases were
discovered in March and April, and Guinea was finally declared Ebola-free in June 2016.

Guinea, Liberia and Sierra Leone were by far the worst hit countries. However, over the duration of
the epidemic, 36 confirmed cases were reported from Italy, Mali, Nigeria, Senegal, Spain, the United
Kingdom and the United States [13]. Two and a half years after the first case was discovered, the
outbreak ended with 28,616 recorded cases and 11,325 deaths.

The scope of this outbreak, both in terms of cases and geography, can be attributed to the unprece-
dented circulation of EVD into crowded urban areas, increased mobilisation across borders, and
conflicts between key infection control practices and prevailing cultural and traditional practices
in West Africa. Engaging local leaders in prevention programs and messaging, along with careful
policy implementation at the national and global level, helped to eventually contain the spread of
the virus and put an end to this outbreak.

It was decided to provide country specific time lines of key events as well as basic country statistics
in 2014 prior to the outbreak for both Sierra Leone and Liberia, as this provided useful insight for
understanding the similarities and differences between the outbreaks in the two countries. The time
line for Sierra Leone is provided in Table 2.1 on page 21. The time line for Liberia is provided in
Table 2.2 on page 22. Unless stated otherwise, the information relating to key events were obtained
from WHO and CDC in the following sources: [67, 13, 68, 17]. Table 2.3 on page 23 provides simple
summary statistics for both countries in 2014. For this table, all values were adapted from World
Bank data for 2014 unless otherwise stated [43].
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Sierra Leone

30 March 2014 Several suspected cases reported from Sierra Leone (confirmed
cases in Liberia and Guinea)

24 May 2014 Confirmed cases reported in Kenema, Sierra Leone. They are
traced back to the funeral of a widely respected traditional healer
from Kailahun who had contracted the disease after treating Ebola
patients from across the border in Guinea.

26 May 2014 Outbreak confirmed.

11 June 2014 Borders with Liberia and Guinea, and a number of schools are
closed.

July 2014 All schools closed (reopened April 2015).

15 July 2014 The Ministry of Health establishes an Emergency Operations Cen-
tre (EOC) at the WHO Country Office in Freetown.

September 2014 Quarantine restrictions instituted in high risk areas.

19 September 2014 The first three-day shut-down is launched and six days later, three
additional districts are placed under quarantine. In total almost
a third of the population is under lockdown.

16 October 2014 The EOC announces two Ebola cases in the far north of Sierra
Leone, which marks the arrival of cases in every district in the
country.

26 October 2014 Outbreak peaks in Sierra Leone.

Oct - Nov 2014 Curfews imposed in Freetown.

17 December 2014 Western Area Surge is officially launched. In partnership with
WFP, UNDP, UNICEF, CDC and others, the surge is aimed
at sourcing urgently needed supplies and equipment, encourag-
ing community mobilisation, as well as surveillance and contact
tracing.

13 February 2015 Hundreds of homes (approximately 700) in the capital are placed
under quarantine for 21 days.

18 February 2015 Door-to-door searching for ‘hidden’ Ebola patients is launched.
Spike in cases in Port Loko district, east of the capital, attributed
to unsafe burials and patients being hidden from the authorities.

28 February 2015 New cases across the country prompt the reinstatement of the
lifted ban.

27 March 2015 Second 3-day shut-down of around 6 million people.

12 June 2015 Curfews imposed in Port Loko and Kambia.

September 2015 Vaccine trial for front-line workers under way.

7 November 2015 Sierra Leone declared Ebola-free for the first time.

Nov - March 2016 Additional case clusters discovered.

7 March 2016 Sierra Leone declared Ebola-free for the last time. Liberia was
already declared Ebola-free in January 2016. Guinea will only be
Ebola-free in June 2016.

Table 2.1: Sierra Leone 2014/2016 Time line
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Liberia

30 March 2014 Outbreak confirmed by WHO.

17 June 2014 Liberia reports that Ebola has reached its capital, Monrovia.

July 2014 Two ETCs opened in Monrovia and Foya; government closes most
border points and many schools (reopened February 2015).

20 July 2014 An airline passenger from Liberia introduces the virus into Lagos,
Nigeria marking the first time that Ebola enters a new country
via international air travel.

27 July 2014 Liberian President Ellen Johnson Sirleaf declares the closing of
borders, with the exception of Roberts International Airport,
where screening centres are added. The President also announces
that football events are banned, all schools and universities are
closed, and that the military is to be employed in quarantining
the worst-affected communities.

1 August 2014 State of emergency declared, enhanced contact tracing and quar-
antining measures instituted.

4 August 2014 Liberian government orders all bodies of Ebola victims to be cre-
mated.

19 August 2014 President declares a nationwide curfew and orders two communi-
ties to be completely quarantined, with no movement in or out of
the areas.

20 August 2014 West Point protests occur and authorities clash with members of
West Point neighbourhood in Monrovia, one of the communities
put under quarantine [6].

Aug - Sept 2014 Additional ETCs built.

28 September 2014 Ebola outbreak peaks in Liberia.

25-29 October 2014 National reporting transitions from aggregate to case-based data
which results in a peak in recorded cases.

29 October 2014 WHO reports the rate of infections in Liberia has slowed, due in
part to changes in cultural mortuary practices.

13 November 2014 State of emergency lifted.

15 February 2015 Schools reopen after months of closing due to Ebola outbreak.

22 February 2015 Lifting of nationwide curfews imposed and re-opening of land bor-
der crossings.

9 May 2015 Liberia first declared Ebola-free.

June - Dec 2015 Additional clusters of cases detected.

14 January 2016 Liberia declared Ebola-free for the last time.

Table 2.2: Liberia 2014/2016 Time line
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Country statistic Sierra Leone Liberia

Population 6.3 million 4.4 million

Rural Population (% of total) 60.4 50.7

Gross Domestic Product per capita (US$) 792.6 457.9

Capital City Freetown Monrovia

Physicians per 1000 people (as of 2010) 0.022 0.014

Total number of reported Ebola cases (WHO 2013 - 2016) 14124 10678

Total number of Ebola deaths (WHO 2014 - 2016) 3956 4810

Table 2.3: Country statistics for Sierra Leone and Liberia

2.4 Mathematical Modelling in Epidemiology

The use of mathematical models in epidemiology has become increasingly important for public
health officials to understand the effects of disease spread amidst dense urban populations, for
predicting the socio-economic effects of major epidemics, and for forecasting the effects of differ-
ent intervention strategies [47]. A mathematical model will always be a simplification designed
to obey the assumptions it is based on, and therefore will never perfectly capture a complex sys-
tem. However, it provides a fast, cost-effective tool for understanding the complexity inherent in
systems.

2.4.1 Compartmental Models in Epidemiology

The earliest account of mathematical modelling of spread of disease was carried out in 1766 by
Daniel Bernoulli [11]. However, it was the emergence of compartmental models in the 1920s that
established the basic foundations of the subject. One of the simplest and most fundamental of all
epidemiological models is the so-called SIR model developed by Kermack and McKendrick in 1927
[33]. In this model, a population is divided into susceptible, infective and recovered individuals,
with the functions S(t), I(t) and R(t) denoting their respective fractions in the populations at time
t (measured, for example, in days). The evolution of these quantities is described by the differential
equations: [33]

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

where the derivatives dS/dt, dI/dt and dR/dt measure the rates of change of the quantities S(t),
I(t), and R(t). The transmission parameter β is the average number of individuals that one
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infected individual will infect per time unit, assuming that all contacts this individual makes are
with susceptible individuals. Thus, a more highly infectious disease has a higher β. The number γ
is the rate of recovery, so that 1/γ is the average time period during which an infected individual
remains infectious. The product βS(t)*I(t) is the total infection rate, the fraction of the population
that will be infected per unit time at time t [11]. To understand this, note that if a fraction I(t)
of the population is currently infected, they would then infect a fraction βI(t) of the population
per unit time if all of their contacts were with susceptible individuals, but as only a fraction S(t)
of the population is currently susceptible, they will only infect βI(t) S(t) per unit time.

The ratio β/γ is also known as the basic reproductive number R0, which is an important index for
quantifying the transmission of pathogens. R0 is defined as the expected number of secondary cases
produced by a single (typical) infection in a completely susceptible population. It is important to
note that R0 is a dimensionless number and not a rate, which would have units of time−1. Some
authors incorrectly call R0 the “basic reproductive rate" [32].

This model results in a fixed population N (S+I+R) where members of the population mix ho-
mogeneously (interact with one another to the same degree). There is no entry into or departure
from the population as the dynamics of the disease are much faster than the time scale of birth
and death processes; and hence the impact of these processes on the population can be ignored.
Any inherent age, demographic and spatial structure is also ignored. There is no initial immunity
as all ‘members’ of the susceptible population are equally likely to get infected. The model infers
permanent immunity: once recovered, a second infection is impossible. The incubation period of
the infectious agent is instantaneous, and the duration of infectivity is the same as the duration
of the disease (one is infectious as long as one has the disease). Discrete individuals do not exist
in the model, and it is assumed that individuals who reside in the compartments are identical and
therefore variation among individuals is unimportant. Thus compartment models are described as
population-level models. It is fractions of the population that flow between compartments and these
movements are continuous. The rate of recovery λ is constant for each member of the population
and hence the average duration of infectiousness (and in this case disease) is 1/λ [56].

The SIR model forms the basis for many extensions based on model requirements. Transitions
between each of the compartments capture the overall dynamics of the epidemic, showing how
the population as a whole gets infected and eventually recovers. These models capture aggregate
behaviours over the whole population. Individuals and interactions between individuals are omit-
ted, and so these models can be used with relatively little computational power and relatively
small amounts of input. This allows for the models to capture large-scale (including country-
wide/continent-wide pandemic) disease spread with relatively little effort [47].

2.4.2 Mathematical Modelling of Ebola

Several mathematical models have been developed to study the transmission dynamics of EVD,
the majority of which were compartmental models.

The SEIR (susceptible-exposed-infectious-recovered) deterministic compartmental model structure
is commonly used in the mathematical modelling of diseases with an incubation period, accounted
for by the ‘exposed’ compartment. Several mathematical models have extended upon the SEIR
structure in modelling Ebola virus. Many mathematical models for EVD are also focused on
optimal control analysis and thus extensions frequently include various intervention measures
[18].
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Ahmad et. al proposed a SEIR-type model distinguishing between high risk and low risk suscep-
tibles with the addition of hospitalisation, quarantine and vaccination controls [2]. Ivorra et al.
proposed a general deterministic spatial temporal model with vital dynamics in [31] which was
tested on the Guinea outbreak data. Models discriminated between early and late stage infections
through the use of more than one infectious class such as in [4, 10]. Xia et al. distinguished between
suspected and probable infectious cases [73].

Not all compartmental model structures assumed the latent period and excluded the exposed state.
Njankou and Nyabadza used an SIHDR model to study the potential impact of limited hospital
beds and hospitalisation constraints on the EVD outbreaks in Liberia and Sierra Leone [20]. Berge
et. al developed a model to incorporate indirect transmission through a contaminated environment
such as consumption of bush meat [9].

Some of these model extensions are summarised in Table 2.4 with the following compartmental
definitions: S = susceptible, E = exposed, I = infected/infectious, R = recovered, H = hospi-
talised, V = vaccinated, D = dead, B = buried, F = funeral, P = Ebola virus pathogens in the
environment.

Model Transmissions Control Reference

SSEIHR Community, hospital Quarantine, vaccination [2]

SEIH(DB)R Hospital, dead, funeral
Quarantine, contact tracing, safe
burial

[31]

SIHDR Hospital, dead, funeral
Quarantine, contact tracing, safe
burial

[20]

SEIIFR Community, hospital, funeral Isolation and safe burial, ETU [4, 10]

SVEIIHFR Community, hospital, funeral
Vaccination, media, isolation,
quarantine, safe burial

[73]

SIPDR
Community, dead, contaminated
environment

Education, safe burial [9]

SEI(HF)R Hospital, dead, funeral
Contact tracing, treatment, safe
burial

[50]

SEIIHFR Community, hospital, funeral
Media, isolation, quarantine,
safe burial

[54]

Table 2.4: Ebola Transmission SIR/SEIR Variant Models and control measures investigated

Some studies did use alternative model structures to the traditional compartmental model. Bartlett
et al. used a deterministic, discrete time, age structured model which separated people by the
number of days into an infection [5]. Differences in district-level transmission dynamics were
analysed using a generalised linear mixed effects model by Krauer and colleagues in [35].

Many of the interesting and complex models discussed were derived in theoretical mathematical
settings, where implementation was restricted to numerical simulations. Fewer models were directly
aimed at better understanding the Ebola virus dynamics and uniquely estimating the parameters
that resulted in the outbreak. During the 2014 - 2016 outbreak, all efforts were necessarily focused
on eradicating Ebola in West Africa to prevent further transmission and hence many of the models
developed during this time were aimed at optimal control analysis. Given that even less data was
available during the outbreak, scenario analysis was often limited to numerical simulation.
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This paper is partly motivated by the limited research dedicated exclusively to the unique estima-
tion and better understanding of the Ebola virus dynamics as observed in humans, as opposed to
optimal control analysis and hypothetical intervention testing. The geographic location and the
context of any future Ebola outbreak is uncertain, and the appropriate control measures will very
much depend on this context as well as resources available at that time. In the large West Africa
epidemic, state enforced cremation was successful in Liberia, but not a viable strategy available
to Sierra Leone. It is unrealistic to assume general intervention strategies exist that are equally
appropriate for all outbreaks. Consequently, this paper aims to supplement previous research by
harnessing the full retrospective scope of data and information in providing more specific estimates
for the dynamics of EVD and how it differed between Sierra Leone and Liberia, the two countries
hardest hit by Ebola. Thorough understanding of the disease dynamics and how different factors
interact, provides a good basis for tailoring the right response and preparing more specific optimal
control models in the event of future out breaks.



Chapter 3

Data

3.1 Description

The data provides the cumulative EVD case counts and cumulative deaths recorded at different
dates for the three countries: Sierra Leone, Liberia and Guinea. The data was compiled from situ-
ation reports prepared by the World Health Organisation (WHO) during the 2014-2016 outbreak
but has been made publicly available by the Centre for Disease Control (CDC) [14].

During the outbreak, WHO recommended that mobile teams and health stations use three broad
definitions in classifying an EVD case. Cases were recorded as either suspected, probable or
confirmed and the respective definitions are provided in Table 3.1. WHO reported ‘cases’ to
be the sum total of all three definitions. Due to the existing challenges in case management and
detection, and the urgency to focus efforts on outbreak control and resource constraints, laboratory
confirmation of an EVD infection was often non-viable.

3.2 Exploratory Data Analysis

Exploratory data analysis helps us to make sense of the data presented before diving straight into
analysis. It facilitates the initial investigation into potential insights we could derive from the
data. The plots of the raw cumulative case and death data for both Sierra Leone and Liberia are
provided in figures 3.1 and 3.2, respectively. Despite the lack of independent variables present in
this analysis, these epidemic curves are useful when supplemented with the historical information
provided in the literature review of this paper.
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Suspected
• Any person - alive or dead - who has or had EVD symptoms, as

well as contact with a suspected, probable or confirmed EVD
case, or a dead or sick animal.

• Any person with sudden onset of high fever and at least three
of the following EVD symptoms: headache, vomiting, anorexia,
loss of appetite, lethargy, aching muscles or joints, breathing
difficulties, diarrhoea, stomach pain, difficulty swallowing, or
hiccups.

• Any person with inexplicable bleeding, or who died suddenly
from an unexplained case.

Probable
• Any suspected case evaluated by a clinician.
• Any deceased suspected case (where it has not been possible to

collect specimens for laboratory confirmation) having an epi-
demiological link with a confirmed case.

Confirmed
• Any suspected or probable that tests positive for EVD in lab-

oratory testing.

Table 3.1: WHO definitions of EVD cases [66]

3.2.1 Sierra Leone

Figure 3.1: Raw case and death data in Sierra Leone
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3.2.2 Liberia

Figure 3.2: Raw case and death data in Liberia

The outbreak in Liberia was officially declared over in January 2016, but it is clear from Figure 3.2
that the epidemic curve flattens out from mid 2015 already, and was considered to be over as early
as May 2015. Due to the detection of stray cases and small clusters, the country failed to achieve
Ebola-free status for 42 consecutive days - WHO’s requirement for an official end of an outbreak
to be declared - until a year later (Table 2.2).

3.3 Data Cleaning

Discrepancy in the data is to be expected given the difficulty in detecting, confirming and recording
cases during a crisis. There is evidence to suggest that both case data and death data were under-
reported in the official records [45]. However, the documentation of cases is considered to have been
better than for deaths and the available death data proved to be very noisy. This is in part due to
the fact that burials could not be accurately quantified in the areas known to continue traditional
burials [64], and efforts were aimed at tracking down live cases for quarantine and supportive care.
Consequently, it was decided to smooth the death data by simply selecting observations slightly
further apart that still capture the overall shape of the death curve but does not attempt to fit to
all of the noise present in the daily data.
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Figure 3.3: Sierra Leone clean data

For both Liberia and Sierra Leone, the data for the initial stage of the epidemic are available,
however it is sparse and unreliable; often the number of deaths exceed the number of cases for a
given recorded day. It was decided to consider data after the date by which at least 50 cases had
been recorded for each country. This corresponded to the June 2, 2014 for Sierra Leone and June
24, 2014 for Liberia. Obvious errors such as duplicate date entries and sudden small dips in the
cumulative cases were individually considered and either removed or corrected when the intended
value was clear. Given the relatively few observations available for the outbreak, this was done in
an effort to preserve as much data as possible. The plots for the cleaned datasets used in model
fitting are provided in Figures 3.3 and 3.4.

Figure 3.4: Liberia clean data

3.4 Limitations

Describing the mechanics of Ebola transmission, much like any other infectious disease, requires
data on both treated and untreated cases, but data is often restricted to those who presented
at healthcare facilities or were detected by surveillance authorities. Early in the epidemic, the
CDC estimated an under-reporting factor of 2.5 [43] which certainly improved as contact tracing
strengthened. Liberia reported near 100% effective case management towards the end of the



3.4. LIMITATIONS 31

outbreak. Changes and improvement in case coverage and contact tracing could also have led to
the spikes in the reported cases witnessed, as opposed to increases in the actual disease incidence.
A related problem was the disjointed collection and recording of cases by different authorities.
When closely looking at disease incidence in Sierra Leone, a dramatic variation in the number of
cases reported from the end of October to the beginning of November 2014 is present. CDC reports
that this jump is simply due to a change in data sources: prior to October 2014, the cumulative
total numbers were derived from a combination of patient databases and country situation reports.
Later, the revised approach used numbers compiled by the Ministries of Health and WHO country
offices [14].

Despite these limitations, the data remains very valuable in better understanding the course of the
outbreak.
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Chapter 4

Methodology

The very first step in choosing to replicate a transmission pattern using a mathematical model is to
decide on the class of model and structure for that model. This analysis made use of deterministic
compartmental models to describe the population dynamics of EVD.

4.1 Model 1: The Full Model

The total population is divided into nine mutually exclusive compartments which are classified as:
low risk susceptible (SL), high risk susceptible (SH), exposed (E), infected (I), hospitalised (H),
recovered and infectious (R1), recovered and not infectious (R2), dead and infectious (D), dead
and safely disposed (buried or cremated) (B). The proposed model provides an extension to the
deterministic models presented in [2, 50]. Ahmad et al. [2] introduced the split between low risk
and high risk susceptible individuals. Rivers et al. [50] explicitly included transmission resulting
from contact with deceased individuals through a funeral state.

High risk susceptible refers to individuals with a higher rate (probability) of acquiring infection
(i.e. ψHR > 1). Typically high risk susceptibles are considered to be women, children, health care
workers and doctors. The rest of the population is included in the low risk susceptible section. All
newborns are assumed to be low risk susceptible as there is no known vertical transmission of the
infection [2].
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Figure 4.1: Model 1 flow diagram

Individuals are recruited into the susceptible populations at a rate π with probability φ of being
a high risk individual. Deaths or exits due to reasons other than Ebola (from any state) are
captured by the rate σ. After exposure to the Ebola virus, susceptibles become infected and
can transmit the disease. Importantly, this model explicitly distinguishes between transmission
through contact with infectious individuals (I), infectious corpses (D), hospitalised individuals (H)
and recovered individuals (R1). Generally speaking, the effective transmission parameter captures
both the transmissibility (i.e. the probability of infection given contact) as well as the average rate
of contact between susceptible and infectious individuals.

We would expect the transmissibility to differ depending on the state of the Ebola virus infection.
For example, corpses are often more infectious than living patients and certainly more infectious
than recovered individuals. The average rate of contact between susceptible and different infectious
groups will also reasonably differ based on the typical type of contact (e.g. health care workers
versus community) but also quite possibly by culture and country. Cultural burial practice will
significantly influence the expected level of intimate contact between a diseased and living person.
Hospitalised or quarantined patients may experience less direct contacts but often result in the
infection of health care workers. All four rates are functions of time and are summarised by the
single term β(t) in the model flow diagram (Figure 4.1).

After exposure, infected individuals become symptomatic at a rate α. Once infected, individuals
may be hospitalised with a time dependent probability θH(t) at rate τ(t). Fluctuating resource con-
straints are captured by the time dependent relationship in these two parameters. Non-hospitalised
infectious individuals can recover from the disease at rate λ1, or die from the infection at rate λ2.
The probability of death (or fatality rate) is denoted by µI . Hospitalised EVD patients may
recover at a rate γ1 or die from the disease at a rate γ2 with fatality rate µH . There is some
evidence to suggest that hospitalised EVD patients experience slightly better chances of survival
than non-hospitalised cases, hence we have distinguished between the two fatality rates.

Given that viral persistence has been noted in immunologically privileged sites for several months
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after acute infection, an EVD survivor first transitions into R1 before transitioning to state R2

at a rate δ, after which they are no longer infectious. Once fully recovered (R2), the individual
remains immune and cannot re-enter the susceptible population as EVD survivors are known to
develop antibodies that last for at least 10 years [13].

If an infected individual dies, their corpse remains infectious until it is disposed of through safe
burial or cremation which occurs at a rate ρ(t). By allowing for the transmission rates, the
probability of hospitalisation, the rate of hospitalisation and the rate of safe burial to vary with
time, we can adequately capture the extreme behavioural changes observed and control measures
implemented with the progression of the Ebola outbreak.

The compartments and parameters driving the movement between these compartments for Model
1 is summarised in Figure 4.1, Table 4.1 and Table 4.2. Note that the total population size is not
necessarily assumed constant in this model.

Variable Description

SLR(t) Population of low risk susceptible individuals

SHR(t) Population of high risk susceptible individuals

E(t) Population of latent individuals

I(t) Population of infectious individuals

H(t) Population of hospitalised individuals

R1(t) Population of infectious recovered individuals

R2(t) Population of fully recovered individuals

D(t) Population of dead but still infectious individuals

B(t) Population of safely buried/cremated individuals

Table 4.1: Summary of Model 1 compartments
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Variable Description

π Natural birth rate / recruitment rate

φ Probability of a high risk individual

σ Natural death rate (not due to Ebola)

βI(t) Time dependent transmission rate from infectious individuals

βD(t) Time dependent transmission rate from dead individuals

βH(t) Time dependent transmission rate from hospitalised individuals

βR(t) Time dependent transmission rate from recovered individuals

ψHR Modification parameter for infection rate of high risk susceptibles

α Rate at which latent individuals become infectious

θH(t) Time dependent probability of an infected individual being hospitalised

τH(t) Time dependent hospitalisation rate for infected individuals

µI Fatality rate for non-hospitalised infected individuals

µH Fatality rate for hospitalised infected individuals

λ1 Recovery rate of infected individuals

λ2 Disease-induced death rate of infected individuals

γ1 Recovery rate of hospitalised individuals

γ2 Disease-induced death rate of infected individuals

δ Rate at which recovered individuals become not infectious

ρ Rate at which infectious corpses are safely buried or disposed of

Table 4.2: Summary of Model 1 parameters

4.1.1 Feasibility of Model 1

Identifiability issues were a major concern in this analysis due to the lack of credible data and
the wide ranging estimates for parameters presented in the literature. The lack of consistent es-
timates in understanding the clinical course of the disease motivated estimating those parameters
from the data. However a lack of data restricts the number of parameters that can be estimated
without resulting in identifiability issues. That is, for complex models consisting of many param-
eters and various compartments, there were several parameter sets that provided an equally good
model fit, i.e. minimized the error sum of squares (SSE) in the least squares estimation procedure
implemented.

Model 1 was developed without the consideration of data limitations and presented the ‘ideal’
approach. However to maintain model integrity and avoid identifiability issues, Model 1 was
repeatedly simplified until a simpler model - which grouped multiple effects whilst preserving only
the key characteristics of the disease - would provide more certain parameter estimates. Model 2,
below, restricts the number of parameters and compartments in order to balance the complexity
of the models versus the actual observations of the 2014 - 2016 epidemic.
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4.2 Two Models to Analyse the Impact of Intervention

4.2.1 Model structure

Two models are used in combination to estimate the effect of intervention. The first model does
not account for any intervention. The second model expands upon the first model by introducing
the effect of control measures and estimating the aggregated effect of these measures.

Model without Intervention:

This model does not include for any methods of intervention. We formulate a deterministic model
of six distinct compartments of susceptible (S), exposed (E), infectious (I), recovered (R), dead
and infectious (D), and dead and safely disposed (buried or cremated) (B). After exposure to
Ebola virus, susceptibles become infected and can transmit the disease. After c contacts with
susceptibles, an infectious individual can transmit the disease with a probability τ . Thus, cτ is
the effective transmission rate of the disease. For transmission through contact with infectious
living individuals, this is captured by the term βI . Similarly, for contact with the deceased but
still infectious this is captured by βD.

After exposure, infected individuals become symptomatic at a rate α. Once symptomatic, the
individual becomes infectious. Infectious individuals recover at a rate lambda1 with probability
(1− µ) or they die from the disease at a rate lambda2 with probability µ. Hence µ represents the
fatality rate for the disease. Corpses are disposed at a rate ρ through burial or cremation, after
which they are no longer infectious.

The size of the total population, calculated by: N = S +E + I +R+D+B, is assumed constant
because it did not vary considerably during the modelling time (approximately 18 months).

Figure 4.2: Model 2 with no intervention



38 CHAPTER 4. METHODOLOGY

Model with Intervention

We expand the model above by introducing interventions. The 2014 - 2016 West Africa outbreak
was brought to an end by the serious efforts of various key players enforcing a multitude of control
measures. This included hospitalisation, quarantine, the construction of many brand new Ebola
Treatment Units (ETUs), travel bans and border controls, safe burial teams, contact tracing,
national lock downs, closure of schools and public spaces, coupled with educational campaigns to
inspire behavioural changes and better cooperation with authorities.

These interventions differ in many ways, however they all aimed at reducing the direct contact
between susceptible and infectious individuals; whether dead or alive. Given that there is currently
no cure or vaccine to provide immunity to the general susceptible community, isolation of Ebola
patients in health care facilities or quarantine, and movement restrictions act to reduce contact with
those that are living and infectious. Safe burial initiatives or state-enforced cremation, community
surveillance and even mass-education aimed not only at the public but also at health care workers,
act to reduce contact with infectious corpses. There was also a discernible behavioural shift that
occurred a few months into the fast escalation of the 2014 - 2016 outbreak when public mistrust
of foreign authorities subsided allowing for better cooperation in all three worst affected countries
[76].

Since there is no indication in the literature that efforts were more focused on interventions that
reduced contact with the living as opposed to efforts that reduced contact with corpses, these
effected are assumed equal in order to restrict the number of parameters to be estimated. The
various control measures and intervention effects discussed are simply introduced into the model
through an aggregated intervention term (η) which reduces the effective transmission rates after
some time (tC) at which initial panic has subsided such that control measures are effectively
implemented and cooperation between authorities and the public has been established.

This model is comparable to the model presented by Rivers et al. in [50]. However, this model chose
to exclude the hospitalised state due to the lack of information available resulting in identifiability
problems. Instead, the aggregated intervention term is similar to an approach implemented by
Bartlett et al. [5].

The model remains exactly the same except that after some time tC the effective transmission rates
βI and βD are multiplied by a factor η, where 0 < η < 1, which reduces both of the transmission
rates.

Figure 4.3: Model 2 with intervention
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4.2.2 Model Equations

Without Intervention
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With Intervention
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(4.3)

Variable Description

S(t) Population of susceptible individuals

E(t) Population of exposed latent individuals

I(t) Population of infectious individuals

R(t) Population of recovered individuals

D(t) Population of dead and infectious individuals

B(t) Population of safely disposed dead individuals (burial/cremation)

Table 4.3: Description of model 2 compartments
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4.2.3 Model Assumptions

It is necessary to highlight the assumptions implicit in the choice of the structure for Model 2 to
be used in parameter estimation, as well as to provide contextual motivation for these assump-
tions.

Compartmental epidemiological models use the transitions between each of the compartments to
capture the overall dynamics of the epidemic, showing how the population as a whole becomes
infected and eventually recovers. It captures aggregate behaviours over the whole population.
Individuals and interactions between individuals are omitted, and so these models capture large-
scale (such as country-wide) disease spread with relative ease [47].

Discrete individuals are not considered, rather aggregated population behaviour and movements
between compartments form the focus. Aggregating population behaviour requires the assumption
that all members are homogeneous and differ only with regards to their disease state. Members
are also assumed to mix homogeneously and without discrimination. Individuals within each com-
partment are hence assumed to be identical, and variation among individuals is unimportant [56].
As such, we have ignored any inherent age, demographic and spatial structure in the population;
therefore this is clearly an unlikely representation of individuals within any country. However,
given the fact that cases were reported from all 16 districts in Sierra Leone, and 14 out of 15
districts in Liberia - as well as the scarcity of district level data - this aggregation to the national
level was deemed necessary.

A fixed population size (N) not allowing for entry or departure into the model was assumed.
Natural changes to the population size such as births or deaths from causes other than Ebola
were ignored. This assumption implies that the dynamics of EVD are faster than the time scale
of natural birth and death. Given that the entire outbreak in all three countries occurred over a
period of approximately two years and that a small proportion of total population were affected,
it is reasonable to assume that the population size did not change significantly over the course of
the epidemic.

There is uncertainty as to whether recovered individuals are afforded life-long immunity to the
virus or whether infection could occur with a different species, but research shows that those
who do recover develop antibodies that last for at least 10 years [13]. Given that the 2014-2016
outbreak occurred in a relatively short time frame and that the epidemic was caused exclusively
by the Zaire ebolavirus, the model infers permanent immunity. As such, survivors cannot re-enter
the susceptible population once recovered.

There is no known risk of becoming infected with EVD through casual contact with a survivor
although, as previously discussed, the virus takes longer to clear from immunologically privileged
sites, thereby making transmission through sexual intercourse post-recovery possible. This mo-
tivated the inclusion of two recovered states in the full Model 1. However as yet, there is little
conclusive evidence of this viral persistence and clinicians are required to be overly precautious in
preventing the spread of infection until clearer answers are obtained.

Typically the symptoms of infected EVD patients associated with the expelling of bodily fluids
(such as through vomiting and bleeding) are significant contributing factors in the ease of trans-
mission. Hence, transmission occurring after a patient’s recovery was not a key characteristic of
Ebola needing to be estimated. Additionally, evidence suggests that asymptomatic presentation
of EVD infection of non-survivors is extremely unlikely and hence this was not factored into the
model [36].
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The model assumes all dead individuals first pass through the infectious (D) state before being
safely disposed of (B). This is attributed to two effects primarily. The first is the strong cultural
significance of burial in West Africa, while the second effect is that corpses remain extremely
infectious; even when severe control measures are applied in their disposal, infection remains pos-
sible.

4.2.4 Basic Reproductive Number

The basic reproductive number, R0 briefly introduced in section 2.4.1 is a fundamental concept
in mathematical biology. It is a threshold parameter, intended to quantify the spread of disease
by estimating the average number of secondary infections produced by the introduction of a single
(typical) infection into an otherwise wholly susceptible population. It thereby provides a measure
of initial disease spread or the invasion strength of an epidemic. In a well-mixed homogeneous
population, an epidemic can only take off if R0 > 1, in which case, initial infections will grow
exponentially and the disease will persist. Whereas if R0 < 1, the disease cannot successfully
invade and will die out in the long run. If R0 = 1, the disease becomes endemic.

The basic reproductive number for the baseline scenario was calculated in a similar manner as
described in [38] by evaluation of the steady state conditions in order to obtain the following
expression:

R0 =
βI

λ1 + µ(λ2 − λ1)
+

βDµλ2

ρ
(
λ1 + µ(λ2 − λ1)

)
From the above, we can see that R0 is broken into two components, representing the respective
contributions of community (infectious class) and deceased individuals in transmission. These
values are calculated for the start of an epidemic to establish its potential for persistence, but clearly
this will change if intervention measures are instituted. We take the value RC to represent the base
reproductive number from the time that control measures are first introduced (i.e. tC).

With intervention (t = tC):

RC = η ∗

(
βI

λ1 + µ(λ2 − λ1)
+

βDµλ2

ρ
(
λ1 + µ(λ2 − λ1)

))

There are various methods to derive a R0 threshold from mathematical models, and different values
may be obtained depending on the method used. This may be dealt with by interpreting the
obtained values purely as a threshold indicative of the disease persistence in a specific population
and not as the true value of R0. As these values do not uniquely estimate the true R0 for a disease,
caution should be applied in their interpretation as they are not generally comparable in absolute
terms and especially not for different diseases [37]. Consequently, it was decided not to compare
the calculated R0 values in this analysis to those of other infectious diseases, but rather to assess
the extent to which these values agree with previous calculations for the 2014-2016 Ebola outbreak
and in the assessment of the interventions.
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4.3 Data Fitting

Deterministic models were fit to the full outbreak data for both Sierra Leone and Liberia using least
squares optimisation. Parameters were estimated using the ‘L-BFGB-B’ optimisation algorithm, a
quasi-Newton method which allows for box constraints [12]. The first 150 observations of reported
cases were given one-half of the weight in the model fitting to preferentially fit the more recent
case data. Smoothing of the death data implied reducing the number of data points and hence the
weights of the remaining observations were increased by a factor of 1.5 to ensure an adequate fit
to both the case and the death data. The optimiser was constrained to plausible parameter values
as indicated in the literature, such as an upper bound of 20 days for infection duration, 4 days
for disposal of an infectious corpse and 0 to 1 for probabilities or proportions. In order to ensure
global optima during optimisation, the procedure was run with over 500 initial value seeds.

Preserving model identifiability implied that not all parameters could be estimated from the data
but instead were empirically assumed from prior studies. These estimates may be improved upon
in future but for the time being, uncertainty and sensitivity analysis allows for the identification
of the critical parameters most influencing EVD dynamics and for which, correct estimation is of
greater importance.

All models were implemented in R v3.4.0 [49].
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Results

5.1 Parameter Estimation

Given the wide range of estimates provided in the literature regarding the epidemiological features
of the Ebola virus, it was challenging to select any set of fixed parameters that provided an
impressive fit to the data. There is also reason to believe that the dynamics of the Ebola Virus
Disease outbreak was considerably different in Sierra Leone, Liberia and Guinea; and hence would
result in different disease parameters [65, 67]. It was decided to fix the parameters inherent to EVD
to estimates obtained from the literature, and to estimate all the parameters that have reason to
vary with country.

Scientists could not find any evidence that the Zaire strain presented in the 2014 - 2016 West
Africa outbreak had mutated since previous outbreaks and hence, we assume the reported average
incubation period, and average duration of infection before recovery, or death, as fixed when
modelling the disease in both Sierra Leone and Liberia.

Despite being the longest, largest and deadliest outbreak witnessed, the case fatality rate reported
was more volatile and generally lower for the 2014 - 2016 outbreak compared to any of the previous
24 outbreaks. A population of particular interest for ongoing monitoring and public health surveil-
lance is comprised of more than 17,000 survivors: Ebola patients who successfully recovered from
their illness [55]. Historically, the fatality rates associated with outbreaks has varied drastically
ranging anywhere between 25%-90%. Crude estimates for the fatality rates experienced during
the 2014-2016 outbreak (total recorded deaths/total recorded cases) are calculated as 39.5% for
the total outbreak, 67% for Guinea, 45% for Liberia and 28% for Sierra Leone. Of the 881 total
recorded cases amongst health care workers and the average case-fatality rates were 51% in Guinea,
50.8% in Liberia and 72% in Sierra Leone. The discrepancy between the general fatality rates and
those for health care workers could be possibly attributed to better documentation and follow-up
regarding the cases of health care workers, or the advanced infections that they are exposed to
within the healthcare setting.

On the other hand, information provided to clinicians by the Centre for Disease Control and
Prevention (CDC) stated the case fatality proportion among patients with a known outcome to
be 70%, 61% for hospitalised patients and ranging between 37-74% in Ebola Treatment Units [13].
Case fatality may be underestimated due to the difficulty in accurately recording deaths during a
crisis, but it may also be a consequence of using broad case definitions, such that low specificity

43



44 CHAPTER 5. RESULTS

resulted in the presentation of many false positives. In summary, there is uncertainty regarding
the true fatality rate and hence it was decided to estimate this parameter from the available
data.

Cultural practices influence the frequency of close contact, burial procedures and the attitudes and
behaviours of individuals within a country. Political situation, international relations, geographical
context, and infrastructure also determine how control measures are enforced. Thus transmission,
burial and all intervention parameters were estimated from the data. Plausible ranges for each
parameter, obtained from the literature, were implemented as box constraints and are provided in
Table 5.1 along with the source. Where a point estimate was available, it is indicated in brackets
next to the range.

Symbol Description Feasible range Source

1/α Time from exposure to symptom onset 8 - 12 days (10) [13], [71]

1/λ1 Time from symptom onset to recovery 6 - 16 days (9.4) [59]

1/λ2 Time from symptom onset to death 6 - 16 days (7.5) [13]

µ Fatality rate 0.25 - 0.75 [13]

1/ρ Time from death to safe disposal of body 8 hours - 5 days [50]

tC
Time at which control measures are effec-
tively enforced

SL: Aug-Dec 14;
LIB: Aug-Dec 14

[51, 68]

βI
Effective contact rate with live infectious
people

0.03 - 0.3 [50]

βD Effective contact rate with infectious corpses 0.1 - 0.9 [50]

η Factor to decrease betaI and betaD for t ≥ tC 0 - 1
Not in litera-
ture

Table 5.1: Plausible parameter ranges obtainable from literature

The assumed total population size was informed by the estimates used by the CDC in 2014 [43].
The cleaned data starts from the date when there are at least 50 cases and so the starting value for
the cumulative cases is taken to be 50 for Sierra Leone and 51 for Liberia. For both models it was
assumed that there were 80 individuals in the exposed class by this date. The official CDC records
show that the cumulative deaths on the respective dates were 6 for Sierra Leone and 34 for Liberia.
It was assumed that if deaths had already been documented in official records, enough time would
have passed for the corpse to have been appropriately disposed of, and hence these deaths fall into
the B (buried/cremated) class. It was assumed there were half as many deaths that had occurred
recently enough for the bodies to still be infectious and not safely disposed of (state D) in Sierra
Leone (i.e. 3 deaths) and the same number of recent deaths assumed for Liberia. Given that it
was very early on in the epidemic, it was assumed that there were no survivors in either country
yet as most of the early infections in 2014 were fatal [17].
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Variable Sierra Leone Liberia

N 6,092,000 4,294,000

S(0) 6,091,870 4,293,869

E(0) 80 80

I(0) 41 14

R(0) 0 0

D(0) 3 3

B(0) 6 34

Table 5.2: Summary of initial conditions

5.2 Results

5.2.1 Model Without Intervention

Initially, a SEIRDB model was fit without the explicit inclusion of any form of intervention and
using a range of plausible parameter estimates obtained from epidemiological studies and existing
mathematical models. The model flow diagram can be seen in Figure 4.2.

Interestingly, these parameters could not provide a suitable fit to the epidemic curve and always
resulted in far more severe predictions for the outbreak. Similar results were obtained by Bartlett
et. al [5]. This could be indicative of two effects: the first being the under-recording of EVD
cases, and the second being the necessity of intervention and the various control measures enforced
in ending the epidemic. The first explanation remains plausible but as the outbreak progressed,
surveillance, case detection and management became cardinal to officially eliminating Ebola. The
extent of under-reporting required in order to make the no intervention model fit the epidemic
curve could possibly be expected in the first few weeks of the epidemic but is improbable to have
lasted for the entire duration.

5.2.2 Model With Intervention

Fitting both the case and death data to the intervention model for both Sierra Leone and Liberia
resulted in the parameter estimates shown in Table 5.3. Results will be discussed in section
6.1.
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Symbol Description Sierra Leone Liberia Source

α 1/Latency period 0.1 0.1 From literature

λ1
1/Time from symptom onset to re-
covery

0.1064 0.1064 From literature

λ2
1/Time from symptom onset to
death

0.1333 0.1333 From literature

µ Fatality rate 0.2523 0.3941 Estimated

ρ
1/Time from death to safe disposal
of body

0.4029 1.3994 Estimated

tC
Time at which control measures are
implemented

170
19 Dec. 2014

103
4 Nov. 2014

Estimated

βI
Effective contact rate with infec-
tious people

0.0909 0.1746 Estimated

βD
Effective contact rate with infec-
tious corpses

0.7173 0.3434 Estimated

η
Factor to decrease βI and βD for t ≥
tC

0.6195 0.5016 Estimated

Table 5.3: Final parameter estimates for both Sierra Leone and Liberia

It is worth noting that the estimated case fatality rates for both Sierra Leone and Liberia appear
to be on the lower end of the range typically associated with EVD. Initially, a model was fit using
only case data and ignoring the death data. In this case, the model still achieved an acceptable fit
to the case data but the estimated case fatality rates were significantly higher (nearly 70% in both
countries). Upon further analysis of the plot for the predicted deaths however, deaths appeared
to be significantly over-estimated when compared to the actual data. It was decided to perform
this analysis using all the available data (cases and deaths) and given the difficulty in accurately
inferring the under-reporting present in the data, it was decided to use the data as is. However,
this demonstrates the uncertainty of the data, the uncertainty in the case fatality rates associated
with EVD and presents an area which this analysis can be improved upon.

5.3 Model Analysis

5.3.1 Goodness of Fit

Sierra Leone

Figures 5.1 and 5.2 show the fit of the model predictions to the cumulative case and death data
respectively. The model provides an impressive fit to the cumulative case data and adequately
captures the shape of the death data. Plots for the predicted susceptible, exposed, recovered and
dead but infectious compartments are provided in Figure 5.3.
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Figure 5.1: Model fit to Sierra Leone cumulative case data

Figure 5.2: Model fit to Sierra Leone cumulative death data

Figure 5.3: Susceptible, exposed, recovered and dead and infectious compartments for Sierra Leone

Liberia

Similarly, a satisfactory model fit to Liberian case and death data was accomplished.
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Figure 5.4: Model fit to Liberia cumulative case data

Figure 5.5: Model fit to Liberia cumulative death data

Figure 5.6: Susceptible, exposed, recovered and dead and infectious compartments for Liberia

5.3.2 Basic Reproductive Number

The baseline R0 value for Sierra Leone (prior to intervention) was calculated as approximately
1.333, while R0 for Liberia was 1.603, as provided in Table 5.6. Given that both values are greater
than the threshold of 1, this indicates that infection will be able to spread in a population. These
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estimates are comparable to those obtained by Khan and colleagues [34] where the resulting values
were: 1.492 for Sierra Leone, and 1.757 for Liberia. Nearly all existing mathematical models have
estimated R0 values in the range of: 1.11 - 2.5 [3, 50, 73, 26, 61, 28] with the majority of estimates
between 1.5 - 2. The RC values after including the aggregated intervention parameter (η) is less
than 1 for both countries.

Country Estimated R0 Estimated RC

Sierra Leone 1.332548 0.8254536

Liberia 1.602782 0.803916

Table 5.4: Estimated R0 values for Sierra Leone and Liberia

It is common practice in statistical modelling to split the data into training and testing sets in
order to validate the trained model on the unseen test set. For an epidemic curve we could split the
training and testing sets into time periods and apply a rolling window. This prevents over-fitting to
the data. Given the very small sample size and the relatively short duration of the epidemic, it was
decided to perform sensitivity analysis on the parameter estimates and compare these estimates
to those observed in epidemiological studies. It is not feasible to validate the models using data
from other countries as the outbreaks differed too significantly.

5.4 Sensitivity Analysis

Sensitivity analysis refers to the study of how the uncertainty in the output of a mathematical model
can be apportioned to different sources of uncertainty in its inputs. The objectives are broadly
to identify the critical inputs (parameters and initial conditions) of a model and to quantify the
extent to which input uncertainty impacts model outcome(s). A detailed description of the history
and methodology of uncertainty and sensitivity analysis is given in [52, 72]. Since our model is
deterministic in nature, the only sources of uncertainty are the model parameters and the initial
conditions, which will be examined in the sensitivity and uncertainty analysis.

The importance of the basic reproduction number and its interpretation in infectious disease mod-
elling, necessitates sensitivity and uncertainty analysis of R0. Several crucial model parameters (βI ,
βD, λ1, λ2, ρ and µ) determine the value of R0. The basic reproductive numbers provided in Table
5.6 were calculated by the input of specific parameter values into the expression. However, factors
such as natural variation, errors in measurements and lack of measuring techniques contribute
towards the associated uncertainty of these model parameters, and consequently uncertainty in
R0 [2]. It is therefore preferable to produce confidence intervals and to analyse the distribution of
R0 as opposed to interpreting point estimates. Latin hypercube sampling (LHS) was implemented
by randomly selecting 10,000 samples in studying the influence of these six parameters on R0.
Additionally, the univariate relationship between R0 and each parameter was plotted.

Briefly, LHS belongs to the Monte Carlo class of sampling methods, introduced by McKay et. al
[42]. LHS allows an unbiased estimate of the average model output, with the advantage that it
requires fewer samples than simple random sampling to explore the entire range for each parameter
[42]. We treat each parameter in the model as a random variable, distributed according to an
appropriate probability distribution. LHS implements a stratified sampling without replacement
technique, where the random parameter distributions are divided into N equal probability intervals,
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which are then sampled. N represents the chosen sample size. The choice for N should be at least
k+1, where k is the number of parameters varied. The sampling is done by randomly selecting
values from each probability distribution. Each interval for each parameter is sampled exactly
once (without replacement), so that the entire range for each parameter is explored. A matrix is
generated (which we call the LHS matrix) that consists of N rows for the number of simulations
(sample size) and of k columns corresponding to the number of varied parameters. N model
solutions are then simulated, using every combination of parameter values. The model output of
interest is collected for each model simulation.

Since we lack any concrete information regarding the probability distributions of the model pa-
rameters, we assume that our model parameters are either normally or uniformly distributed,
although it is quite possible that in reality some parameters are skewed towards a particular value.
Parameters with more certain average values reported in the literature were assumed to be nor-
mally distributed about the average value. The parameter values used in sensitivity analysis were
informed by biologically plausible ranges obtained from the literature as well as observational stud-
ies done during the outbreak. These ranges and the corresponding distributional assumptions are
provided in Table 5.5.

The baseline calculation for R0 does not however depend on all the model parameters, and so we
assess the sensitivity of the predicted cases to the uncertainty in each of the parameter values.
This is useful in providing an indication of which estimates should be focused on most for accurate
estimation. We identify crucial model parameters by computing partial rank correlation coefficients
(PRCC) which is a measured impact of each input parameter on some decided output [72]. Here
we select the output to be the number of cumulative cases predicted after 800 days with the model
run. We also performed the same analysis for the number of cases after 50 days, 200 days, and 400
days in order to compare the variable importance at different stages of the virus outbreak. PRCC
reduces the non-linearity effects by rearranging the data in ascending order, replacing the values
with their ranks and then providing the measure of monotonicity after the removal of the linear
effects of each model parameter keeping all other parameters constant [52]. Larger absolute values
for the PRCC, denotes stronger correlation between the chosen parameters and the output. Again
we implement LHS with 10,000 model simulations.

The Spearman rank correlation method was used in calculating the partial rank correlation co-
efficients. Spearman rank correlation is a non-parametric method, hence it does not carry any
assumptions about the distribution of the data which was preferred in this situation. It assumes
that the data must be at least ordinal and the scores on one variable must be monotonically related
to the other variable, both these assumptions were met.
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Parameter distributions

Parameter Sierra Leone Liberia
α N(µ = 0.1, σ = 0.0125) N(µ = 0.1, σ = 0.0125)
λ1 N(µ = 0.1, σ = 0.0225) N(µ = 0.1, σ = 0.0225)
λ2 N(µ = 0.1, σ = 0.0225) N(µ = 0.1, σ = 0.0225)
ρ U(0.25, 1.5) U(0.25, 1.5)
tC U(140, 200) U(73, 133)
βI U(0.05, 0.16) U(0.12, 0.22)
βD U(0.5, 0.8) U(0.24, 0.42)
µ U(0.2, 0.7) U(0.2, 0.7)
η U(0.3, 0.7) U(0.3, 0.7)

Table 5.5: Parameter values used in sensitivity analysis for Sierra Leone and Liberia

5.4.1 Multivariate Sensitivity Analysis of R0

Uncertainty analysis for the base reproductive number prior to intervention (R0), consisted of run-
ning 10,000 random samples (obtained from the LHS structure) in order to analyse the distribution
of the respective R0 values. These distributions are presented in Figures 5.7 and 5.8. The distribu-
tion was calculated on 10,000 runs of the LHS structure and shows R0 to be concentrated around
a median value of 1.626 for Sierra Leone and 1.808 for Liberia. In both cases, the distributions
are slightly skewed to the right due to some large R0 values obtained. The distributions have a
similar shape and correspond almost exactly to the range of estimates provided in the literature as
discussed in section 5.3.2. In avoiding distributional assumptions, table 5.6 provides the median,
and first and third quartile values as opposed to confidence intervals.

Figure 5.7: Uncertainty of R0 for Sierra Leone
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Figure 5.8: Uncertainty of R0 for Liberia

Country First Quartile Median Third Quartile
Sierra Leone 1.295 1.626 2.009
Liberia 1.563 1.808 2.099

Table 5.6: Estimated R0 median, first and third quartile for Sierra Leone and Liberia

5.4.2 Univariate Relationships Between R0 and Key Parameters

The univariate relationship between R0 and each of the parameters that determine its value was
analysed by varying parameters one at a time whilst fixing all other parameters at their estimated
values, and observing the changes that occur in R0. The relationships between R0 and each
of the parameters βI , betaD, λ1 and ρ has an obvious interpretation for both Sierra Leone and
Liberia.

The parameters µ and λ2 indicate relationships of opposite sign in Sierra Leone compared to
Liberia. For Sierra Leone, the relationship between both λ2 and R0, and µ and R0 are positive and
nearly linear. A possible explanation for this is that Sierra Leone was estimated to have a large
βD and a relatively long time until safe disposal of infected corpses (i.e. small ρ), hence when we
fix these parameters, higher fatality rates (larger µ) result in more contacts with infectious corpses
and increase R0. Similarly, shorter infectious periods leading to death (larger λ2) result in faster
transitions to the dead and infectious state - where patients are more infectious than when alive -
and they remain in this state for relatively long, thereby increasing R0.
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Figure 5.9: Univariate relationships between R0 and key parameters in Sierra Leone

In contrast, Liberia demonstrates a negative relationship between λ2 and R0, and µ and R0.
This may be attributed to the fact that in Liberia contact with dead bodies was considered to
be significantly lower, and the delay between death and disposal of a corpse significantly shorter.
Infection occurring within live members of the community was therefore of greater importance
in Liberia than in Sierra Leone. When infectious patients die faster (increased λ2) or are more
likely to die (increased µ), and there are very effective mechanisms in place to efficiently dispose
of corpses, then this removal of infection allows for less transmission to occur between members of
the community, thereby reducing R0.
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Figure 5.10: Univariate relationships between R0 and key parameters in Liberia

5.4.3 Univariate Sensitivity Analysis

On the basis of the 10,000 independent samples generated using all 9 model parameters, we are
able to determine the relative univariate importance of variables in model outcomes using par-
tial rank correlation coefficients (PRCC). Larger absolute values for the PRCC, denotes stronger
correlation between the selected parameter and the model outcome being investigated. We can
also infer whether the relationship between the selected variable and the model outcome is posi-
tive or negative (as we have assumed a monotonic relationship) from the direction of the PRCC
sign.

Initially the cumulative cases predicted for day 800 was used as the model outcome to assess
parameter uncertainty, and the partial rank correlation coefficients are plotted in Figure 5.11 for
Sierra Leone and Figure 5.12 for Liberia.

In both cases, the variables βI , λ1 and ρ had the largest |PRCC| values, they were very influential
in determining the total cumulative cases at day 800 in the model. This makes sense as these
values define the key parameters relating to transmission and, consequently, influence the overall
size of the epidemic. Additionally, the direction of the relationships - as indicated by the sign
of the PRCC - is intuitively interpretable. All else remaining constant, the larger the effective
transmission rate in the community (βI), the larger the number of cumulative cases at day 800.
The rate of recovery from infection (λ1) is the inverse of the length of the infectious period. Hence,
the larger λ1, the shorter the infectious period, the less transmission occurs, and the total number
of cases reduces. Similarly, the inverse of ρ corresponds to the average length of time between
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death and the safe disposal of a body so that it is no longer infectious. The larger ρ, the shorter
the period in which post-mortem transmission can occur and hence less cases are produced.

In both cases, the latent period, captured by α was of relatively low importance. Given that
individuals are not infectious in the latent period, it has little influence on the number of cases
produced.

The parameters that capture post-mortem transmission is captured by µ, ρ and βD. All three
of these parameters were of greater relative importance in the model for Sierra Leone than for
Liberia. This could be attributed to the differing time to disposal of corpses observed in both the
model estimates as well as in the literature. It was estimated that the disposal of infected corpses
in Sierra Leone took approximately 2.5 days on average, where as it took less than a day (average
of 8.5 hours) in Liberia. When patients are buried or cremated shortly after death, as in Liberia,
the post-mortem transmission rate becomes of lesser importance as individuals are buried faster
than they can infect others. This was a key strategy in Liberia’s containment of Ebola, within
five months of the start of the outbreak, Liberian President Ellen Johnson Sirleaf ordered that
all bodies of people killed by the Ebola virus be cremated. Additionally, we note λ2 has greater
relative importance in the Liberia model. A plausible explanation for this is that when infectious
corpses are removed quickly, transmission within the community is of greater significance than
post-mortem transmission.

The intervention parameters tC and η are relatively influential in the cumulative cases recorded
800 days after the first 50 cases, but more so in Liberia than in Sierra Leone. In both cases η is
more influential than tC . The extent of intervention efforts is of greater significance than the exact
time at which intervention occurs.

Figure 5.11: Sensitivity analysis of cumulative cases at day 800 for Sierra Leone
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Figure 5.12: Sensitivity analysis of cumulative cases at day 800 for Liberia

The same analysis was repeated to measure the influence of parameter uncertainty on the cases
predicted at day 50, day 200, and day 400, in addition to the cases at day 800. This allows
for the comparison of changes in the relative importance of variables at different stages of the
outbreak.

For both Sierra Leone (Figure 5.13) and Liberia (Figure 5.14), the start of the outbreak (day 50)
is characterised by the inherent disease dynamics; intervention parameters are of little importance.
The latency period is of greatest importance at day 50, and decreases as the outbreak progresses.
When there are still few infections in the population at the start of an epidemic, the latent period
and the delay in the onset of symptoms determines the speed at which the disease is able to
spread.

Figure 5.13: Sensitivity of parameters at different days in Sierra Leone
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Figure 5.14: Sensitivity of parameters at different days in Liberia

5.5 Assessing the Impact and Timing of Intervention

In reflecting on the lessons of the 2014 - 2016 Ebola outbreak, the Centre for Disease Control (CDC)
identified slow initial response as a primary factor in the unprecedented scale of the epidemic.
Hence, it was decided to investigate the effect of earlier intervention on disease outcome [8].

The starting time of effective intervention efforts, tC , was estimated to be 170 days for Sierra Leone
(December 19, 2014) and 103 days (November 4, 2014) for Liberia. Figures 5.15 and 5.16 indicate
the predicted cumulative cases if the estimated starting tC was one month, two months or three
months earlier in Sierra Leone and Liberia respectively. Additionally, two dashed vertical lines
are drawn on each of the plots. The dark blue line represents the time tC at which intervention
controls are effectively implemented. The red dashed line represents the first time at which the case
incidence is less than one, and is taken to be the time at which an epidemic has slowed down enough
to be considered ‘over’. Note that the time of intervention could equivalently be expressed as a
threshold of the number of cases before intervention efforts and behavioural changes are realised
(i.e. the corresponding y-value for the dashed blue line in each plot).
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Figure 5.15: Comparing 1, 2 and 3 month earlier intervention in Sierra Leone

Figure 5.16: Comparing 1, 2 and 3 month earlier intervention in Liberia

These plots can be extended to express the relationship between timing and disease duration
more generally. In Figure 5.17 we look at the total duration of the epidemic for a range of
different threshold values expressed in terms of the number of cumulative cases before intervention
is enforced. In this case, the disease duration is defined as the time from which at least 50
cumulative cases have been identified until the first time that case incidence is less than 1. Keeping
η fixed at its estimated value, a tC value of 30 days (1 month) corresponds to a threshold of 321
cases in Sierra Leone and 338 cases in Liberia. Practically, intervention measures are unlikely to be
effectively enforced any earlier than within a month. The estimated intervention time of 170 days
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in Sierra Leone, corresponds to the maximum threshold of 6088 cases in Figure 5.17. In Liberia,
the estimated tC value corresponds to a maximum threshold of 4143 cases in Figure 5.18.

Figure 5.17: Relationship between intervention threshold and epidemic duration in Sierra Leone

Figure 5.18: Relationship between intervention threshold and epidemic duration in Liberia

The above figures demonstrate that even with a quick initial response, stopping EVD remains a
cumbersome and time-consuming matter, easily lasting for over 300 days. The argument remains
that timing must be matched by more severe intervention efforts and control strategies; decreasing
the η parameter in other words. The η factor acts to reduce the number of direct contacts occur-
ring within the population through aggregating various controls such as quarantine, safe burials,
behavioural changes, and case tracking. However, each of these direct measures are by default
time-consuming and past experience has taught us that humans cannot suddenly alter their be-
haviour and maintain these changes for extended periods, even when faced with urgent threats [24].
Therefore, assuming control measures will be strong enough and individuals will adapt fast enough
to more than halve their daily number of contacts in a few weeks (or even months) seems overly-
optimistic. This is not to say that control strategies could not have been improved or that sooner
implementation would have been futile, but rather that this was an exceptionally complicated task
to achieve without treatment or vaccines available.
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5.6 Vaccination as a Strategy for Epidemic Prevention

Vaccination has greatly reduced the burden of infectious diseases worldwide, allowing for the near
eradication of many old diseases. In the case of the Ebola outbreak, an effective vaccine would
compensate for the difficulty in reducing the large number of direct contacts between individuals
daily and, provided the vaccine is readily available, can act much faster in eliminating disease.
Promising results in the early trials of an Ebola vaccine in the Democratic Republic of Congo
(DRC) has motivated assessing the impact of such a vaccine in the case of future outbreak.

While vaccination prevents the infection of an individual by ensuring their personal immunity, it
offers the additional benefit of providing indirect protection to those who are not vaccinated. When
control measures act to reduce the number of direct contacts, this needs to achieved between all
individuals in an entire population, whereas vaccination only needs to occur in a certain propor-
tion of the population in order to be effective. In epidemiological modelling, vaccination is often
accompanied by this concept of ‘herd immunity’. It refers to a form of indirect protection from
an infectious disease that occurs when a large percentage of a population has become immune to
an infection, thereby providing a measure of protection for individuals who are not immune. Put
simply, the greater the proportion of individuals in a community who are immune, the smaller the
probability that those who are not immune will come into contact with an infectious individual,
thereby ensuring indirect protection [56].

The term ‘herd immunity’ has existed for almost a century but only gained popularity in recent
decades with the increasing use of vaccines, discussions of disease eradication, and analyses of
the costs and benefits of vaccination programs [25]. It’s importance in epidemiological research
escalated with the recognition, by Smith in 1970 and Dietz in 1975, of a simple threshold theorem
- that if immunity (i.e. successful vaccination) were delivered at random and if members of a
population mixed at random, such that on average each individual contacted R0 individuals in
a manner sufficient to transmit the infection, then incidence of the infection would decline if the
proportion immune exceeded (R0 - 1)/R0, or (1 -1/R0) [25, 28].

Herd immunity is established when the prevalence of protected persons (I) is higher than the herd
immunity threshold (IC). When this occurs, Ebola virus transmission is blocked within the given
population. However, when prevalence is lower than the threshold, the number of infections will
grow exponentially, thus spreading the virus. Using the mentioned variables, the critical proportion
of protected individuals needed to establish herd immunity in a completely susceptible community
can be determined from the equation: IC = 1− (1/R0) [28].

Suppose that the rZEBOV vaccine is 100% effective as reported from the small ring vaccination
trial and that it infers permanent immunity. The HIT threshold theorem further requires the
assumptions of: (1) random vaccination within the population, (2) homogenous mixing of persons
within the population, (3) homogeneous distribution of vaccine-induced protected and infected
persons within the population, and (4) a fully susceptible population [28]. Under the above as-
sumptions, it is simple to calculate a crude estimate for the herd immunity threshold for the EVD
outbreaks in Sierra Leone and Liberia, as well as an interval estimate obtained from the sensitivity
analysis of R0 in section 5.4.1 (as presented in Table 5.7).
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Country HIT Interval (Median)
Sierra Leone 23% - 50% (38%)
Liberia 36% - 52% (47%)

Table 5.7: Herd immunity thresholds for Sierra Leone and Liberia

Thus, if a 100% effective vaccine is licensed - and if approximately 38% of the Sierra Leonean
population and 47% of the Liberian population were vaccinated prior to any future outbreak - in
theory, no EVD epidemic will occur in these populations. The ranges provided above correspond
with previous findings on required thresholds for various EVD outbreaks [28]. The assumption of
100% efficacy is not a requirement for the vaccination model, it just implies that greater proportions
of the population will need to be vaccinated in order to prevent an epidemic if it is not met. The
HIT threshold theorem is easily adjusted for vaccine effectiveness [28]. Let E be the proportion
of individuals that are immune after receiving the vaccine (vaccine efficacy), then the critical
vaccination coverage (VC) needed to establish herd immunity can be determined by dividing the
herd immunity threshold (IC), by the level of vaccine effectiveness (E): VC = IC/E = [1−1/R0]/E.
The relationship between the critical vaccination coverage required (VC) and vaccine effectiveness
(E) is explored in Figure 5.19 for outbreaks varying in severity, captured by varying levels of R0

as experienced in previous Ebola outbreaks.

Figure 5.19: Critical vaccination coverage (%) needed to provide herd immunity against varying
Ebola viruses (R0) and variable vaccine efficacy (%), adjusted from [28]

A model in which vaccination is the only control strategy was developed in order to analyse
epidemic duration and severity if a highly effective vaccine existed, was readily available, and
community behaviour remain unchanged in both Sierra Leone and Liberia. In this model it is
assumed that no one in the population is vaccinated at the beginning of an outbreak, but intense
vaccination programmes roll out immediately after the first five cases are recorded. The aggregated
intervention, terms represented by η and tC were replaced by a daily rate of vaccination assuming
100% efficacy (ω) into a vaccinated and immune compartment (V), all other estimated parameters
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maintained their values. The flow diagram for this model is provided in Figure 5.20 along with the
model equations (5.1).

Figure 5.20: Model with vaccination
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Figures 5.21 and 5.22 show the epidemic curves for varying levels of vaccination assuming vaccina-
tion is started once five cases have been detected in Sierra Leone and Liberia respectively. Instead
of the disease duration on the x-axis however, the proportion of the total population vaccinated
(V/N) is used, given that we have a constant vaccination rate. The initial population sizes were
assumed as in Table 5.2. In Sierra Leone we notice that a daily vaccination rate of 0.001 would
result in less than 1000 cases in total and 0.0015 would nearly prevent an epidemic happening at
all. However in Liberia, it is estimated that slightly over double the rate (0.0025) is required to
significantly slow the epidemic and bring the total cases below 1000.

Existence of a vaccine coupled with the infrastructure required for distribution provides an incred-
ibly powerful tool in the elimination of infectious disease.
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Figure 5.21: Cumulative cases for different fixed number of vaccinations per day (with Sierra Leone
parameters)

Figure 5.22: Cumulative cases for different fixed number of vaccinations per day (with Liberia
parameters)
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Chapter 6

Discussion and Conclusions

6.1 Mathematical Models of EVD

Mathematical modelling is an integral tool aiding our understanding of the dynamics of infectious
diseases and their application has helped decision makers to investigate potential outcomes and
strategies, especially in time- and resource-constrained situations.

The rare occurrence of Ebola Virus Disease (EVD) and the frightful symptoms, which often result
in death, has engrossed the public and experts alike. Ebola was neither a new nor unfamiliar
disease, health officials have been aware of its fatal consequences since 1976, however its history
of sparse small outbreaks made many sceptical of its potential to cause large-scale damage. The
unprecedented escalation of the virus in 2014, spurred much of the research that determined our
fundamental understanding of EVD.

Thus, the mathematical modelling and research into the dynamics of EVD did not carry an estab-
lished history for researchers to expand upon with the sudden onset of the West Africa outbreak.
During 2014, the acceleration of infections and extremely high fatality associated with initial cases
required officials and researchers alike to direct their immediate efforts at investigating the control
measures that could prevent further escalation of the disease. Consequently, many of the math-
ematical models developed between 2014 and 2016 are focused on optimal control analysis and
hypothetical scenario testing.

In reality, many of the effective controls identified in modelling were either inappropriate in context
or unattainable. Vaccine and treatment development could not be achieved fast enough. Many
response measures implemented through foreign aid did not take into consideration cultural context
and were heavily undermined by community resistance in all three countries [64].

The subsided urgency of eradicating the Ebola virus and the full retrospective scope of data avail-
able, shifted the focus of this research away from optimal control analysis and towards determining a
more conclusive understanding of the basic dynamics underlying EVD. Simple mathematical mod-
els were favoured over complex models in order to preserve model identifiability and the unique
estimation of parameters that determine EVD dynamics.

To this end, compartmental models extending from the traditional Susceptible-Infectious-Recovered
(SIR) framework were used in estimating and distinguishing between the effects present during the
2014 - 2016 EVD outbreak in Sierra Leone and Liberia, the two worst affected countries. A deter-

65
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ministic six compartment model (SEIDBR) was developed to incorporate some of the key features
of EVD: a latency period, infection resulting from close direct contact but distinguishing between
contact with infectious patients and infectious corpses.

Initially the model was fit without the explicit inclusion of intervention and using a range of plau-
sible parameter estimates obtained from epidemiological studies, as well as existing mathematical
models. Interestingly, these parameters could not provide a suitable fit to the epidemic curve and
always resulted in far more severe predictions for the outbreak. This could be indicative of two
effects: the first being the under-recording of EVD cases and the second being the necessity of in-
tervention and the various control measures enforced in ending the epidemic. The first explanation
remains plausible but as the outbreak progressed, surveillance, case detection and management
became cardinal to officially eliminating Ebola. The extent of under-reporting required in order to
make the no intervention model fit the epidemic curve could possibly be expected in the first few
weeks of the epidemic but is improbable to have lasted for the entire duration.

Thus, the ‘no-intervention’ model was extended to include the aggregated effect of various control
measures and strategies implemented, as well as to incorporate death data obtained during the
outbreak. It is assumed that after some critical time (referred to as tC), various control measures
act as levers to essentially reduce these two effects. Quarantine, hospitalisation, banning large social
events, the closing of borders, case tracking, and educational media campaigns are all measures
instituted to reduce contact with living infectious EVD patients. The roll-out of safe burial teams,
state enforced cremation, disinfection of homes and again cultivating cultural awareness of the role
of funerals and burial ceremonies in the spread of EVD are all measures acting on reducing contact
with the infectious corpses of victims. These effects are aggregated by the crude addition of a term
η (0 < η < 1) that reduces the transmission rates from infectious patients and corpses once drastic
intervention efforts are introduced after time tC .

Parameters inherent to Ebola virus that have remained relatively consistent since 1976 were fixed
at estimates obtained from the literature. Parameters that did not show consistency in reporting -
and that were reasonably expected to vary within the context of different countries - were estimated
by fitting the model to recorded case data using a least squares optimisation approach. Sensitivity
analysis was performed to identify critical model parameters, and to quantify the impact of input
parameter uncertainty on the value of an output.

Parameter estimation and analysis was repeated for both Sierra Leone and Liberia independently.
This comparison highlighted the importance of disease context: an identical virus in two neigh-
bouring countries could result in rather different estimates, clearly influenced by factors specific to
culture and environment.

Anthropologists have long been aware of the importance of funeral and burial rites in West Africa,
yet the role of burial and post-mortem infections significantly differed in Sierra Leone and Liberia.
The time period from death until the safe disposal of a corpse was estimated to be approximately 2,5
days in Sierra Leone but under a day (8,5 hours) in Liberia. The longer the time before safe disposal
of a body, the more the expected contacts with a corpse is expected to be and consequently this
alters the effective transmission parameter. The effective transmission rate resulting from deceased
EVD patients in Sierra Leone was nearly double the rate experienced in Liberia. Conversely, the
effective transmission rate resulting from living EVD patients in Liberia was nearly double that in
Sierra Leone. By ensuring the fast removal of infectious corpses early on in the epidemic, Liberia
managed to control EVD faster and prevent more EVD related deaths than Sierra Leone, despite
the countries reporting similar weekly case incidences during the peak of the outbreak. This
corroborates the findings published by the WHO in praise of Liberia’s response to the 2014 - 2016
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EVD outbreak [67]. Notably, Liberian President Sirleaf acted on early warnings from international
agencies and went against culture and tradition by ordering that the bodies of Ebola victims be
cremated and not buried.

Many social factors such as political climate, history and general public trust in authorities can
completely undermine intervention efforts. One factor that may have contributed to the success of
reducing post-mortem infection in Liberia that is not often mentioned, is religion. A demographic
survey conducted in 2013, indicated that 78.2% of Sierra Leonean respondents were Muslim and
21.2% Christian [57]. This corresponds with estimates derived by the Pew Research Centre in 2015:
Muslim: 78%; Christian: 20.9% [48]. In contrast, according to a 2013 survey, 84.2% of the Liberian
population practices Christianity and 11.8% practice Islamic faith [19]. Islamic law strictly forbids
cremation. Burial rites require a ritual washing ceremony including bathing to be performed by
another Muslim shortly after death and typically followed by a gathering of the Muslim community
around the deceased to offer prayers [15]. Traditionally, Christianity opposed cremation however in
recent years, many Christians have elected to be cremated and most churches have changed their
stance to acknowledge that there are valid sanitary, economic and social reasons for cremation
but maintain that burial better demonstrates reverence for the deceased [16]. The consequences
of religious beliefs and principles provide an interesting frame of reference when attempting to
compare the successes of different countries.

The base reproductive number (R0) is arguably the single most reported measure in epidemiological
modelling. The estimated value of R0 in Sierra Leone was 1.33, and 1.60 in Liberia. Despite various
limitations in the interpretation and comparison of R0 to other studies - and in other diseases
where its derivation may differ - it provides a threshold for determining whether an epidemic will
take off. Both estimated values exceed this threshold of 1 and hence the disease will persist in
both populations. Inclusion of the intervention terms estimated, ensured that RC , the effective
reproductive after controls are enforced, was less than 1.

Slow initial response by international and local authorities was often cited as a key contributor to
the unprecedented scale of the 2014 - 2016 Ebola outbreak [64]. Further analysis into the timing
of intervention reinforced a rather obvious lesson: controls acting on reducing the direct personal
contact between individuals, or that rely of large scale behavioural changes from large groups,
is almost inevitably time-consuming. In nations filled with millions of people, individual-level
controls are practically cumbersome and humans are very slow to adapt their behaviour even in
the face of urgent threat.

Promising results in a ring vaccination trial of rVSV-ZEBOV in Guinea [70] and the deployment
of this vaccine in the contained ongoing 2018 outbreak in the Democratic Republic of the Congo,
motivated the analysis of vaccination as a control strategy to EVD. It is not necessary for an entire
population to be vaccinated for a disease to die out. If a certain proportion of the population
above the herd immunity threshold are vaccinated early on in an outbreak, this indirectly provides
protection to those that are not vaccinated. The herd immunity threshold obtained for Sierra
Leone was 38% and 47% for Liberia. In this case, no epidemic would occur in either country given
the presence of a 100% effective vaccine.
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6.2 Limitations and Future Work

A limitation of the models derived is the simplifying assumption of a closed, fixed population
aggregated to behaviour on the national level. Metapopulation models allowing for population
mobility permit a more realistic contact structure as district-level transmission differed and porous
borders significantly contributed to how the epidemic spread [64]. The model structure and results
derived above could provide a basis to such a model, but these extensions will bring with it
significant challenges in obtaining additional data sources at the district-level and computational
challenges in model development given the many districts and large geographical area affected by
EVD.

In reality, human behaviour and intervention efforts will fluctuate over the duration of an outbreak
and thus the assumption of static rates is a limitation of this model. This model could be improved
by deriving time dependent contact rates and burial rates; as well as quantifying the extent of
under-reporting.

Future work in this area also includes adding an economic cost component to the existing models.
Overall, more than $3.611 billion (USD) was spent to fight the epidemic by December 2015 [13]. It
is worth investigating whether unnecessary costs were incurred in inefficient implementation. Ebola
also resulted in severe indirect costs on the provision of health care services in Guinea, Liberia and
Sierra Leone. Redirecting limited health care services and resources to Ebola caused major setbacks
in the treatment and control of other serious diseases, including HIV, tuberculosis and malaria,
affecting much larger proportions of populations than Ebola. Frameworks for the determination of
the appropriate control measures in a local context and evaluation of the economic costs (direct and
indirect) involved remain invaluable research, particularly with new interventions such as vaccines
on the horizon.

6.3 The Impact of Culture and Tradition on an Epidemic

Throughout this paper there has been made reference to the many ways in which culture, tradition
and religion may direct the outcomes of disease. Although this is certainly not unique to Ebola,
the 2014 - 2016 West Africa outbreak brought about a desperate reminder of the importance of
context in global health.

Adherence to ancestral funeral and burial sites has repeatedly been singled out, both in this paper
as well as in the overall literature, as fuelling large explosions of new cases. Guinea’s Ministry
of Health, indicated that 60% of cases could be linked to traditional burial and funeral practices.
WHO staff in Sierra Leone similarly estimated that 80% of cases were linked to these practices
[64].

The level of intimacy present in these ceremonies are difficult to imagine in Western environments.
The funeral of a single healer in Kenema, Sierra Leone is estimated to have resulted in as many as
365 Ebola deaths [63]. Burial rites were reinforced by a number of secret societies; some mourners
bathe in or anoint others with rinse water from the washing of corpses. Understudies of socially
prominent members of these secret societies have been known to sleep near a highly infectious
corpse for several nights, believing that doing so allows the transfer of powers [40].
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Equally unfamiliar were the response measures, like disinfecting houses, setting up barriers and
fever checks, and the invasion by foreigners dressed in outlandish hazmat suits, who took people
to hospitals or barricaded tent-like wards from which few returned [40].

Ebola preyed on another subtler deep-seated cultural trait: compassion. In West Africa, the virus
spread through the networks that bind societies together in a culture that stresses compassionate
care for the ill and ceremonial care for their bodies if they die [1]. Some doctors are thought to
have become infected when they rushed, unprotected, to aid patients who collapsed in waiting
rooms or on the grounds outside a hospital [64].

As several experts have noted [53, 1, 64, 7], when technical interventions cross purposes with
entrenched cultural practices, culture always wins. Control efforts must work within the culture,
not against it.

6.4 Conclusion

This study has designed a model and made use of all available data in estimating the parameters
determining the underlying mechanisms of the Ebola Virus Disease as it presented in West Africa
between 2014 - 2016. Simple model structures capturing the essential features of the disease’s
natural history allowed for the preservation of identifiability. The models produced sensible esti-
mates of parameters, as well as of the base reproductive number, allowing for a narrower focus of
the plausible parameter values than those currently obtainable from epidemiological studies and
clinical reports. The model predictions also demonstrated an acceptable fit to the epidemic data.
Broad analysis of interventions highlighted the importance of timing and the required effectiveness
and coverage required of potential vaccination strategies for the fast elimination of Ebola Virus
in future. The models developed provide tools with which to assess the impact of other proposed
interventions in the case of containing future outbreak.

The nature of the Ebola virus makes it is unlikely that it will ever exert such a tragic effect in
developed countries. However, the virus has preyed on the damaged infrastructure in countries that
are in dire need of these resources. Analysis into the key forces that drove its unprecedented scale
between 2014 - 2016 and the impact of various intervention efforts provide a strong foundation
for determining appropriate responses in the specific context of any future outbreak. In this
manner, mathematical models can form an integral part of the research, planning and evaluation
of elimination-focused strategies so that Ebola elimination is achieved in a faster, more focused,
and more cost effective manner in future.
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Appendix A

Additional information and figures

A.1 Initial transmission chain for the 2014 - 2016 outbreak

"Retrospective analyses traced the source of the outbreak to Meliandou village within the prefecture
of Guéckédou, in the forested region of southeastern Guinea that borders both Sierra Leone and
Liberia. The suspected index case was a two-year old child who fell ill on 2 December 2013 and
died 4 days later [29]. A second epidemiological investigation confirmed the source village and
index case, but the date of death of the index case was documented as the end of December 2013.
Other family members rapidly became unwell and died between 13 December 2013 and 1 January
2014 (the index case’s mother, sister, and grandmother). A village midwife who cared for the index
case during his illness also fell ill—during her hospitalization in the nearest town, Guéckédou, she
likely infected another healthcare worker (HCW) who was hospitalized in Macenta Hospital and
is thought to have triggered the spread of the infection to a larger town. The midwife also had
epidemiological links to cases in villages around Guéckédou prefecture (Dandou Pombo, Dawa and
Gbandou Villages) between January and March 2014. The initial case fatality rate was 86% (12 of
the 14 original patients with a known outcome died). Baize et al. reported this initial transmission
chain in October 2014, and an adaptation of the initial transmission tree is shown in figure A.1"
[17].

Figure A.1: Initial transmission chain in Guinea. HCW, healthcare worker. [17]
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A.2 Assessing the impact and timing of intervention

The relationship between timing and cases avoided can be extended further. By calculating the
total number of cases after 800 days for a sequence of plausible intervention times, we can infer
the number of cases avoided for every day that intervention was implemented sooner in this model.
This relationship between number of days sooner than the estimated intervention date and the
number of cases are plotted for both countries in Figures A.2 and A.3.

Both graphs show a concave down, increasing shape, implying that at ’later’ stages of the outbreak,
one day of earlier action prevents many cases but this effect slows down if intervention occurs early
in the outbreak.

Figure A.2: Cases avoided for every day of earlier intervention Sierra Leone

Figure A.3: Cases avoided for every day of earlier intervention Liberia
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Figure A.4: Assessing the impact of intervention intensity in Sierra Leone

A.3 Vaccination model equations
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Appendix B

Code

B.1 Data cleaning

B.1.1 Sierra Leone

###### Prepare S i e r r a Leone data −−−−−−

# c l e a r environment and s e t working d i r e c t o r y
rm( l i s t = l s ( ) )
wd = "~/Ebola/ f i n a l "
setwd (wd)

# i n s t a l l r equ i r ed l i b r a r i e s
l i b r a r y ( ggp lot2 )
l i b r a r y ( g r id )
l i b r a r y ( gr idExtra )

# read in the raw data
f u l l_data_raw = read . csv ( "CDCallcasecounts . csv " , sep = " ; " )

f u l l = f u l l_data_raw
colnames ( f u l l ) [ 1 ] = "Date"
f u l l $Date = as . Date ( f u l l $Date , format = "%Y/%m/%d" )
f u l l = f u l l [ −266 , ] #remove empty f i n a l row

# only look at dataframe columns f o r S i e r r a Leone − column 6 and 7
s l . data . raw = f u l l [ , c ( 1 , 6 , 7 ) ]

s l . c a s e s = s l . data . raw

# remove any miss ing obs e rva t i on s
s l . c a s e s = na . omit ( s l . c a s e s )

# rename column headings
colnames ( s l . c a s e s ) [ 2 ] = "Cases "
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colnames ( s l . c a s e s ) [ 3 ] = "Deaths"

# p lo t raw SL case data
s l_raw_cas e s = ggp lot ( s l . cases , aes (Date , Cases ) ) +

geom_point ( shape = 1) +
g g t i t l e ( "Cumulative Cases " ) +
theme_minimal ( )

#s l_raw_cas e s

# p lo t raw SL death data
s l_raw_deaths = ggp lot ( s l . cases , aes (Date , Deaths ) ) +

geom_point ( shape = 1) +
g g t i t l e ( "Cumulative Deaths" ) +
theme_minimal ( )

#s l_raw_deaths

# arrange p l o t s o f raw data in a g r id format
t i t l e 1=textGrob ( " S i e r r a Leone Raw Data" , gp=gpar ( f o n t f a c e="bold " , f o n t s i z e = 16 , c o l = "#00AFBB" ) )
g r id . arrange ( s l_raw_cases , s l_raw_deaths , nrow = 1 , nco l = 2 ,

top = t i t l e 1 )

# remove dup l i c a t e dates
dup . dates = which ( dup l i ca t ed ( s l . c a s e s $Date ) )
s l . data = s l . c a s e s [−dup . dates , ]

# order data from e a r l i e s t date to l a t e s t date
s l . data = s l . data [ order ( s l . data$Date ) , ]

# s t a r t from date when ca s e s are f i r s t > 50
row . s l = min ( which ( s l . data$Cases >= 50))
s t a r t . s l = s l . data$Date [ row . s l ] # SL : s t a r t i n g date "2014−06−02", obse rvat i on 18
s l . data = s l . data [ c ( row . s l : nrow ( s l . data ) ) , ]

# convert dates to days a f t e r i n i t i a l s t a r t i n g date
s l . data$Day = as . numeric ( d i f f t im e ( s l . data$Date , s t a r t . s l −1, un i t s = "days" ) )
s l . data = s l . data [ , c ( 1 , 4 , 2 , 3 ) ]
rownames ( s l . data ) = 1 : nrow ( s l . data )

# i d e n t i f y p o s i t i o n o f d ips in cumulat ive ca s e s
s l . data$ inc = c (NA, s l . data$Cases [ 2 : nrow ( s l . data ) ] − s l . data$Cases [ 1 : ( nrow ( s l . data )−1)] )
neg . inc . s l = which ( s l . data$ inc < 0)
s l . data = s l . data [−c (5 , 44 , 45 , 76 , 141 , 1 70 ) , ]
rownames ( s l . data ) = 1 : nrow ( s l . data )

# smooth the death data to only s e l e c t every 14 th po int
s l . data$Deaths [− seq (1 , nrow ( s l . data ) , 1 4 ) ] = NA

# plo t non miss ing death i n d i c e s
death_ind <− ! i s . na ( s l . data$Deaths )
p l o t ( Deaths ~ Date , data = s l . data , subset = death_ind , type=" l " )

# p lo t c l eaned SL case data
s l_c l ean_cas e s = ggp lot ( s l . data , aes (Date , Cases ) ) +
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geom_point ( shape = 1) +
g g t i t l e ( "Cumulative Cases " ) +
theme_minimal ( )

# p lo t c l eaned SL death data
s l_c l ean_deaths = ggp lot ( s l . data , aes (Date , Deaths ) ) +

geom_point ( shape = 1 , s i z e = 1 . 7 ) +
g g t i t l e ( "Cumulative Deaths" ) +
theme_minimal ( )

# arrange p l o t s o f c l eaned data in g r id format
t i t l e 1=textGrob ( " S i e r r a Leone Cleaned Data" , gp=gpar ( f o n t f a c e="bold " , f o n t s i z e = 16 , c o l = "#00AFBB" ) )
g r id . arrange ( s l_c l ean_cases , s l_c l ean_deaths , nrow = 1 , nco l = 2 ,

top = t i t l e 1 )

# save s i e r r a l eone data in rds and csv format
saveRDS( s l . data , f i l e = " s l_data_23Sept . rds " )
wr i t e . csv ( s l . data , " s l_data_23Sept . csv " )

B.1.2 Liberia

###### Prepare L ib e r i a data −−−−−−

# c l e a r environment and s e t working d i r e c t o r y
rm( l i s t = l s ( ) )
wd = "~/ L ib e r i a code"
setwd (wd)

# i n s t a l l r equ i r ed l i b r a r i e s
l i b r a r y ( ggp lot2 )
l i b r a r y ( g r id )
l i b r a r y ( gr idExtra )

# read in the raw data
f u l l_data_raw = read . csv ( "CDCallcasecounts . csv " , sep = " ; " )

f u l l = f u l l_data_raw
colnames ( f u l l ) [ 1 ] = "Date"
f u l l $Date = as . Date ( f u l l $Date , format = "%Y/%m/%d" )
f u l l = f u l l [ −266 , ] #remove empty f i n a l row

# only look at dataframe columns f o r L ib e r i a − column 4 and 5
l i b . c a s e s = f u l l [ , c ( 1 , 4 , 5 ) ]

# remove any miss ing obs e rva t i on s
l i b . c a s e s = na . omit ( l i b . c a s e s )

# rename column headings
colnames ( l i b . c a s e s ) [ 2 ] = "Cases "
colnames ( l i b . c a s e s ) [ 3 ] = "Deaths"

# p lo t raw LIB case data
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l i b_raw_case s = ggp lot ( l i b . cases , aes (Date , Cases ) ) +
geom_point ( shape = 1) +
g g t i t l e ( "Cumulative Cases " ) +
theme_minimal ( )

# p lo t raw LIB death data
l i b_raw_deaths = ggp lot ( l i b . cases , aes (Date , Deaths ) ) +

geom_point ( shape = 1) +
g g t i t l e ( "Cumulative Deaths" ) +
theme_minimal ( )

# arrange p l o t s o f raw data in a g r id format
t i t l e 1=textGrob ( " L ib e r i a Raw Data" , gp=gpar ( f o n t f a c e="bold " , f o n t s i z e = 16 , c o l = "tomato" ) )
g r id . arrange ( l i b_raw_cases , l i b_raw_deaths , nrow = 1 , nco l = 2 ,

top = t i t l e 1 )

# remove dup l i c a t e dates
dup . dates = which ( dup l i ca t ed ( l i b . c a s e s $Date ) )
l i b . data = l i b . c a s e s [−dup . dates , ]

# order data from e a r l i e s t date to l a t e s t date
l i b . data = l i b . data [ order ( l i b . data$Date ) , ]

# s t a r t from date when ca s e s are f i r s t > 50
row . l i b = min ( which ( l i b . data$Cases >= 50))
s t a r t . l i b = l i b . data$Date [ row . l i b ]
l i b . data = l i b . data [ c ( row . l i b : nrow ( l i b . data ) ) , ]

# convert dates to days a f t e r i n i t i a l s t a r t i n g date
l i b . data$Day = as . numeric ( d i f f t im e ( l i b . data$Date , s t a r t . l i b −1, un i t s = "days" ) )
l i b . data = l i b . data [ , c ( 1 , 4 , 2 , 3 ) ]
rownames ( l i b . data ) = 1 : nrow ( l i b . data )

# i d e n t i f y p o s i t i o n o f d ips in cumulat ive ca s e s
l i b . data$ inc = c (NA, l i b . data$Cases [ 2 : nrow ( l i b . data ) ] − l i b . data$Cases [ 1 : ( nrow ( l i b . data )−1)] )
l i b . data [ c (125 , 126 , 128 , 129 , 130 , 132 , 133 , 134 , 135) , 2 ] = 10672
neg . inc = which ( l i b . data$ inc < 0)
l i b . data = l i b . data [−c (39 , 1 18 ) , ]
rownames ( l i b . data ) = 1 : nrow ( l i b . data )

#p lo t ( Deaths ~ Date , data = l i b . data , type=" l ")
#p lo t ( Deaths ~ Date , data = l i b . data , subset = seq (1 , nrow ( l i b . data ) , 5 ) , type=" l ")
#p lo t ( Cases ~ Date , data = l i b . data , type=" l ")
#p lo t ( inc ~ Date , data = l i b . data , type=" l ")

# smooth the death data to only s e l e c t every 5 th po int
l i b . data$Deaths [− seq (1 , nrow ( l i b . data ) , 5 ) ] = NA

# plo t non miss ing death i n d i c e s
death_ind <− ! i s . na ( l i b . data$Deaths )
p l o t ( Deaths ~ Date , data = l i b . data , subset = death_ind , type=" l " )

# de l e t e a few i n c on s i s t e n t ob s e rva t i on s − c l e a r e r r o r s
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l i b . data = l i b . data [−c ( 1 2 3 : 1 3 3 ) , ]

# p lo t c l eaned LIB case data
l i b_c l ean_cas e s = ggp lot ( l i b . data , aes (Date , Cases ) ) +

geom_point ( shape = 1) +
g g t i t l e ( "Cumulative Cases " ) +
theme_minimal ( )

# p lo t c l eaned LIB death data
l i b_c l ean_deaths = ggp lot ( l i b . data , aes (Date , Deaths ) ) +

geom_point ( shape = 1 , s i z e = 1 . 6 ) +
g g t i t l e ( "Cumulative Deaths" ) +
theme_minimal ( )

# arrange p l o t s o f c l eaned data in g r id format
t i t l e 1=textGrob ( " L ib e r i a Cleaned Data" , gp=gpar ( f o n t f a c e="bold " , f o n t s i z e = 16 , c o l = "tomato" ) )
g r id . arrange ( l i b_c l ean_cases , l i b_c l ean_deaths , nrow = 1 , nco l = 2 ,

top = t i t l e 1 )

# save l i b e r i a data in rds and csv format
saveRDS( l i b . data , f i l e = " l i b_data_23Sept . rds " )
wr i t e . csv ( l i b . data , " l i b_data_23Sept . csv " )

B.2 Model, parameter estimation and sensitivity analysis

B.2.1 Sierra Leone

###### S i e r r a Leone : Model f i t t i n g , parameter e s t imat ion −−−−−−

# c l e a r environment and s e t working d i r e c t o r y
rm( l i s t = l s ( ) )
wd = "~/ s i e r r a l eone code"
setwd (wd)

# i n s t a l l r equ i r ed l i b r a r i e s
l i b r a r y ( deSolve )
l i b r a r y ( g t o o l s ) # f o r l o g i t f unc t i on
l i b r a r y ( ggp lot2 )
l i b r a r y ( gr idExtra )

# read in data , c r e a t e dates sequence
s l . data = readRDS( " s l_data_23Sept . rds " )
data . f = s l . data [ , c ( 2 : 4 ) ]
dates . seq = data . f $Day # save dates f o r which case counts are a v a i l a b l e
death . dates . seq = data . f $Day [ ! i s . na ( data . f $Deaths ) ] # save dates f o r which death counts are a v a i l a b l e
# Note : s t a r t i n g date : "2014−06−02" = day 1

# se t i n i t i a l va lue s
InitPop = 6092000
E0 = 80
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I0 = 41
R0 = 0
D0 = 3 #ha l f ?
B0 = 6
Inc0 = 50
S0 = InitPop − E0 − I0 − R0 − D0 − B0
s t a r t = c (S = S0 , E = E0 , I = I0 , R = R0 , D = D0, B = B0 , Inc = Inc0 )

# c r ea t e model t imes vec to r
s ta r tday = 1
endday = 800 #Data s tops at day 682
t imes = seq ( startday , endday , 1)

#### Def ine f unc t i on s −−−−−

# SEIRDB func t i on f o r e s t imat i on
s e i r db . e s t = func t i on ( t , x , parms ){

with ( as . l i s t ( c ( parms , x ) ) , {
beta I = exp ( l o gbe t a I ) #e f f e c t i v e contact ra t e with i n f e c t i o u s people ( a l i v e )
betaD = exp ( logbetaD ) #e f f e c t i v e contact ra t e with dead but i n f e c t i o u s people
alpha = exp ( loga lpha ) #1/ la t ency per iod
lambda1 = exp ( loglambda1 ) #1/ per iod o f i n f e c t i o n to s u r v i v a l − s t i l l i n f e c t i o u s
lambda2 = exp ( loglambda2 ) #1/ per iod o f i n f e c t i o n to death
rho = exp ( logrho ) #1/ time to d i spo s e o f a body
mu = inv . l o g i t ( logitmu ) #f a t a l i t y ra t e
eta = inv . l o g i t ( l o g i t e t a ) #f a c t o r to dec rea se beta I f o r t > tc
tc = exp ( l o g t c ) #time o f i n t e r v en t i on / con t r o l measures implemented

i f ( t >= tc ) {
e ta t = eta

} e l s e {
e ta t = 1

}

N = S + E + I + R + D

dS = − beta I ∗ e ta t ∗ ( I /N) ∗S − betaD∗ e ta t ∗ (D/N) ∗S

dE = betaI ∗ e ta t ∗ ( I /N) ∗S + betaD∗ e ta t ∗ (D/N) ∗S − alpha ∗E

dI = alpha ∗E − (1 − mu) ∗ ( lambda1 ) ∗ I − mu∗ ( lambda2 ) ∗ I

dR = (1 − mu) ∗ lambda1∗ I

dD = mu∗ lambda2∗ I − rho∗D

dB = rho∗D

dInc = betaI ∗ e ta t ∗ ( I /N) ∗S + betaD∗ e ta t ∗ (D/N) ∗S

output = c (dS , dE , dI , dR, dD, dB, dInc )
l i s t ( output )

})
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}

# SEIRD func t i on − without transformed parameters f o r e s t imat i on
s e i r db = func t i on ( t , x , parms ){

with ( as . l i s t ( c ( parms , x ) ) , {

i f ( t >= tc ) {
e ta t = eta
#rhot = rho2

} e l s e {
e ta t = 1
#rhot = rho1

}

N = S + E + I + R + D

dS = − beta I ∗ e ta t ∗ ( I /N) ∗S − betaD∗ e ta t ∗ (D/N) ∗S

dE = betaI ∗ e ta t ∗ ( I /N) ∗S + betaD∗ e ta t ∗ (D/N) ∗S − alpha ∗E

dI = alpha ∗E − (1 − mu) ∗ ( lambda1 ) ∗ I − mu∗ ( lambda2 ) ∗ I

dR = (1 − mu) ∗ lambda1∗ I

dD = mu∗ lambda2∗ I − rho∗D

dB = rho∗D

dInc = betaI ∗ e ta t ∗ ( I /N) ∗S + betaD∗ e ta t ∗ (D/N) ∗S

output = c (dS , dE , dI , dR, dD, dB, dInc )
l i s t ( output )

})
}

# Function f o r c a l c u l a t i n g sum of squared e r r o r s from case and death data
s e i r db . s s e = func t i on ( varparms , f ixparms , times , s t a r t , data ) {

s e i r db . l s e = ode ( t imes = times , y = sta r t , func = se i rdb . est , parms = c ( varparms , f ixparms ) )

e r r o r . cum . ca s e s = ( s e i rdb . l s e [ dates . seq , 8 ] − data$Cases )^2
e r r o r . cum . ca s e s [−c ( 1 : 4 8 ) ] = 2∗ e r r o r . cum . ca s e s [−c ( 1 : 4 8 ) ] #va lues a f t e r 180 days i s obse rvat i on 48

e r r o r . cum . deaths = ( s e i r db . l s e [ death . dates . seq , 7 ] − data$Deaths [ data$Day %in% death . dates . seq ] )^2

s s e . c a s e s = sum( e r r o r . cum . ca s e s )
s s e . deaths = sum( e r r o r . cum . deaths )
s s e = s s e . c a s e s + 1 .5 ∗ s s e . deaths #s i n c e death data i s smoothed , weighted 1 .5 t imes

re turn ( s s e )
}

# Base r eproduc t ive number
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r0 . fn2 = func t i on ( estms ){
beta I = estms [ ’ be ta I ’ ]
betaD = estms [ ’ betaD ’ ]
lambda1 = estms [ ’ lambda1 ’ ]
lambda2 = estms [ ’ lambda2 ’ ]
mu = estms [ ’mu ’ ]
rho = estms [ ’ rho ’ ]
r0 = ( ( beta I / ( lambda1 + mu∗ ( lambda2 − lambda1 ) ) ) + ( ( betaD ∗ mu ∗ lambda2 ) / ( rho∗ ( lambda1 + mu∗ ( lambda2 − lambda1 ) ) ) ) )
re turn ( r0 )

}

#### Estimate parameter va lue s from data −−−−−

# only need to run t h i s the f i r s t time to i n i t i a l i z e va lue s f o r t o t a l e r r o r and e s t imate s
min . e r r = 1000000000000
min . s t a r t = min . estms = NULL

# se t number o f i t e r a t i o n s to run with d i f f e r e n t s t a r t i n g va lue s
nsim = 500

# provide va lue s f o r f i x ed parameters
f ixparms = c ( loga lpha = log (1 / 10) ,

loglambda1 = log (1 / 9 . 4 ) ,
loglambda2 = log (1 / 7 . 5 ) )

#s t a r t_time <− Sys . time ( ) #to measure run time

# cr ea t e f o r loop to generate random s t a r t i n g va lue s f o r v a r i a b l e parameters ,
# opt imize va r i ab l e parameters us ing L−BFGS−B method
# ca l c u l a t e t o t a l e r r o r with these model parameters , i f the t o t a l e r r o r i s l e s s
# than the cur rent saved minimum error , save the est imated parameters as the
# best parameters ( ’min . estms ’ )

f o r ( i in 1 : nsim ) {

varparms = c ( l o gbe t a I = log ( r un i f (1 , 0 . 15 , 0 . 2 ) ) ,
logbetaD = log ( r un i f (1 , 0 . 1 , 0 . 4 ) ) ,
l ogrho = log ( r un i f (1 , 0 . 25 , 1 . 5 ) ) ,
l o g t c = log ( r un i f (1 , 60 , 280) ) ,
l o g i t e t a = l o g i t ( r un i f (1 , 0 . 01 , 0 . 6 ) ) ,
logitmu = l o g i t ( r un i f (1 , 0 . 25 , 0 . 7 ) ) )

s l . optim = optim ( par = varparms , s e i r db . sse , f ixparms = fixparms , method = "L−BFGS−B" ,
t imes = times , s t a r t = s ta r t , data = data . f ,
lower = c (−10 , −10, l og ( 0 . 2 ) , −10, −10, l o g i t ( 0 . 2 ) ) ,
upper = c ( l og ( 2 ) , l og ( 2 ) , l og ( 1 ) , l og (300) , l o g i t ( 0 . 8 ) , l o g i t ( 0 . 8 ) ) )

s l . s s e = s l . optim$ value

i f ( s l . s s e < min . e r r ) {
min . e r r = s l . s s e
min . s t a r t = varparms
min . estms = s l . optim$par

}
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}

#end_time <− Sys . time ( )
#end_time − s t a r t_time

# back trans form es t imate s from log / l o g i t s c a l e to o r i g i n a l s c a l e

a l l . estms = c ( f ixparms , min . estms )
a l l . estms = setNames ( a l l . estms , c ( " alpha " , " lambda1" , " lambda2" ,

" beta I " , "betaD" , " rho" , " tc " , " eta " , "mu" ) )
a l l . estms
estms . no . t r = a l l . estms

a l l . estms [ c ( " alpha " , " lambda1" , " lambda2" ,
" beta I " , "betaD" , " rho" , " tc " ) ] = sapply ( a l l . estms [ c ( " alpha " , " lambda1" , " lambda2" ,

" beta I " , "betaD" , " rho" , " tc " ) ] , exp )
a l l . estms [ c ( " eta " , "mu" ) ] = sapply ( a l l . estms [ c ( " eta " , "mu" ) ] , inv . l o g i t )
a l l . estms

# save e s t imate s in rds and csv format
saveRDS( a l l . estms , f i l e = ’ s l_f i n a l_24Sept . rds ’ )
wr i t e . t ab l e ( a l l . estms , f i l e = " f i n a l_s l . csv " )

model . estms = a l l . estms
#model . estms = readRDS ( ’ s l_f i n a l_24Aug . rds ’ )
model . estms

# ca l c u l a t e r0 value
r0_s l = r0 . fn2 ( model . estms )
r0_s l

# f i t model us ing est imated parameters
model . f = ode ( t imes = times , y = s ta r t , func = se i rdb , parms = model . estms )

#### plo t p r ed i c t ed behaviour o f model compartments −−−−−

model . f 2 = as . data . frame ( model . f )

# cumulat ive ca s e s
pInc = ggp lot ( data . f , aes ( x = Day , y = Cases ) ) +

geom_point ( shape = 1 , c o l o r="gray35" ) +
geom_l i n e ( data = model . f2 , aes ( x = time , y = Inc ) , c o l = "#00AFBB" , s i z e = 0 . 7 ) +
g g t i t l e ( " S i e r r a Leone Cumulative Cases " )
#theme_minimal ( )

pInc

#deaths
pB = ggp lot ( data . f , aes ( x = Day , y = Deaths ) ) +

geom_point ( shape = 1 , c o l o r="gray35" ) +
geom_l i n e ( data = model . f2 , aes ( x = time , y = B) , c o l = "#00AFBB" , s i z e = 0 . 7 ) +
g g t i t l e ( " S i e r r a Leone Cumulative Deaths ( Class B) " )
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#theme_minimal ( )
pB

#inc id enc e
model . f 3 = model . f 2
model . f 3 $ inc_pr ed i c t = c (NA, model . f 3 [ 2 : nrow ( model . f 3 ) , 8 ] − model . f 3 [ 1 : ( nrow ( model . f 3 ) −1) ,8 ] )

pI = ggp lot ( s l . data , aes ( x = Day , y = inc ) ) +
geom_point ( shape = 1 , c o l o r="gray35" ) + ylab ( "Cases " ) +
geom_l i n e ( data = model . f3 , aes ( x = time , y = inc_pr ed i c t ) , c o l = "#00AFBB" , s i z e = 0 . 7 ) +
g g t i t l e ( " S i e r r a Leone Case Inc idence ( Class I ) " )
#theme_minimal ( )

pI

#gr id . arrange ( pInc , pB, pI , nco l = 1)

#S
pS = ggp lot ( model . f2 , aes ( x = time , y = S ) ) +

geom_l i n e ( c o l o r = "#00AFBB" , s i z e = 1) +
xlab ( "Days" ) + ylab ( "S" ) +
theme_minimal ( )
#theme ( ax i s . t ex t . x=element_blank ( ) )

#E
pE = ggp lot ( model . f2 , aes ( x = time , y = E) ) +

geom_l i n e ( c o l o r = "#00AFBB" , s i z e = 1) +
xlab ( "Days" ) + ylab ( "E" ) +
theme_minimal ( )

#R
pR = ggp lot ( model . f2 , aes ( x = time , y = R) ) +

geom_l i n e ( c o l o r = "#00AFBB" , s i z e = 1) +
xlab ( "Days" ) + ylab ( "R" ) +
theme_minimal ( )

#D
pD = ggp lot ( model . f2 , aes ( x = time , y = D) ) +

geom_l i n e ( c o l o r = "#00AFBB" , s i z e = 1) +
xlab ( "Days" ) + ylab ( "D" ) +
theme_minimal ( )

g r id . arrange (pS , pE , pR, pD, nrow = 2 , nco l = 2)

###### Sen s i t i v i t y an a l y s i s f o r S i e r r a Leone −−−−−−

# se t working d i r e c to ry , read in saved parameter e s t imate s
wd = "~/Desktop/ Pro j e c t / Dra f t s /mathematical−model l ing−spread /code/ s l "
setwd (wd)
model . estms = read . csv ( " f i n a l_s l . csv " , sep = " " , sk ip = 1 , header = FALSE)
model . estms = setNames ( model . estms$V2 , model . estms$V1) #turn df in to named vec to r
model . estms
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# i n s t a l l r equ i r ed l i b r a r i e s
l i b r a r y ( deSolve )
l i b r a r y ( l h s )
l i b r a r y ( ppcor )
l i b r a r y ( data . t ab l e )
l i b r a r y ( ggp lot2 )

#### Def in ing func t i on s −−−−−

# base r eproduc t ive number
r0 . c a l c = func t i on ( params ){

beta I = params [ ’ beta I ’ ]
betaD = params [ ’ betaD ’ ]
lambda1 = params [ ’ lambda1 ’ ]
lambda2 = params [ ’ lambda2 ’ ]
mu = params [ ’mu ’ ]
rho = params [ ’ rho ’ ]

r0 = ( ( beta I / ( lambda1 + mu∗ ( lambda2 − lambda1 ) ) ) + ( ( betaD ∗ mu ∗ lambda2 ) / ( rho∗ ( lambda1 + mu∗ ( lambda2 − lambda1 ) ) ) ) )
re turn ( r0 )

}

#### Univar ia te r e l a t i o n s h i p between R0 and key parameters −−−−−

## betaI
beta I_range = seq ( 0 . 0 5 , 0 . 16 , l ength . out = 500)
model . estms2 = model . estms
beta I_r0_range = NULL
f o r ( i in 1 : l ength ( beta I_range ) ){

model . estms2 [ ’ beta I ’ ] = beta I_range [ i ]
be ta I_r0_range = c ( beta I_r0_range , r0 . c a l c ( model . estms2 ) )

}
beta I_i n f o = data . frame ( beta I = betaI_range , r0 = betaI_r0_range )

r0_betaI = ggp lot ( beta I_in fo , aes ( x = betaI , y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "#00AFBB" ) + xlab ( exp r e s s i on ( beta [ I ] ) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))

#r0_betaI

## betaD
betaD_range = seq ( 0 . 5 , 0 . 8 , l ength . out = 500)
model . estms2 = model . estms
betaD_r0_range = NULL
f o r ( i in 1 : l ength ( betaD_range ) ){

model . estms2 [ ’ betaD ’ ] = betaD_range [ i ]
betaD_r0_range = c ( betaD_r0_range , r0 . c a l c ( model . estms2 ) )

}
betaD_in f o = data . frame ( betaD = betaD_range , r0 = betaD_r0_range )
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r0_betaD = ggp lot ( betaD_in fo , aes ( x = betaD , y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "#00AFBB" ) + xlab ( exp r e s s i on ( beta [D] ) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
#r0_betaD

## lambda1
lambda1_range = seq ( 0 . 0 6 , 0 . 17 , l ength . out = 500)
model . estms2 = model . estms
lambda1_r0_range = NULL
f o r ( i in 1 : l ength ( lambda1_range ) ){

model . estms2 [ ’ lambda1 ’ ] = lambda1_range [ i ]
lambda1_r0_range = c ( lambda1_r0_range , r0 . c a l c ( model . estms2 ) )

}
lambda1_i n f o = data . frame ( lambda1 = lambda1_range , r0 = lambda1_r0_range )

r0_lambda1 = ggp lot ( lambda1_in fo , aes ( x = lambda1 , y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "#00AFBB" ) + xlab ( exp r e s s i on ( lambda [ 1 ] ) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
#r0_lambda1

## lambda2
lambda2_range = seq ( 0 . 0 6 , 0 . 17 , l ength . out = 500)
model . estms2 = model . estms
lambda2_r0_range = NULL
f o r ( i in 1 : l ength ( lambda2_range ) ){

model . estms2 [ ’ lambda2 ’ ] = lambda2_range [ i ]
lambda2_r0_range = c ( lambda2_r0_range , r0 . c a l c ( model . estms2 ) )

}
lambda2_i n f o = data . frame ( lambda2 = lambda2_range , r0 = lambda2_r0_range )

r0_lambda2 = ggp lot ( lambda2_in fo , aes ( x = lambda2 , y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "#00AFBB" ) + xlab ( exp r e s s i on ( lambda [ 2 ] ) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
#r0_lambda2

## mu
mu_range = seq ( 0 . 2 , 0 . 7 , l ength . out = 500)
model . estms2 = model . estms
mu_r0_range = NULL
f o r ( i in 1 : l ength (mu_range ) ){
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model . estms2 [ ’mu ’ ] = mu_range [ i ]
mu_r0_range = c (mu_r0_range , r0 . c a l c ( model . estms2 ) )

}
mu_in f o = data . frame (mu = mu_range , r0 = mu_r0_range )

r0_mu = ggp lot (mu_in fo , aes ( x = mu, y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "#00AFBB" ) + xlab ( exp r e s s i on (mu) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
r0_mu

## rho
rho_range = seq ( 0 . 3 3 , 1 . 5 , l ength . out = 500)
model . estms2 = model . estms
rho_r0_range = NULL
f o r ( i in 1 : l ength ( rho_range ) ){

model . estms2 [ ’ rho ’ ] = rho_range [ i ]
rho_r0_range = c ( rho_r0_range , r0 . c a l c ( model . estms2 ) )

}
rho_in f o = data . frame ( rho = rho_range , r0 = rho_r0_range )

r0_rho = ggp lot ( rho_in fo , aes ( x = rho , y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "#00AFBB" ) + xlab ( exp r e s s i on ( rho ) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
#r0_rho

g r id . arrange ( r0_betaI , r0_betaD , r0_lambda1 , r0_lambda2 , r0_mu, r0_rho , nco l = 2 , nrow = 3)

#### Asse s s ing impact o f e a r l i e r i n t e r v en t i on ( changes in tC) −−−−−

# 4 p l o t s − 3 monthly changes
tc_range = c (80 , 110 , 140 , 170)
model . estms2 = model . estms
par (mfrow = c (2 , 2 ) )

f o r ( i in 1 : l ength ( tc_range ) ){
model . estms2 [ ’ t c ’ ] = tc_range [ i ]
f i t = ode ( t imes = times , y = sta r t , func = se i rdb , parms = model . estms2 )
d i f f_inc = c (NA, f i t [ 2 : nrow ( f i t ) , 8 ] − f i t [ 1 : ( nrow ( f i t ) −1) ,8 ] )
#peak = which .max( d i f f_inc ) #which ( d i f f_inc <= 0 ) [ 1 ]
s low_down = which ( d i f f_inc < 1 ) [ 1 ]
p l o t ( f i t [ , 1 ] , f i t [ , 8 ] , type = " l " , yl im = c (0 ,15000) , xl im = c (0 , 800 ) ,

main = paste ( " tc =" , tc_range [ i ] ) , x lab = "Days" , ylab = "Cumulative Cases " , c o l = "#00AFBB" , lwd = 1 . 2 )
ab l i n e ( v = tc_range [ i ] , l t y = 2 , c o l = "darkblue " )
ab l i n e ( v = slow_down , l t y = 2 , c o l = "darkred " )
p r i n t ( c ( tc_range [ i ] , s low_down , f i t [ 8 0 0 , 8 ] ) )
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}

# now look at r e l a t i o n s h i p numer i ca l ly
tc_d i f f_range = seq (0 , 120 , 0 . 25 )
ca s e s_avoided = NULL
t o t a l_ca s e s = model . f [ 8 0 0 , 8 ]

f o r ( i in 1 : l ength ( tc_d i f f_range ) ){
model . estms2 [ ’ t c ’ ] = model . estms [ ’ t c ’ ] − tc_d i f f_range [ i ]
f i t = ode ( t imes = times , y = sta r t , func = se i rdb , parms = model . estms2 )
ca s e s_avoided = c ( ca s e s_avoided , ( t o t a l_ca s e s − f i t [ 8 0 0 , 8 ] ) )

}
df . c a s e s_avoided = data . frame ( "days" = tc_d i f f_range , " ca s e s " = ca s e s_avoided )

tc_ea r l y = ggp lot ( df . c a s e s_avoided , aes ( x = days , y = cases , group = 1)) +
geom_l i n e ( s i z e = 1 . 2 , c o l o r = "#00AFBB" ) + xlab ( "Days sooner " ) + ylab ( "Cases avoided " ) +
g g t i t l e ( " S i e r r a Leone" ) +
theme_minimal ( )

tc_ea r l y

#### Re la t i on sh ip between ’ d i s e a s e thresho ld ’ and durat ion o f the epidemic −−−−−
tc_range2 = seq (30 , 170 , 3)
model . estms2 = model . estms
th re sho ld_va l s = c ( )
durat ion_va l s = c ( )

f o r ( i in 1 : l ength ( tc_range2 ) ){
model . estms2 [ ’ t c ’ ] = tc_range2 [ i ]
f i t = ode ( t imes = times , y = sta r t , func = se i rdb , parms = model . estms2 )
d i f f_inc = c (NA, f i t [ 2 : nrow ( f i t ) , 8 ] − f i t [ 1 : ( nrow ( f i t ) −1) ,8 ] )
#peak = which .max( d i f f_inc ) #which ( d i f f_inc <= 0 ) [ 1 ]
s low_down = which ( d i f f_inc < 1 ) [ 1 ]

th r e sho ld_va l s = c ( th r e sho ld_vals , f i t [ t c_range2 [ i ] , 8 ] )

durat ion_va l s = c ( durat ion_vals , ( s low_down ) )
}
thresh_data = data . frame ( th r e sho ld = thre sho ld_vals , durat ion = durat ion_va l s )

p_thresh = ggp lot ( thresh_data , aes ( x = thresho ld , y = durat ion ) ) +
geom_l i n e ( s i z e = 1 . 2 , c o l o r = "#00AFBB" ) + xlab ( "Threshold (number o f ca s e s ) " ) + ylab ( "Duration o f epidemic " ) +
g g t i t l e ( exp r e s s i on ( paste ( " S i e r r a Leone ( " , eta , " = 0 .619 ) " ) ) ) +
s c a l e_x_cont inuous ( breaks = seq (300 , 6300 , 1000)) +
s c a l e_y_cont inuous ( minor_breaks = seq (0 , 800 , 25) , breaks = seq (200 , 800 , 50) ) +
theme_minimal ( ) +
theme ( text = element_text ( s i z e = 14))

p_thresh

#### Re la t i on sh ip between eta and durat ion o f the epidemic keeping tc constant −−−−−
eta_range2 = seq ( 0 . 2 5 , 0 . 65 , 0 . 01 )
model . estms2 = model . estms
th re sho ld_va l s = c ( )
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durat ion_va l s = c ( )

f o r ( i in 1 : l ength ( eta_range2 ) ){
model . estms2 [ ’ eta ’ ] = eta_range2 [ i ]
f i t = ode ( t imes = times , y = sta r t , func = se i rdb , parms = model . estms2 )
d i f f_inc = c (NA, f i t [ 2 : nrow ( f i t ) , 8 ] − f i t [ 1 : ( nrow ( f i t ) −1) ,8 ] )
#peak = which .max( d i f f_inc ) #which ( d i f f_inc <= 0 ) [ 1 ]
s low_down = which ( d i f f_inc < 1 ) [ 1 ]

durat ion_va l s = c ( durat ion_vals , ( s low_down ) ) #− model . estms2 [ ’ tc ’ ]
}

thresh_data = data . frame ( eta = eta_range2 , durat ion = durat ion_va l s )

p_eta = ggp lot ( thresh_data , aes ( x = eta , y = durat ion ) ) +
geom_l i n e ( s i z e = 1 . 2 , c o l o r = "#00AFBB" ) + xlab ( exp r e s s i on ( eta ) ) + ylab ( "Duration o f epidemic " ) +
g g t i t l e ( exp r e s s i on ( paste ( " S i e r r a Leone ( " , t [C] , " = 170) " ) ) ) +
s c a l e_x_cont inuous ( minor_breaks = seq ( 0 . 2 , 0 . 65 , 0 . 025 ) , breaks = seq ( 0 . 2 , 0 . 65 , 0 . 0 5 ) ) +
s c a l e_y_cont inuous ( minor_breaks = seq (0 , 800 , 50) , breaks = seq (0 , 800 , 100)) +
theme_minimal ( ) +
theme ( text = element_text ( s i z e = 14))

p_eta

#### Asse s s ing changes in eta −−−−−

#4 p l o t s − 3 monthly changes
eta_range = c ( 0 . 4 5 , 0 . 5 , 0 . 55 , 0 . 6 )
model . estms2 = model . estms
par (mfrow = c (2 , 2 ) )

f o r ( i in 1 : l ength ( eta_range ) ){
model . estms2 [ ’ eta ’ ] = eta_range [ i ]
f i t = ode ( t imes = times , y = sta r t , func = se i rdb , parms = model . estms2 )
d i f f_inc = c (NA, f i t [ 2 : nrow ( f i t ) , 8 ] − f i t [ 1 : ( nrow ( f i t ) −1) ,8 ] )
#peak = which .max( d i f f_inc ) #which ( d i f f_inc <= 0 ) [ 1 ]
s low_down = which ( d i f f_inc < 1 ) [ 1 ]
p l o t ( f i t [ , 1 ] , f i t [ , 8 ] , type = " l " , yl im = c (0 ,15000) , xl im = c (0 , 800 ) ,

main = bquote ( eta == . ( eta_range [ i ] ) ) ,
x lab = "Days" , ylab = "Cumulative Cases " , c o l = "#00AFBB" , lwd = 1 . 2 )

#main = paste (" eta =", eta_range [ i ] ) , x lab = "Days " , ylab = "Cumulative Cases " , c o l = "#00AFBB" , lwd = 1 . 2 )
ab l i n e ( v = tc_range [ i ] , l t y = 2 , c o l = "darkblue " )
ab l i n e ( v = slow_down , l t y = 2 , c o l = "darkred " )
p r i n t ( c ( tc_range [ i ] , s low_down , f i t [ 8 0 0 , 8 ] ) )

}

#### Mul t i va r i a t e s e n s i t i v i t y an a l y s i s on R0 −−−−−

n = 10000 # number to sample
k = 6 #number o f v a r i a b l e s

lhsp = randomLHS(n , k )
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samples = data . frame ( beta I = qun i f ( lhsp [ , 1 ] , 0 . 06 , 0 . 1 8 ) , #check these two
betaD = qun i f ( lhsp [ , 2 ] , 0 . 5 , 0 . 9 ) , #check
lambda1 = qnorm( lhsp [ , 3 ] , 0 . 1 , 0 . 0225 ) ,
lambda2 = qnorm( lhsp [ , 4 ] , 0 . 1 , 0 . 0225 ) ,
mu = qun i f ( lhsp [ , 5 ] , 0 . 2 , 0 . 7 ) ,
rho = qun i f ( lhsp [ , 6 ] , 0 . 25 , 1 . 5 )

)

save . va l s = NULL

f o r ( i in 1 : n) {
#run = ode ( t imes = times , y = sta r t , func = se i rdb , parms = samples [ i , ] )
save . va l s [ i ] = r0 . c a l c ( samples [ i , ] )

}

save . va l s = un l i s t ( save . va l s )

save . va l s 2 = data . frame ( va lue s = save . va l s )
ggp lo t ( save . va ls2 , aes ( va lue s ) ) +

geom_histogram ( binwidth = 0 . 2 , f i l l = "#00AFBB" , c o l o r = "grey45 " , alpha = 0 . 5 ) +
xlab ( exp r e s s i on ( "R" [ 0 ] ) ) + ylab ( "Frequency" ) +
g g t i t l e ( exp r e s s i on ( paste ( "Uncerta inty ana l y s i s o f " , "R" [ 0 ] , " f o r S i e r r a Leone" ) ) ) +
theme_minimal ( )

t . t e s t ( save . va l s )
summary( save . va l s )

pcor_va l s = c ( )

f o r ( i in 1 : k ){
va l s = pcor . t e s t ( x = samples [ , i ] , y = save . va l s , z = samples [ ,− i ] , method = "spearman" )
pcor_va l s = c ( pcor_vals , v a l s $ es t imate )

}

pcor_va l s
pcor_va l s = setNames ( pcor_vals , colnames ( samples ) )
barp lo t ( pcor_vals , yl im = c (−1 , 1 ) )

#### Univar ia te s e n s i t i v i t y an a l y s i s on cumulat ive ca s e s −−−−−

# Using LHS
n = 10000 # number to sample
k = 9 #number o f v a r i a b l e s

lhsp = randomLHS(n , k )

samples = data . frame ( alpha = qnorm( lhsp [ , 1 ] , 0 . 1 , 0 . 0125 ) ,
lambda1 = qnorm( lhsp [ , 2 ] , 0 . 1 , 0 . 0225 ) ,
lambda2 = qnorm( lhsp [ , 3 ] , 0 . 1 , 0 . 0225 ) ,
beta I = qun i f ( lhsp [ , 4 ] , 0 . 05 , 0 . 1 6 ) ,
betaD = qun i f ( lhsp [ , 5 ] , 0 . 5 , 0 . 8 ) ,
rho = qun i f ( lhsp [ , 6 ] , 0 . 25 , 1 . 5 ) ,
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tc = qun i f ( lhsp [ , 7 ] , 140 , 200) ,
eta = qun i f ( lhsp [ , 8 ] , 0 . 3 , 0 . 7 ) ,
mu = qun i f ( lhsp [ , 9 ] , 0 . 2 , 0 . 7 )
#E0 = qun i f ( lhsp [ , 9 ] , 30 , 70) ,
#I0 = qun i f ( lhsp [ , 1 0 ] , 10 , 40) ,
#D0 = qun i f ( lhsp [ , 1 1 ] , 10 , 30)

)

save . va l s50 = NULL
save . va l s200 = NULL
save . va l s400 = NULL
save . va l s800 = NULL

f o r ( i in 1 : n) {
run = ode ( t imes = times , y = s ta r t , func = se i rdb , parms = samples [ i , ] )
save . va l s50 [ i ] = run [ 50 , 8 ]
save . va l s200 [ i ] = run [ 2 0 0 , 8 ]
save . va l s400 [ i ] = run [ 4 0 0 , 8 ]
save . va l s800 [ i ] = run [ 8 0 0 , 8 ]

}

save . va l s50 = un l i s t ( save . va l s50 )
save . va l s200 = un l i s t ( save . va l s200 )
save . va l s400 = un l i s t ( save . va l s400 )
save . va l s800 = un l i s t ( save . va l s800 )
#h i s t ( save . va l s , main = expr e s s i on ( paste (" Uncerta inty ana l y s i s o f " , "R" [ 0 ] , " f o r L ib e r i a " ) ) , x lab = expr e s s i on ("R" [ 0 ] ) )

pcor_va l s50 = c ( )
pcor_va l s200 = c ( )
pcor_va l s400 = c ( )
pcor_va l s800 = c ( )

f o r ( i in 1 : k ){
va l s50 = pcor . t e s t ( x = samples [ , i ] , y = save . vals50 , z = samples [ ,− i ] , method = "spearman" ) #removed method = " s "
va l s200 = pcor . t e s t ( x = samples [ , i ] , y = save . vals200 , z = samples [ ,− i ] , method = "spearman" )
va l s400 = pcor . t e s t ( x = samples [ , i ] , y = save . vals400 , z = samples [ ,− i ] , method = "spearman" )
va l s800 = pcor . t e s t ( x = samples [ , i ] , y = save . vals800 , z = samples [ ,− i ] , method = "spearman" )
pcor_va l s50 = c ( pcor_vals50 , va l s50 $ es t imate )
pcor_va l s200 = c ( pcor_vals200 , va l s200 $ es t imate )
pcor_va l s400 = c ( pcor_vals400 , va l s400 $ es t imate )
pcor_va l s800 = c ( pcor_vals800 , va l s800 $ es t imate )

}

#pcor_va l s
pcor_va l s50 = setNames ( pcor_vals50 , colnames ( samples ) )
pcor_va l s200 = setNames ( pcor_vals200 , colnames ( samples ) )
pcor_va l s400 = setNames ( pcor_vals400 , colnames ( samples ) )
pcor_va l s800 = setNames ( pcor_vals800 , colnames ( samples ) )

barp lo t ( pcor_vals800 , ylim = c (−1 , 1 ) , cex . names = 0 . 8 ,
ylab = "PRCC" , main = " S e n s i t i v i t y an a l y s i s o f cumulat ive ca s e s at day 800 f o r S i e r r a Leone" ,
c o l = "#00AFBB" )
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va l s800 = data . frame ( pcor_va l s800 )
setDT( vals800 , keep . rownames = TRUE) [ ]
colnames ( va l s800 ) = c ( " va r i ab l e " , " value " )

# try do with ggp lot
#need to put in to long format
sens_bar800 = ggp lot ( vals800 , aes ( x = var i ab l e , y = value ) ) +

geom_bar ( s t a t = " i d e n t i t y " , f i l l = "#00AFBB" , c o l = " grey45 " , alpha = 0 . 5 ) +
ylab ( "PRCC" ) + xlab ( "Parameter" ) + g g t i t l e ( " S e n s i t i v i t y ana l y s i s o f cumulat ive ca s e s at day 800 f o r S i e r r a Leone" ) +
theme_minimal ( )

sens_bar800

#other 4 p l o t s
va l s50 = data . frame ( pcor_va l s50 )
setDT( vals50 , keep . rownames = TRUE) [ ]
colnames ( va l s50 ) = c ( " va r i ab l e " , " va lue " )

sens_bar50 = ggp lot ( vals50 , aes ( x = var i ab l e , y = value ) ) +
geom_bar ( s t a t = " i d e n t i t y " , f i l l = "#00AFBB" , c o l = " grey45 " , alpha = 0 . 5 ) +
ylab ( "PRCC" ) + xlab ( "Parameter" ) + g g t i t l e ( "Day 50" ) +
theme_minimal ( ) +
theme ( ax i s . t ex t . x = element_text ( s i z e = 7 . 5 ) )

#sens_bar50

va l s200 = data . frame ( pcor_va l s200 )
setDT( vals200 , keep . rownames = TRUE) [ ]
colnames ( va l s200 ) = c ( " va r i ab l e " , " value " )

sens_bar200 = ggp lot ( vals200 , aes ( x = var i ab l e , y = value ) ) +
geom_bar ( s t a t = " i d e n t i t y " , f i l l = "#00AFBB" , c o l = " grey45 " , alpha = 0 . 5 ) +
ylab ( "PRCC" ) + xlab ( "Parameter" ) + g g t i t l e ( "Day 200" ) +
theme_minimal ( ) +
theme ( ax i s . t ex t . x = element_text ( s i z e = 7 . 5 ) )

#sens_bar200

va l s400 = data . frame ( pcor_va l s400 )
setDT( vals400 , keep . rownames = TRUE) [ ]
colnames ( va l s400 ) = c ( " va r i ab l e " , " value " )

sens_bar400 = ggp lot ( vals400 , aes ( x = var i ab l e , y = value ) ) +
geom_bar ( s t a t = " i d e n t i t y " , f i l l = "#00AFBB" , c o l = " grey45 " , alpha = 0 . 5 ) +
ylab ( "PRCC" ) + xlab ( "Parameter" ) + g g t i t l e ( "Day 400" ) +
theme_minimal ( ) +
theme ( ax i s . t ex t . x = element_text ( s i z e = 7 . 5 ) )

sens_bar800 . v2 = ggp lot ( vals800 , aes ( x = var i ab l e , y = value ) ) +
geom_bar ( s t a t = " i d e n t i t y " , f i l l = "#00AFBB" , c o l = " grey45 " , alpha = 0 . 5 ) +
ylab ( "PRCC" ) + xlab ( "Parameter" ) + g g t i t l e ( "Day 800" ) +
theme_minimal ( ) +
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theme ( ax i s . t ex t . x = element_text ( s i z e = 7 . 5 ) )

g r id . arrange ( sens_bar50 , sens_bar200 , sens_bar400 , sens_bar800 . v2 , nrow = 2 , nco l = 2)

B.2.2 Liberia

###### Libe r i a : Model f i t t i n g , parameter e s t imat i on −−−−−−

# c l e a r environment and s e t working d i r e c t o r y
rm( l i s t = l s ( ) )
wd = "~/ L ib e r i a code"
setwd (wd)

# i n s t a l l r equ i r ed l i b r a r i e s
l i b r a r y ( deSolve )
l i b r a r y ( g t o o l s ) # f o r l o g i t f unc t i on
l i b r a r y ( ggp lot2 )
l i b r a r y ( gr idExtra )

# read in data , c r e a t e dates sequence
l i b . data = readRDS( " l i b_data_23Sept . rds " )
data . f = l i b . data [ , c ( 2 : 4 ) ]
dates . seq = data . f $Day # save dates f o r which case counts are a v a i l a b l e
death . dates . seq = data . f $Day [ ! i s . na ( data . f $Deaths ) ] # save dates f o r which death counts are a v a i l a b l e

# s t a r t i n g date : "2014−06−02" = day 1

# se t i n i t i a l va lue s
InitPop = 4294000
E0 = 80
I0 = 14
R0 = 0
D0 = 3
B0 = 34
Inc0 = 51
S0 = InitPop − E0 − I0 − R0 − D0 − B0
s t a r t = c (S = S0 , E = E0 , I = I0 , R = R0 , D = D0, B = B0 , Inc = Inc0 )

# c r ea t e model t imes vec to r
s ta r tday = 1
endday = 800 # data s tops at day
t imes = seq ( startday , endday , 1)

#### Def ine f unc t i on s −−−−−

# SEIRDB func t i on f o r e s t imat ion
s e i r db . e s t = func t i on ( t , x , parms ){

with ( as . l i s t ( c ( parms , x ) ) , {
beta I = exp ( l o gbe t a I ) #e f f e c t i v e contact ra t e with i n f e c t i o u s people ( a l i v e )
betaD = exp ( logbetaD ) #e f f e c t i v e contact ra t e with dead but i n f e c t i o u s people
alpha = exp ( loga lpha ) #1/ la t ency per iod
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lambda1 = exp ( loglambda1 ) #1/ per iod o f i n f e c t i o n to s u r v i v a l − s t i l l i n f e c t i o u s
lambda2 = exp ( loglambda2 ) #1/ per iod o f i n f e c t i o n to death
rho = exp ( logrho ) #1/ time to d i spo s e o f a body
mu = inv . l o g i t ( logitmu ) #f a t a l i t y ra t e
eta = inv . l o g i t ( l o g i t e t a ) #f a c t o r to dec rea se beta I f o r t > tc
tc = exp ( l o g t c ) #time o f i n t e r v en t i on / con t r o l measures implemented

i f ( t >= tc ) {
e ta t = eta

} e l s e {
e ta t = 1

}

N = S + E + I + R + D

dS = − beta I ∗ e ta t ∗ ( I /N) ∗S − betaD∗ e ta t ∗ (D/N) ∗S

dE = betaI ∗ e ta t ∗ ( I /N) ∗S + betaD∗ e ta t ∗ (D/N) ∗S − alpha ∗E

dI = alpha ∗E − (1 − mu) ∗ ( lambda1 ) ∗ I − mu∗ ( lambda2 ) ∗ I

dR = (1 − mu) ∗ lambda1∗ I

dD = mu∗ lambda2∗ I − rho∗D

dB = rho∗D

dInc = betaI ∗ e ta t ∗ ( I /N) ∗S + betaD∗ e ta t ∗ (D/N) ∗S

output = c (dS , dE , dI , dR, dD, dB, dInc )
l i s t ( output )

})
}

# SEIRD func t i on − without transformed parameters f o r e s t imat i on
s e i r db = func t i on ( t , x , parms ){

with ( as . l i s t ( c ( parms , x ) ) , {

i f ( t >= tc ) {
e ta t = eta
#rhot = rho2

} e l s e {
e ta t = 1
#rhot = rho1

}

N = S + E + I + R + D

dS = − beta I ∗ e ta t ∗ ( I /N) ∗S − betaD∗ e ta t ∗ (D/N) ∗S

dE = betaI ∗ e ta t ∗ ( I /N) ∗S + betaD∗ e ta t ∗ (D/N) ∗S − alpha ∗E

dI = alpha ∗E − (1 − mu) ∗ ( lambda1 ) ∗ I − mu∗ ( lambda2 ) ∗ I
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dR = (1 − mu) ∗ lambda1∗ I

dD = mu∗ lambda2∗ I − rho∗D

dB = rho∗D

dInc = betaI ∗ e ta t ∗ ( I /N) ∗S + betaD∗ e ta t ∗ (D/N) ∗S

output = c (dS , dE , dI , dR, dD, dB, dInc )
l i s t ( output )

})
}

# Function f o r c a l c u l a t i n g sum of squared e r r o r s from case and death data
s e i r db . s s e = func t i on ( varparms , f ixparms , times , s t a r t , data ) {

s e i r db . l s e = ode ( t imes = times , y = sta r t , func = se i rdb . est , parms = c ( varparms , f ixparms ) )

e r r o r . cum . ca s e s = ( s e i r db . l s e [ dates . seq , 8 ] − data$Cases )^2
e r r o r . cum . ca s e s [−c ( 1 : 4 8 ) ] = 2∗ e r r o r . cum . ca s e s [−c ( 1 : 4 8 ) ] #va lues a f t e r 180 days i s obse rvat i on 48

e r r o r . cum . deaths = ( s e i r db . l s e [ death . dates . seq , 7 ] − data$Deaths [ data$Day %in% death . dates . seq ] )^2

s s e . c a s e s = sum( e r r o r . cum . ca s e s )
s s e . deaths = sum( e r r o r . cum . deaths )
s s e = s s e . c a s e s + 1 .5 ∗ s s e . deaths

re turn ( s s e )
}

# Base r eproduc t ive number
r0 . fn2 = func t i on ( estms ){

beta I = estms [ ’ be ta I ’ ]
betaD = estms [ ’ betaD ’ ]
lambda1 = estms [ ’ lambda1 ’ ]
lambda2 = estms [ ’ lambda2 ’ ]
mu = estms [ ’mu ’ ]
rho = estms [ ’ rho ’ ]
r0 = ( ( beta I / ( lambda1 + mu∗ ( lambda2 − lambda1 ) ) ) + ( ( betaD ∗ mu ∗ lambda2 ) / ( rho∗ ( lambda1 + mu∗ ( lambda2 − lambda1 ) ) ) ) )
re turn ( r0 )

}

#### Estimate parameter va lue s from data −−−−−

# only need to run t h i s the f i r s t time to i n i t i a l i z e va lue s f o r t o t a l e r r o r and e s t imate s
min . e r r = 1000000000000
min . s t a r t = min . estms = NULL

# se t number o f i t e r a t i o n s to run with d i f f e r e n t s t a r t i n g va lue s
nsim = 500

# provide va lue s f o r f i x ed parameters



104 APPENDIX B. CODE

f ixparms = c ( loga lpha = log (1 / 10) ,
loglambda1 = log (1 / 9 . 4 ) ,
loglambda2 = log (1 / 7 . 5 ) )

#s t a r t_time <− Sys . time ( ) #to measure run time

# cr ea t e f o r loop to generate random s t a r t i n g va lue s f o r v a r i a b l e parameters ,
# opt imize v a r i ab l e parameters us ing L−BFGS−B method
# ca l c u l a t e t o t a l e r r o r with these model parameters , i f the t o t a l e r r o r i s l e s s
# than the cur rent saved minimum error , save the est imated parameters as the
# best parameters ( ’ min . estms ’ )

f o r ( i in 1 : nsim ) {

varparms = c ( l o gbe t a I = log ( r un i f (1 , 0 . 15 , 0 . 2 ) ) ,
logbetaD = log ( r un i f (1 , 0 . 1 , 0 . 4 ) ) ,
l ogrho = log ( r un i f (1 , 0 . 25 , 1 . 5 ) ) ,
l o g t c = log ( r un i f (1 , 40 , 120) ) ,
l o g i t e t a = l o g i t ( r un i f (1 , 0 . 01 , 0 . 6 ) ) ,
logitmu = l o g i t ( r un i f (1 , 0 . 25 , 0 . 7 ) ) )

s l . optim = optim ( par = varparms , s e i r db . sse , f ixparms = fixparms , method = "L−BFGS−B" ,
t imes = times , s t a r t = s ta r t , data = data . f ,
lower = c (−10 , −10, l og ( 0 . 2 ) , −10, −10, l o g i t ( 0 . 2 ) ) ,
upper = c ( l og ( 2 ) , l og ( 2 ) , l og ( 1 . 5 ) , l og (300) , l o g i t ( 0 . 8 ) , l o g i t ( 0 . 8 ) ) )

s l . s s e = s l . optim$ value

i f ( s l . s s e < min . e r r ) {
min . e r r = s l . s s e
min . s t a r t = varparms
min . estms = s l . optim$par

}
}

#end_time <− Sys . time ( )
#end_time − s t a r t_time

# back trans form es t imate s from log / l o g i t s c a l e to o r i g i n a l s c a l e

a l l . estms = c ( f ixparms , min . estms )
a l l . estms = setNames ( a l l . estms , c ( " alpha " , " lambda1" , " lambda2" ,

" beta I " , "betaD" , " rho" , " tc " , " eta " , "mu" ) )
a l l . estms
estms . no . t r = a l l . estms

a l l . estms [ c ( " alpha " , " lambda1" , " lambda2" ,
" beta I " , "betaD" , " rho" , " tc " ) ] = sapply ( a l l . estms [ c ( " alpha " , " lambda1" , " lambda2" ,

" beta I " , "betaD" , " rho" , " tc " ) ] , exp )
a l l . estms [ c ( " eta " , "mu" ) ] = sapply ( a l l . estms [ c ( " eta " , "mu" ) ] , inv . l o g i t )
a l l . estms

# save e s t imate s in rds and csv format
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saveRDS( a l l . estms , f i l e = ’ l i b_f i n a l_24Sept . rds ’ )
wr i t e . t ab l e ( a l l . estms , f i l e = " f i n a l_l i b . csv " )

model . estms = a l l . estms
model . estms

# ca l c u l a t e r0 value
r0_l i b = r0 . fn2 ( model . estms )
r0_l i b

# f i t model us ing est imated parameters
model . f = ode ( t imes = times , y = s ta r t , func = se i rdb , parms = model . estms )

#### plo t p r ed i c t ed behaviour o f model compartments −−−−−

model . f 2 = as . data . frame ( model . f )

# cumulat ive ca s e s
pInc = ggp lot ( data . f , aes ( x = Day , y = Cases ) ) +

geom_point ( shape = 1 , c o l o r="gray35" ) +
geom_l i n e ( data = model . f2 , aes ( x = time , y = Inc ) , c o l = "tomato" , s i z e = 0 . 7 ) +
g g t i t l e ( " L ib e r i a Cumulative Cases " )

#theme_minimal ( )
pInc

#deaths
pB = ggp lot ( data . f , aes ( x = Day , y = Deaths ) ) +

geom_point ( shape = 1 , c o l o r="gray35" ) +
geom_l i n e ( data = model . f2 , aes ( x = time , y = B) , c o l = "tomato" , s i z e = 0 . 7 ) +
g g t i t l e ( " L ib e r i a Cumulative Deaths ( Class B) " )

#theme_minimal ( )
pB

#inc id enc e
pI = ggp lot ( l i b . data , aes ( x = Day , y = inc ) ) +

geom_point ( shape = 1 , c o l o r="gray35" ) + ylab ( "Cases " ) +
geom_l i n e ( data = model . f2 , aes ( x = time , y = I ) , c o l = "tomato" , s i z e = 0 . 7 ) +
g g t i t l e ( " L ib e r i a Case Inc idence ( Class I ) " )

#theme_minimal ( )
pI

#gr id . arrange ( pInc , pB, pI , nco l = 1)

#S
pS = ggp lot ( model . f2 , aes ( x = time , y = S ) ) +

geom_l i n e ( c o l o r = "tomato" , s i z e = 1) +
xlab ( "Days" ) + ylab ( "S" ) +
theme_minimal ( )

#theme ( ax i s . t ex t . x=element_blank ( ) )

#E
pE = ggp lot ( model . f2 , aes ( x = time , y = E) ) +

geom_l i n e ( c o l o r = "tomato" , s i z e = 1) +



106 APPENDIX B. CODE

xlab ( "Days" ) + ylab ( "E" ) +
theme_minimal ( )

#R
pR = ggp lot ( model . f2 , aes ( x = time , y = R) ) +

geom_l i n e ( c o l o r = "tomato" , s i z e = 1) +
xlab ( "Days" ) + ylab ( "R" ) +
theme_minimal ( )

#D
pD = ggp lot ( model . f2 , aes ( x = time , y = D) ) +

geom_l i n e ( c o l o r = "tomato" , s i z e = 1) +
xlab ( "Days" ) + ylab ( "D" ) +
theme_minimal ( )

g r id . arrange (pS , pE , pR, pD, nrow = 2 , nco l = 2)

###### Sen s i t i v i t y an a l y s i s f o r L ib e r i a −−−−−−

# se t working d i r e c to ry , read in saved parameter e s t imate s
wd = "~/Desktop/ Pro j e c t / Dra f t s /mathematical−model l ing−spread /code/ l i b "
setwd (wd)
model . estms = read . csv ( " f i n a l_l i b . csv " , sep = " " , sk ip = 1 , header = FALSE)
model . estms = setNames ( model . estms$V2 , model . estms$V1) #turn df in to named vec to r
model . estms

# i n s t a l l r equ i r ed l i b r a r i e s
l i b r a r y ( deSolve )
l i b r a r y ( l h s )
l i b r a r y ( ppcor )
l i b r a r y ( data . t ab l e )
l i b r a r y ( ggp lot2 )

#### Def in ing func t i on s −−−−−

# base r eproduc t ive number
r0 . c a l c = func t i on ( params ){

beta I = params [ ’ beta I ’ ]
betaD = params [ ’ betaD ’ ]
lambda1 = params [ ’ lambda1 ’ ]
lambda2 = params [ ’ lambda2 ’ ]
mu = params [ ’mu ’ ]
rho = params [ ’ rho ’ ]

r0 = ( ( beta I / ( lambda1 + mu∗ ( lambda2 − lambda1 ) ) ) + ( ( betaD ∗ mu ∗ lambda2 ) / ( rho∗ ( lambda1 + mu∗ ( lambda2 − lambda1 ) ) ) ) )
re turn ( r0 )

}

#### Univar ia te r e l a t i o n s h i p between R0 and key parameters −−−−−

## betaI
beta I_range = seq ( 0 . 1 2 , 0 . 22 , l ength . out = 500)
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model . estms2 = model . estms
beta I_r0_range = NULL
f o r ( i in 1 : l ength ( beta I_range ) ){

model . estms2 [ ’ beta I ’ ] = beta I_range [ i ]
be ta I_r0_range = c ( beta I_r0_range , r0 . c a l c ( model . estms2 ) )

}
beta I_i n f o = data . frame ( beta I = betaI_range , r0 = betaI_r0_range )

r0_betaI = ggp lot ( beta I_in fo , aes ( x = betaI , y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "tomato" ) + xlab ( exp r e s s i on ( beta [ I ] ) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
#r0_betaI

## betaD
betaD_range = seq ( 0 . 2 4 , 0 . 42 , l ength . out = 500)
model . estms2 = model . estms
betaD_r0_range = NULL
f o r ( i in 1 : l ength ( betaD_range ) ){

model . estms2 [ ’ betaD ’ ] = betaD_range [ i ]
betaD_r0_range = c ( betaD_r0_range , r0 . c a l c ( model . estms2 ) )

}
betaD_in f o = data . frame ( betaD = betaD_range , r0 = betaD_r0_range )

r0_betaD = ggp lot ( betaD_in fo , aes ( x = betaD , y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "tomato" ) + xlab ( exp r e s s i on ( beta [D] ) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
#r0_betaD

## lambda1
lambda1_range = seq ( 0 . 0 6 , 0 . 17 , l ength . out = 500)
model . estms2 = model . estms
lambda1_r0_range = NULL
f o r ( i in 1 : l ength ( lambda1_range ) ){

model . estms2 [ ’ lambda1 ’ ] = lambda1_range [ i ]
lambda1_r0_range = c ( lambda1_r0_range , r0 . c a l c ( model . estms2 ) )

}
lambda1_i n f o = data . frame ( lambda1 = lambda1_range , r0 = lambda1_r0_range )

r0_lambda1 = ggp lot ( lambda1_in fo , aes ( x = lambda1 , y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "tomato" ) + xlab ( exp r e s s i on ( lambda [ 1 ] ) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
#r0_lambda1
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## lambda2
lambda2_range = seq ( 0 . 0 6 , 0 . 17 , l ength . out = 500)
model . estms2 = model . estms
lambda2_r0_range = NULL
f o r ( i in 1 : l ength ( lambda2_range ) ){

model . estms2 [ ’ lambda2 ’ ] = lambda2_range [ i ]
lambda2_r0_range = c ( lambda2_r0_range , r0 . c a l c ( model . estms2 ) )

}
lambda2_i n f o = data . frame ( lambda2 = lambda2_range , r0 = lambda2_r0_range )

r0_lambda2 = ggp lot ( lambda2_in fo , aes ( x = lambda2 , y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "tomato" ) + xlab ( exp r e s s i on ( lambda [ 2 ] ) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
#r0_lambda2

## mu
mu_range = seq ( 0 . 2 , 0 . 7 , l ength . out = 500)
model . estms2 = model . estms
mu_r0_range = NULL
f o r ( i in 1 : l ength (mu_range ) ){

model . estms2 [ ’mu ’ ] = mu_range [ i ]
mu_r0_range = c (mu_r0_range , r0 . c a l c ( model . estms2 ) )

}
mu_in f o = data . frame (mu = mu_range , r0 = mu_r0_range )

r0_mu = ggp lot (mu_in fo , aes ( x = mu, y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "tomato" ) + xlab ( exp r e s s i on (mu) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,

ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )
#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
r0_mu

## rho
rho_range = seq ( 0 . 3 3 , 1 . 5 , l ength . out = 500)
model . estms2 = model . estms
rho_r0_range = NULL
f o r ( i in 1 : l ength ( rho_range ) ){

model . estms2 [ ’ rho ’ ] = rho_range [ i ]
rho_r0_range = c ( rho_r0_range , r0 . c a l c ( model . estms2 ) )

}
rho_in f o = data . frame ( rho = rho_range , r0 = rho_r0_range )

r0_rho = ggp lot ( rho_in fo , aes ( x = rho , y = r0 ) ) +
geom_l i n e ( s i z e = 1 . 2 , co l ou r = "tomato" ) + xlab ( exp r e s s i on ( rho ) ) + ylab ( exp r e s s i on ( ’R ’ [ 0 ] ) ) +
theme_minimal ( ) +
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theme ( ax i s . t i t l e . x = element_text ( s i z e=r e l ( 1 . 2 ) ) ,
ax i s . t i t l e . y = element_text ( s i z e=r e l ( 1 . 2 ) ) )

#theme ( ax i s . t i t l e . y = element_text ( ang le =0))
#r0_rho

g r id . arrange ( r0_betaI , r0_betaD , r0_lambda1 , r0_lambda2 , r0_mu, r0_rho , nco l = 2 , nrow = 3)

#### Asse s s ing impact o f e a r l i e r i n t e r v en t i on ( changes in tC) −−−−−

#4 p l o t s − 3 monthly changes
tc_range = c (13 , 43 , 73 , 103)
model . estms2 = model . estms
par (mfrow = c (2 , 2 ) )

f o r ( i in 1 : l ength ( tc_range ) ){
model . estms2 [ ’ t c ’ ] = tc_range [ i ]
f i t = ode ( t imes = times , y = sta r t , func = se i rdb , parms = model . estms2 )
d i f f_inc = c (NA, f i t [ 2 : nrow ( f i t ) , 8 ] − f i t [ 1 : ( nrow ( f i t ) −1) ,8 ] )
#peak = which .max( d i f f_inc ) #which ( d i f f_inc <= 0 ) [ 1 ]
s low_down = which ( d i f f_inc < 1 ) [ 1 ]
p l o t ( f i t [ , 1 ] , f i t [ , 8 ] , type = " l " , yl im = c (0 ,12000) , xl im = c (0 , 800 ) ,

main = paste ( " tc =" , tc_range [ i ] ) , x lab = "Days" , ylab = "Cumulative Cases " , c o l = "tomato" , lwd = 1 . 2 )
ab l i n e ( v = tc_range [ i ] , l t y = 2 , c o l = "darkblue " )
ab l i n e ( v = slow_down , l t y = 2 , c o l = "darkred " )
p r i n t ( c ( tc_range [ i ] , s low_down , f i t [ 8 0 0 , 8 ] ) )

}

# now look at r e l a t i o n s h i p numer i ca l ly
tc_d i f f_range = seq (0 , 90 , 0 . 25 )
ca s e s_avoided = NULL
t o t a l_ca s e s = model . f [ 8 0 0 , 8 ]

f o r ( i in 1 : l ength ( tc_d i f f_range ) ){
model . estms2 [ ’ t c ’ ] = model . estms [ ’ t c ’ ] − tc_d i f f_range [ i ]
f i t = ode ( t imes = times , y = sta r t , func = se i rdb , parms = model . estms2 )
ca s e s_avoided = c ( ca s e s_avoided , ( t o t a l_ca s e s − f i t [ 8 0 0 , 8 ] ) )

}
df . c a s e s_avoided = data . frame ( "days" = tc_d i f f_range , " ca s e s " = ca s e s_avoided )

tc_ea r l y = ggp lot ( df . c a s e s_avoided , aes ( x = days , y = cases , group = 1)) +
geom_l i n e ( s i z e = 1 . 2 , c o l o r = "tomato" ) + xlab ( "Days sooner " ) + ylab ( "Cases avoided " ) +
g g t i t l e ( " L ib e r i a " ) +
theme_minimal ( )

tc_ea r l y

#### Re la t i on sh ip between ’ d i s e a s e thresho ld ’ and durat ion o f the epidemic −−−−−
tc_range2 = seq (30 , 103 , 1)
model . estms2 = model . estms
th re sho ld_va l s = c ( )
durat ion_va l s = c ( )
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f o r ( i in 1 : l ength ( tc_range2 ) ){
model . estms2 [ ’ t c ’ ] = tc_range2 [ i ]
f i t = ode ( t imes = times , y = sta r t , func = se i rdb , parms = model . estms2 )
d i f f_inc = c (NA, f i t [ 2 : nrow ( f i t ) , 8 ] − f i t [ 1 : ( nrow ( f i t ) −1) ,8 ] )
#peak = which .max( d i f f_inc ) #which ( d i f f_inc <= 0 ) [ 1 ]
s low_down = which ( d i f f_inc < 1 ) [ 1 ]

th r e sho ld_va l s = c ( th r e sho ld_vals , f i t [ t c_range2 [ i ] , 8 ] )

durat ion_va l s = c ( durat ion_vals , ( s low_down ) )
}
thresh_data = data . frame ( th r e sho ld = thre sho ld_vals , durat ion = durat ion_va l s )

p_thresh = ggp lot ( thresh_data , aes ( x = thresho ld , y = durat ion ) ) +
geom_l i n e ( s i z e = 1 . 2 , c o l o r = "tomato" ) + xlab ( "Threshold (number o f ca s e s ) " ) + ylab ( "Duration o f epidemic " ) +
g g t i t l e ( exp r e s s i on ( paste ( " L ib e r i a ( " , eta , " = 0 .502 ) " ) ) ) +
s c a l e_x_cont inuous ( breaks = seq (300 , 6300 , 1000)) +
s c a l e_y_cont inuous ( minor_breaks = seq (0 , 800 , 25) , breaks = seq (200 , 800 , 50) ) +
theme_minimal ( ) +
theme ( text = element_text ( s i z e = 14))

p_thresh

#### Mul t i va r i a t e s e n s i t i v i t y an a l y s i s on R0 −−−−−

n = 10000# number to sample
k = 6 #number o f v a r i a b l e s

lhsp = randomLHS(n , k )

samples = data . frame ( beta I = qun i f ( lhsp [ , 1 ] , 0 . 12 , 0 . 2 ) , #check these two
betaD = qun i f ( lhsp [ , 2 ] , 0 . 24 , 0 . 4 1 ) , #check
lambda1 = qnorm( lhsp [ , 3 ] , 0 . 1 , 0 . 0225 ) ,
lambda2 = qnorm( lhsp [ , 4 ] , 0 . 1 , 0 . 0225 ) ,
mu = qun i f ( lhsp [ , 5 ] , 0 . 2 , 0 . 7 ) ,
rho = qun i f ( lhsp [ , 6 ] , 0 . 25 , 1 . 5 )

)

save . va l s = NULL

f o r ( i in 1 : n) {
#run = ode ( t imes = times , y = sta r t , func = se i rdb , parms = samples [ i , ] )
save . va l s [ i ] = r0 . c a l c ( samples [ i , ] )

}

save . va l s = un l i s t ( save . va l s )

save . va l s 2 = data . frame ( va lue s = save . va l s )
ggp lo t ( save . va ls2 , aes ( va lue s ) ) +

geom_histogram ( binwidth = 0 . 2 , f i l l = "tomato" , c o l o r = "grey45 " , alpha = 0 . 5 ) +
xlab ( exp r e s s i on ( "R" [ 0 ] ) ) + ylab ( "Frequency" ) +
g g t i t l e ( exp r e s s i on ( paste ( "Uncerta inty ana l y s i s o f " , "R" [ 0 ] , " f o r L ib e r i a " ) ) ) +
theme_minimal ( )
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t . t e s t ( save . va l s )
summary( save . va l s )

#h i s t ( save . va l s , main = expr e s s i on ( paste (" Uncerta inty ana l y s i s o f " , "R" [ 0 ] , " f o r S i e r r a Leone " ) ) , x lab = expr e s s i on ("R" [ 0 ] ) )

pcor_va l s = c ( )

f o r ( i in 1 : k ){
va l s = pcor . t e s t ( x = samples [ , i ] , y = save . va l s , z = samples [ ,− i ] , method = "spearman" )
pcor_va l s = c ( pcor_vals , v a l s $ es t imate )

}

pcor_va l s
pcor_va l s = setNames ( pcor_vals , colnames ( samples ) )
barp lo t ( pcor_vals , yl im = c (−1 , 1 ) )

#### Univar ia te s e n s i t i v i t y an a l y s i s on cumulat ive ca s e s −−−−−

# Using LHS
n = 10000 # number to sample
k = 9 #number o f v a r i a b l e s

lhsp = randomLHS(n , k )

samples = data . frame ( alpha = qnorm( lhsp [ , 1 ] , 0 . 1 , 0 . 0125 ) ,
lambda1 = qnorm( lhsp [ , 2 ] , 0 . 1 , 0 . 0225 ) ,
lambda2 = qnorm( lhsp [ , 3 ] , 0 . 1 , 0 . 0225 ) ,
beta I = qun i f ( lhsp [ , 4 ] , 0 . 12 , 0 . 2 2 ) ,
betaD = qun i f ( lhsp [ , 5 ] , 0 . 24 , 0 . 4 2 ) ,
rho = qun i f ( lhsp [ , 6 ] , 0 . 25 , 1 . 5 ) ,
t c = qun i f ( lhsp [ , 7 ] , 73 , 133) ,
eta = qun i f ( lhsp [ , 8 ] , 0 . 3 , 0 . 7 ) ,
mu = qun i f ( lhsp [ , 9 ] , 0 . 2 , 0 . 7 )
#E0 = qun i f ( lhsp [ , 9 ] , 30 , 70) ,
#I0 = qun i f ( lhsp [ , 1 0 ] , 10 , 40) ,
#D0 = qun i f ( lhsp [ , 1 1 ] , 10 , 30)

)

save . va l s50 = NULL
save . va l s200 = NULL
save . va l s400 = NULL
save . va l s800 = NULL

f o r ( i in 1 : n) {
run = ode ( t imes = times , y = s ta r t , func = se i rdb , parms = samples [ i , ] )
save . va l s50 [ i ] = run [ 50 , 8 ]
save . va l s200 [ i ] = run [ 2 0 0 , 8 ]
save . va l s400 [ i ] = run [ 4 0 0 , 8 ]
save . va l s800 [ i ] = run [ 8 0 0 , 8 ]

}
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save . va l s50 = un l i s t ( save . va l s50 )
save . va l s200 = un l i s t ( save . va l s200 )
save . va l s400 = un l i s t ( save . va l s400 )
save . va l s800 = un l i s t ( save . va l s800 )
#h i s t ( save . va l s , main = expr e s s i on ( paste (" Uncerta inty ana l y s i s o f " , "R" [ 0 ] , " f o r L ib e r i a " ) ) , x lab = expr e s s i on ("R" [ 0 ] ) )

pcor_va l s50 = c ( )
pcor_va l s200 = c ( )
pcor_va l s400 = c ( )
pcor_va l s800 = c ( )

f o r ( i in 1 : k ){
va l s50 = pcor . t e s t ( x = samples [ , i ] , y = save . vals50 , z = samples [ ,− i ] , method = "spearman" ) #removed method = " s "
va l s200 = pcor . t e s t ( x = samples [ , i ] , y = save . vals200 , z = samples [ ,− i ] , method = "spearman" )
va l s400 = pcor . t e s t ( x = samples [ , i ] , y = save . vals400 , z = samples [ ,− i ] , method = "spearman" )
va l s800 = pcor . t e s t ( x = samples [ , i ] , y = save . vals800 , z = samples [ ,− i ] , method = "spearman" )
pcor_va l s50 = c ( pcor_vals50 , va l s50 $ es t imate )
pcor_va l s200 = c ( pcor_vals200 , va l s200 $ es t imate )
pcor_va l s400 = c ( pcor_vals400 , va l s400 $ es t imate )
pcor_va l s800 = c ( pcor_vals800 , va l s800 $ es t imate )

}

#pcor_va l s
pcor_va l s50 = setNames ( pcor_vals50 , colnames ( samples ) )
pcor_va l s200 = setNames ( pcor_vals200 , colnames ( samples ) )
pcor_va l s400 = setNames ( pcor_vals400 , colnames ( samples ) )
pcor_va l s800 = setNames ( pcor_vals800 , colnames ( samples ) )

va l s800 = data . frame ( pcor_va l s800 )
setDT( vals800 , keep . rownames = TRUE) [ ]
colnames ( va l s800 ) = c ( " va r i ab l e " , " value " )

# try do with ggp lot
#need to put in to long format
sens_bar800 = ggp lot ( vals800 , aes ( x = var i ab l e , y = value ) ) +

geom_bar ( s t a t = " i d e n t i t y " , f i l l = "tomato" , c o l = "grey45 " , alpha = 0 . 5 ) +
ylab ( "PRCC" ) + xlab ( "Parameter" ) + g g t i t l e ( " S e n s i t i v i t y ana l y s i s o f cumulat ive ca s e s at day 800 f o r L ib e r i a " ) +
theme_minimal ( )

sens_bar800

#other 4 p l o t s
va l s50 = data . frame ( pcor_va l s50 )
setDT( vals50 , keep . rownames = TRUE) [ ]
colnames ( va l s50 ) = c ( " va r i ab l e " , " va lue " )

sens_bar50 = ggp lot ( vals50 , aes ( x = var i ab l e , y = value ) ) +
geom_bar ( s t a t = " i d e n t i t y " , f i l l = "tomato" , c o l = "grey45 " , alpha = 0 . 5 ) +
ylab ( "PRCC" ) + xlab ( "Parameter" ) + g g t i t l e ( "Day 50" ) +
theme_minimal ( ) +
theme ( ax i s . t ex t . x = element_text ( s i z e = 7 . 5 ) )
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#sens_bar50

va l s200 = data . frame ( pcor_va l s200 )
setDT( vals200 , keep . rownames = TRUE) [ ]
colnames ( va l s200 ) = c ( " va r i ab l e " , " value " )

sens_bar200 = ggp lot ( vals200 , aes ( x = var i ab l e , y = value ) ) +
geom_bar ( s t a t = " i d e n t i t y " , f i l l = "tomato" , c o l = "grey45 " , alpha = 0 . 5 ) +
ylab ( "PRCC" ) + xlab ( "Parameter" ) + g g t i t l e ( "Day 200" ) +
theme_minimal ( ) +
theme ( ax i s . t ex t . x = element_text ( s i z e = 7 . 5 ) )

#sens_bar200

va l s400 = data . frame ( pcor_va l s400 )
setDT( vals400 , keep . rownames = TRUE) [ ]
colnames ( va l s400 ) = c ( " va r i ab l e " , " value " )

sens_bar400 = ggp lot ( vals400 , aes ( x = var i ab l e , y = value ) ) +
geom_bar ( s t a t = " i d e n t i t y " , f i l l = "tomato" , c o l = "grey45 " , alpha = 0 . 5 ) +
ylab ( "PRCC" ) + xlab ( "Parameter" ) + g g t i t l e ( "Day 400" ) +
theme_minimal ( ) +
theme ( ax i s . t ex t . x = element_text ( s i z e = 7 . 5 ) )

sens_bar800 . v2 = ggp lot ( vals800 , aes ( x = var i ab l e , y = value ) ) +
geom_bar ( s t a t = " i d e n t i t y " , f i l l = "tomato" , c o l = "grey45 " , alpha = 0 . 5 ) +
ylab ( "PRCC" ) + xlab ( "Parameter" ) + g g t i t l e ( "Day 800" ) +
theme_minimal ( ) +
theme ( ax i s . t ex t . x = element_text ( s i z e = 7 . 5 ) )

g r id . arrange ( sens_bar50 , sens_bar200 , sens_bar400 , sens_bar800 . v2 , nrow = 2 , nco l = 2)
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