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Abstract

Practical challenges often arise when implementing solutions that stem from solving vehicle
routing problem instances. Unplanned external events can result in increased vehicle travel times
and subsequent degradations in supply chain operational e�ciency. Moreover, drivers tend to
get lost and/or often travel on roads that are not suitable for the delivery vehicles utilised when
they are unfamiliar with delivery routes, especially when these routes di↵er significantly from
one day to the next. A possible solution, aimed at streamlining the practical implementation of
planned delivery routes, is therefore to attempt to increase driver-route familiarity.

A novel problem, called the familiarity vehicle routing problem (FVRP), is proposed in this thesis
for improving the practical implementation of planned delivery routes by introducing increased
driver-route familiarity into vehicle delivery routes. The FVRP consists of two phases — a
strategic phase and an operational phase. During the strategic phase, a set of standard delivery
routes visiting each customer along a specified number of di↵erent approaches is generated for
a depot and the customers it services. These routes are called master routes and are then used
as blueprints for daily planning purposes when actual delivery routes are computed during the
subsequent operational phase. Delivery vehicle drivers are thus be a↵orded the opportunity
to become familiar with the master routes, which is anticipated to increase the e�ciency with
which they are able to perform deliveries (if the actual delivery routes do not deviate too much
from these master routes).

Two novel mathematical models and accompanying approximate solution approaches are pro-
posed for the di↵erent phases of the FVRP. The (single-objective) mathematical model for the
strategic phase is concerned with generating a minimum-cost the set of master routes for a given
depot and the customers it services. The set of arcs that form these master routes represent
road links with which delivery vehicle drivers may become increasingly familiar as they continue
to travel along them during future deliveries. The set of master route arcs are provided as in-
put to the (bi-objective) mathematical model proposed for the operational phase of the FVRP.
This model is concerned with computing multiple trade-o↵ solutions which can serve as actual
delivery routes along which the objectives are to minimise transportation cost and to maximise
the portion of the total distance travelled along the master route arcs.

The two proposed models and their approximate solution approaches are finally applied to a
special case study, involving real-world data, in order to demonstrate the practical applicability
of the work in this thesis.
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Opsomming

Praktiese uitdagings ontstaan dikwels wanneer oplossings van voertuigroeteringsprobleemgevalle
gëımplementeer word. Onbeplande eksterne gebeurtenisse kan lei tot verlengde voertuigreistye
en ’n gevolglike agteruitgang in die bedryfsdoeltre↵endheid van die voorsieningsketting. Boonop
is bestuurders geneig om te verdwaal en/of dikwels op paaie te reis wat nie geskik is vir die afle-
weringsvoertuie wat gebruik word wanneer hulle nie vertroud is met afleweringsroetes nie, veral
wanneer hierdie roetes aansienlik van een dag na die volgende verskil. ’n Moontlike oplossing,
wat daarop gemik is om die praktiese implementering van beplande afleweringsroetes te verbeter,
is dus om te poog om bestuurders se vertroudheid met afleweringsroetes te verhoog.

’n Nuwe probleem, genaamd die vertroudheidsvoertuigroeteringsprobleem (VVRP), word in hier-
die tesis voorgestel vir die verbetering van die praktiese implementering van beplande afle-
weringsroetes deur verhoogde bestuurdervertroudheid met voertuigafleweringsroetes in te voer.
Die VVRP bestaan uit twee fases — ’n strategiese fase en ’n operasionele fase. Tydens die
strategiese fase word ’n stel standaard afleweringsroetes vir ’n depot en die kliënte wat daardeur
bedien word, gegenereer wat elke kliënt langs ’n gespesifiseerde aantal verskillende benaderings
besoek. Hierdie roetes word meesterroetes genoem en dien dan as ’n bloudruk vir daaglikse be-
planningsdoeleindes wanneer werklike afleweringsroetes tydens die daaropvolgende operasionele
fase bereken word. Afleweringsvoertuigbestuurders word sodoende die geleentheid gebied om
vertroud te raak met die meesterroetes, wat na verwagting die doeltre↵endheid waarmee hulle
aflewerings kan doen, sal verhoog (indien die werklike afleweringsroetes nie te veel van hierdie
meesterroetes afwyk nie).

Twee nuwe wiskundige modelle en gepaardgaande benaderde oplossingsbenaderings word vir
die verskillende fases van die VVRP daargestel. Die (enkeldoelige) wiskundige model vir die
strategiese fase is daarop gemik of ’n minimum-koste stel meesterroetes vir ’n gegewe depot en die
kliënte wat daardeur bedien word, te bereken. Die versameling boë wat in hierdie meesterroetes
voorkom verteenwoordig padverbindings waarmee afleweringsvoertuigbestuurders al hoe meer
vertroud kan raak soos wat hulle toekomstige aflewerings maak. Die versameling meesterroeteboë
word as toevoer tot die (twee-doelige) wiskundige model verskaf wat vir die operasionele fase
van die VVRP voorgestel word. Hierdie model is daarop gemik om verskeie afruiloplossings te
bereken wat as werklike afleweringsroetes kan dien waarvolgens vervoerkoste geminimeer word
en dáárdie gedeelte van die totale afstand langs die meesterroeteboë afgelê, gemaksimeer word.

Die twee voorgestelde modelle en hul benaderde oplossingsbenaderings word uiteindelik op ’n
spesiale gevallestudie toegepas, wat op werklike data gebaseer is, om ten einde die praktiese
toepaslikheid van die werk in hierdie tesis te demonstreer.
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1.1 Background

A supply chain may be defined as the collection of activities performed by an organisation with
a view to deliver goods or services from a point of origin (i.e. raw material extraction) to a
point of consumption (i.e. product or service delivery to an end-user) [20]. Although customer
satisfaction — typically expressed in terms of a so-called customer service level — is determined
at the point of consumption, it depends sensitively on the upstream (preceding) activities in the
supply chain. When customers visit a clothing store, for example, it is expected that they will
be allowed to try on various items of clothing. The shopping experience of the customer can, to
a large extent, depend on the variety and availability of clothing items and sizes at the store.
Upstream activities that are not visible to the customer, but are essential to ensuring variety
and availability of products, include the sourcing of raw materials, the storage of materials in
warehouses, the manufacturing of clothing products, the transportation and storage of clothing
products in a distribution centre1 (DC), and the delivery of clothing products to stores. The
competitive advantage and success of such a retail organisation (and organisations in many other
industries) depend largely on the organisation’s ability to manage and reduce costs e↵ectively
across all activities constituting the supply chain [128].

The Chartered Institute of Procurement and Supply (CIPS) has proposed a three-phase model
of supply chain management [20]. The three phases and their constituent stages are illustrated
graphically in Figure 1.1. In a traditional manufacturing supply chain, the procurement phase
consists of interactions with suppliers. This involves sourcing, transportation (inbound logistics),
and storage of raw materials in warehouses. During the operations management phase, the stored

1A facility at which large quantities of products are stored and from which deliveries are made to multiple
stores or customers.

1
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raw materials are used to manufacture products, which are then stored in DCs and, at a later
stage, transported to sales locations (outbound logistics). Finally, the consumer phase involves
the sales of products to customers.

Raw Materials Inbound Logistics Goods in Warehouse Manufacturing Outbound Warehouse Outbound Logistics Consumer

Procurement Operations Management Consumer

Supply Chain Management

Figure 1.1: General activities constituting a supply chain. Based on CIPS [20].

A supply chain often involves using a fleet of dedicated delivery vehicles to transport thousands of
physical units of goods from an appropriately located DC, often called a depot in the operations
research literature, to multiple stores, often also referred to as customers, which are typically
distributed geographically. Each vehicle is presented with a schedule specifying the sequence of
customers to be visited, together with the number of product units of demand realised at these
locations. Collectively, this forms part of an important activity performed during the outbound
logistics stage of the operations management phase, called vehicle routing. The planning of routes
for these delivery vehicles (and their subsequent refinement) can usually be aided significantly
by modelling the scenario as a so-called vehicle routing problem (VRP). Computerised vehicle
routing and scheduling decision support, which is grounded analytically in the solution of such
models, has resulted in cost savings ranging from 5% to 20% in the context of managing a supply
chain’s distribution planning activities [134].

The VRP is one of the most studied and important combinatorial optimisation2 problems in
the operations research literature [134]. In 1959, Dantzig and Ramser [34] published the first
paper on the VRP, titled The truck dispatching problem. The aim in this seminal paper was
to find the best route set for a fleet of gasoline delivery vehicles departing from a central ter-
minal and visiting multiple fuel stations to service their fuel demands. The quality of a VRP
solution is often expressed in terms of the total transportation cost incurred or time expended
by the delivery vehicles away from the depot, or the total distance travelled by these vehicles.
Generally, a VRP instance is concerned with determining the best set of routes along which
to distribute goods from a specified depot to a given set of customers [134]. The solution is
a set of routing schedules, one for each delivery vehicle, which satisfies the demand of all the
customers and adheres to a variety of operational and other constraints, whilst minimising the
total transportation cost or distance travelled [134].

Many variations on the basic notion of a VRP can be found in the literature. The variant
that is the simplest and most popular, is the so-called capacitated VRP (CVRP) [137]. In the
formulation of a CVRP instance, each customer exhibits some demand to be satisfied by exactly
one delivery vehicle, and a fleet of homogeneous delivery vehicles is available for servicing the
demand of customers, without exceeding the capacity of any vehicle.

2A process of searching for an optimal solution when only a finite number or countably infinite number of
feasible solutions exist [144].
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If there are k identical vehicles in a CVRP instance with n customers, the size of its solution
space is enumerated by the so-called Stirling number of the first kind, denoted by S(n, k), if the
capacities of the vehicles are neglected. In general, this number enumerates the distinct ways
in which n distinguishable objects can be distributed among k indistinguishable containers,
arranging the items in each container cyclically (i.e. along a cycle), so that no container is
empty [94]. If the k vehicles are capacitated, however, then not all S(n, k) solutions enumerated
by the Stirling number of the first kind will, of course, be feasible. The solution space of a
CVRP instance with n customers and k identical vehicles will, therefore, have a cardinality
strictly smaller than S(n, k), but typically still of the same order of magnitude as S(n, k). There
is no closed-form expression for S(n, k), but its value can be computed recursively by means of
the recursion relation

S(n, k) = S(n� 1, k � 1) + (n� 1)S(n� 1, k), n > k > 1

in conjunction with the initial values S(n, 1) = n! and S(n, n) = 1 for any n 2 N. As a function
of n and k, the Stirling number of the first kind is increasing in n and decreasing in k. For any
fixed value of k, however, the value of S(n, k) grows very quickly as n increases, as illustrated
in Table 1.1.

Table 1.1: Values of the Stirling number of the first kind, S(n, k), for n 2 {12, 15, 18, 21, 24} and
k 2 {4, 8, 12}.

k = 4 k = 8 k = 12
n = 12 105 258 076 357 423 1
n = 15 310 989 260 400 2 681 453 775 143 325
n = 18 1 583 313 975 727 488 24 871 845 297 936 4 853 222 764
n = 21 12 870 931 245 150 988 800 311 333 643 161 390 640 135 585 182 899 530
n = 24 157 375 898 285 941 510 732 800 5 304 713 715 525 445 812 976 4 070 384 057 007 569 521

While exact CVRP solution methods typically traverse the solution space of a problem instance
implicitly and much more intelligently than by brute force (i.e. they do not explicitly consider
each feasible solution in turn), the order of magnitude of the Stirling number of the first kind,
S(n, k), nevertheless gives an indication of the intrinsic complexity of solving CVRP instances
and motivates why vehicle dispatch managers typically require automated support in respect of
their complicated vehicle routing decisions.

Extensions of the CVRP are illustrated graphically in Figure 1.2. A natural extension of the
CVRP is the vehicle routing problem with time-windows (VRPTW) in which service at each
customer can only start during a specified time interval, called a time-window. Time-windows
can also be one-sided — i.e. allowing the service time at a customer to start as early as possible,
but no later than some specified time [137]. This extension of the CVRP is especially prevalent
in the retail environment where customers often specify preferred time intervals during which
deliveries are to be made.

Another popular variation on the CVRP is the periodic VRP (PVRP) in which n customers
have to be visited, once each by a single vehicle from a fleet of k identical, capacitated vehicles,
over a period of T days. The customers to be visited on each of the T days have to be identified,
after which a CVRP instance has to be solved for each day separately, involving only those
customers actually assigned visitation on that day.

Since the well-known multinomial coe�cient
✓

n

n1, . . . , nT

◆
=

n!

n1!n2! · · ·nT !
(1.1)
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CVRP

SDVRPTWPVRPTW

VRPTW SDVRPPVRP

Time-
windows

Split deliveriesMultiple periods

Figure 1.2: The basic VRP variants and their relationships.

in general represents the number of ways in which n distinguishable objects can be distributed
amongst T distinguishable containers [118], it follows that the number of ways in which n cus-
tomers can be assigned visitation days in a PVRP instance spanning T days, with ni customers
visited on day i 2 {1, . . . , T}, is given by the quantity in (1.1). If there are k identical vehicles
in the PVRP instance, its solution space cardinality is, therefore, of order

X

(n1,...,nT ):
n1+···+nT=n
ni�k for all i

✓
n

n1, . . . , nT

◆ TY

i=1

S(ni, k)� k
n
.

This cardinality grows very rapidly as n, k and/or T increases, generally disqualifying exact solu-
tion methodologies3 for even moderately sized values of these parameters, despite sophisticated
algorithmic parallelisation e↵orts and the impressive array of modern computing technology
typically available in the retail sector today.

In the split delivery VRP (SDVRP), another variation on the CVRP, demand satisfaction at
each customer may be partitioned into a number of visitations so that a customer can be serviced
by more than one delivery vehicle. Each vehicle may therefore satisfy fractions of the demand
of the customers that it services. Allowing for split deliveries may reduce the cost of solutions
by up to 50% of the cost when not allowing split deliveries [6]. A further extension of the
SDVRP was proposed by Gulczynski et al. [65] in which each customer specifies a minimum
fraction of demand to be satisfied by any single delivery vehicle. This allows each customer
to be serviced by no more than a preferred number of delivery vehicles. The SDVRP is a very
complex combinatorial optimisation problem for which only problem instances involving at most
thirty customers can currently be solved by means of exact algorithms [7].

When multiple VRP attributes (such as time-windows and split deliveries) are combined into a
single problem, it is called a multi-attribute VRP (MAVRP). Interest in MAVRPs is typically
motivated by specific applications and may include all three of the previously mentioned CVRP
extensions, as well as others. The complexity of solving such an MAVRP instance naturally
combines the underlying complexities of all of its constituent problems, resulting in an even
more di�cult problem to solve. This often renders infeasible the use of exact algorithms for
solving even small MAVRP instances. Metaheuristic4 solution approaches are instead required
in order to find high-quality solutions to MAVRP instances within an acceptable time frame.

3Algorithms capable of solving an optimisation problem instances to optimality.
4A solution approach that combines local search procedures and higher-level search strategies in order to

escape from local optima and perform a robust search of the solution space [58]. Such a solution approach is
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1.2 The industry partner attached to this thesis

The industry partner attached to this thesis, who prefers to remain anonymous, is a large
South African clothing retailer. It reportedly experiences practical outbound logistics challenges
when attempting to implement recommendations stemming from solving VRP instances by
means of standard, commercial software [126]. Externalities (typically unplanned), such as
unanticipated tra�c conditions, can result in increased vehicle travel times and subsequent
degradations in supply chain operational e�ciency. Moreover, drivers tend to get lost and/or
often travel on roads that are not suitable for the delivery vehicles utilised when delivery routes
di↵er significantly from one day to the next. As a result, the operational phase of implementing
VRPTW solutions can be a↵ected negatively (e.g. a driver might miss the time-window of the
next scheduled delivery). This can easily result in a knock-on e↵ect, rendering the rest of the
driver’s planned delivery schedule unusable.

A possible solution aimed at streamlining the practical implementation of planned delivery
schedules, suggested by Stray [126], is to generate a set of standard delivery routes visiting each
customer a specified number of times along di↵erent approaches, called master routes. Each
master route should start and end at a given depot and visits a subset of the customers serviced
by the depot in a specific sequence. The set of master routes may be considered valid for a single
season (spring and summer combined, or autumn and winter combined) and should be computed
for each season based on expected travel times between the depot and customers, as well as the
average demand volumes of customers. During the season, when actual demand experienced by
customers deviate from the averages on which the computation of the master routes were based,
the master routes may then be used as blueprints for daily planning purposes when delivery
routes are computed. Delivery vehicle drivers will thus be a↵orded the opportunity to become
familiar with these routes, which is anticipated to increase the e�ciency with which they perform
deliveries if the actual delivery routes do not deviate too much from the master routes.

Decisions required for the creation of master routes may be modelled as an instance of a novel
VRP, which includes many of the attributes described in the previous section, as illustrated
graphically in Figure 1.3. Each customer (or retail store in the case of the industry partner)
would have to be visited a specified number of times by di↵erent master routes. Redundancy
should, however, be built into the master routes, in order to allow more freedom when computing
actual delivery routes later during the season. The number of master routes visiting each
customer may be specified a priori based on the average demand quantities of the customer
during the relevant season.

The actual delivery routes computed during the season may be modelled as an instance of another
novel VRP also including many standard attributes, as illustrated graphically in Figure 1.3. In
this model, each customer would have to be assigned service on certain days during the planning
horizon, although the demand of a customer may be split between delivery vehicles (and even
over di↵erent days). Moreover, the capacities of delivery vehicles may not be exceeded, and
service at each customer should start during its specified time-window. The solution should also
adhere to several other operational constraints (such as enforcing a source to sink path for each
vehicle and only assigning vehicles to stores that may, in fact, visit those stores), minimise the
total transportation cost, and simultaneously attempt to maximise the extent to which daily
delivery routes coincide with combinations of segments of the master routes. These delivery
routes are to be computed over pre-specified planning horizons, each consisting of p decision

not guaranteed to reach an optimal solution, although a high-quality solution may typically be uncovered within
a much shorter time-frame than that associated with an exact method, if the search strategy is appropriately
tailored to the particular optimisation problem instance at hand.
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Figure 1.3: Two novel MAVRPs introduced in this thesis and their relationships with other VRP
variants.

periods. The industry partner has expressed an interest in planning horizons representing a
duration of a week and consisting of p = 5 decision periods, representing weekdays on which
deliveries may take place.

An additional benefit of basing the computation of delivery schedules on the aforementioned two
novel VRPs in conjunction with one another, aside from increasing driver-route familiarity, is
that it may well increase the overall e�ciency of the supply chain. First, instead of promising a
specific day on which the demand of a customer will be fulfilled, the demand can be satisfied on
any day during the relevant planning period. By including the multiple period attribute in the
routing model that assigns certain customers to be serviced on each day of the planning period,
the total travel distance required to fulfil the demand of all the customers during the planning
period may be reduced, compared to when the day on which each customer has to be serviced
is fixed.

Furthermore, by incorporating multiple days in a planning period and allowing split deliveries,
the demand of customers during a planning period does not have to be delivered during a
single visitation, but can be delivered by multiple delivery vehicles, spread over multiple days.
A maximum volume of delivered stock that should not be exceeded on any single day can be
specified by each customer. This would allow customers to unpack stock as it arrives, without the
need for large storage spaces, while it may, in contrast, take a few days for customers to unpack
their total delivered stock for the week. By allowing split deliveries across multiple periods, the
number of delivery vehicles required may also be reduced, since the volume of demand delivered
by a delivery vehicle on each day can be increased with appropriate stock so as to facilitate
visitation of customers in an optimal sequence.

The quality of the actual delivery routes are, however, expected to depend markedly on the
quality of the master routes. If master routes are devised that do not visit high-demand stores
with su�cient multiplicity, or render it impossible to arrive at some store during its time-window,
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the quality of daily delivery schedules will be correspondingly poor, or else the actual delivery
routes will be very dissimilar to the master routes, thus defeating the objective of achieving
driver familiarity of delivery routes.

1.3 Informal problem description

The aim in this thesis is to propose a novel VRP, called the FVRP, for improved delivery routing
which addresses the practical limitations derived from a lack of driver-route familiarity which
is prevalent in standard VRP formulations, as highlighted by the industry partner. The FVRP
consists of two phases, a strategic phase and an operational phase.

The first, strategic phase is concerned with determining an appropriate set of master routes for
each depot. Each set of master routes should be valid for a season and is computed for each
season based on expected travel times between a relevant depot and the customers it services,
as well as the average demand volumes exhibited by these customers. Vehicle drivers may thus
be a↵orded the opportunity to become familiar with these master routes, which is expected to
increase the e�ciency with which they are able to perform deliveries if the actual delivery routes
do not deviate too much from these master routes. The strategic phase is to be modelled as an
instance of a novel VRP, in which each customer has to be visited a specified number of times
by di↵erent master routes, thereby building redundancy into these master routes so as to allow
for more freedom when computing actual delivery routes in the future. The number of distinct
master routes visiting each customer is to be specified based on the average demand quantities
of the customer during the relevant season.

The second, operational phase is to be be modelled as an instance of another novel VRP,
during which the master routes (computed during the strategic phase) are used as blueprints
for daily planning purposes when actual delivery routes are computed. These actual delivery
routes are computed for planning horizons consisting of multiple decision periods. In order to
achieve high-quality delivery routes, the output of the operational phase should assign customers
to be serviced during certain decision periods within the planning horizon and satisfy a set
of operational constraints, while minimising the total transportation cost and maximising the
lengths of segments travelled along the master routes.

Solution approaches for the models proposed for the two phases are to be implemented on an
applicable software platform, serving the purpose of a concept demonstration of the FVRP
proposed in this thesis. These implementations should be validated by applying them to a case
study involving real-world data provided by the industry partner attached to this thesis.

1.4 Scope and objectives

The following eight objectives are pursued in this thesis:

I To conduct a thorough survey of the literature related to:

(a) The VRP and its variants in general,

(b) exact methods for solving VRPs, and

(c) (meta)heuristic methods for solving VRPs approximately within a realistic time-
frame.
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II To derive, based on the guidelines in the literature derived during the pursuit of Objective
I(a), a VRP formulation for each phase of the FVRP. These formulations should include:

(a) A model for the strategic phase of the FVRP, capable of determining an appropriate
set of master routes for a given depot and the customers that it services. The master
routes should be valid for a season and be computed for each season based on expected
travel times between depots and customers, as well as on the average demand volumes
of customers, and

(b) a model for the operational phase of the FVRP, which uses the master routes com-
puted by solving the model for the strategic phase of Objective II(a) as blueprints for
daily planning purposes when actual delivery routes are computed. These actual de-
livery routes are to be computed for a planning horizon consisting of multiple decision
periods. In order to achieve high-quality delivery routes, the output of the opera-
tional phase should assign customers to be serviced during certain decision periods
of the planning horizon and satisfy a set of operational constraints, while minimising
the total transportation cost and maximising the degree of intersection with segments
taken from the master routes.

III To verify and validate the VRP formulations derived in pursuit of Objective II, according
to generally accepted modelling guidelines.

IV To propose, based on the literature reviewed in fulfilment of Objectives I(b) and I(c), solu-
tion methods capable of solving instances of the VRP formulations derived in Objective II
within an acceptable time-frame.

V To implement the solution approaches of Objective IV on an applicable software platform.

VI To apply the implementations of the solution approaches of Objective V to a real-world
case study in order to demonstrate their practical application.

VII To evaluate the e↵ectiveness of the FVRP of Objective II and its proposed solution ap-
proaches of Objective IV in terms of its capability to create driver-route familiarity and
generate high-quality delivery schedules in the context of the case study of Objective VI.

VIII To recommend possible follow-up work related to the work in this thesis which may be
pursued in the future.

The scope of the research carried out towards this thesis is limited by the following assumptions:

• The exact and metaheuristic methods researched in pursuit of Objectives I(c) and I(d),
respectively, are limited to the best-known and prolific methods in the operations research
literature with pertinent relevance to the mathematical models derived in this thesis.

• Problem instance-specific input parameters, such as the average travel times between de-
pots and customers, delivery vehicle information, and time-windows, are provided as input
to the FVRP models by the user or organisation implementing the solutions. No attempt
is made to research realistic values of these parameters.

• Input parameters pertaining to the creation of master routes, such as the number of
overlapping master route arcs allowed without penalty and the penalty coe�cient for the
number of overlaps above the maximally tolerated threshold, are specific to the preferences
of the user or organisation implementing the solutions and are therefore provided as input.
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• The number of visits stipulated for each customer during the strategic phase of master
route generation is based on anticipated average demand quantities for the customer during
the relevant season and is also specified as input to the model for the strategic phase by
the user organisation. No attempt is made to forecast these demand quantities.

• The implementations of the solution approaches of Objective V are limited in scope to
the design, implementation, verification, and validation of a concept demonstrator of the
proposed FVRP. The development and integration of a full-scale DSS with the business
processes and database of the industry partner attached to this thesis is not pursued.

1.5 Research methodology

The research reported in this thesis is executed in four phases. During the first phase, a thorough
survey of the literature related to the work documented in this thesis is conducted in pursuit
of Objective I. First, a fundamental understanding of the characteristics of relevant VRP vari-
ations is pursued in fulfilment of Objective I(a). Thereafter, exact and approximate solution
approaches to VRPs are reviewed in pursuit of Objectives I(b) and I(c), respectively, and in
support of Objective II. This research phase also encompasses the acquisition of a number of
relevant technical skills by the author, such as developing a proficiency in the IBM ILOG CPLEX
Optimisation Studio 20.1.0 (CPLEX) software suite and in the programming language Python.

The second phase of the research is pursuant of Objectives II–V. First, two mathematical models
are derived for the FVRP which may be used to determine a set of master routes and create actual
delivery routes as solution, in pursuit of Objectives II(a) and II(b), respectively. Verification
and validation of the derived models are performed in pursuit of Objective III within the context
of randomly generated test instances. Exact solution approaches are also proposed for the two
mathematical models in partial pursuit of Objective IV and are implemented in the CPLEX
software suite, accessed via Python. Moreover, approximate (metaheuristic) solution approaches
are proposed in final fulfilment of Objective IV, and implemented afresh in Python in fulfilment
of Objective V. The solution approach implementations are designed to be modular and able to
accommodate instance customisation in the form of a suite of user-specified parameter values,
which are able to solve a wide variety of FVRP instances.

The third phase of the research comprises the application of the implementation of the proposed
solution approaches to a real-world case study, in order to demonstrate and validate its practical
application. The case study itself is carried out in two substages. During the first substage, a
general background to, and appropriate data for, the case study are documented. The solution
approach implementations are then used to evaluate the real-world data and deliver numerical
results in the form of master routes as well as daily delivery routes for the case study instance
in pursuit of Objective VI. During the second substage, the numerical results are evaluated and
discussed in fulfilment of Objective VII, resulting in a pronouncement on the FVRP e↵ectiveness
in the context of the case study.

The final phase of the research relates to Objective VIII and entails summarising the contribu-
tions of this thesis and proposing prioritised suggestions for possible follow-up work which may
be pursued in the future.

1.6 Thesis organisation

Apart from the current introductory chapter, this thesis comprises a further eight chapters
(organised into four parts), and a bibliography. Part I is a literature review and comprises
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two chapters, Chapters 2 and 3. Chapter 2 is devoted to an overview of a taxonomy for VRP
variants. The chapter opens with an introduction to the VRP after which the taxonomy is
discussed. This is followed by a discussion on the characteristics of a number of VRP variants.

Chapter 3 is devoted to a discussion on three algorithmic solution methodologies for solving
VRPs. The chapter opens with a prerequisite discussion on the simplex algorithm for solving
linear programming problems, upon which all three exact solution approaches discussed there-
after are based. A variety of approximate VRP solution methodologies are also reviewed and
the working of a state-of-the-art metaheuristic, called the Hybrid Genetic Search with Advanced
Diversity Control (HGSADC) algorithm, is discussed. Finally, approximate VRP solution ap-
proaches are discussed in the context of multi-objective optimisation problems.

Part II of the thesis comprises a further two chapters, Chapters 4 and 5, and is focused on the
proposed FVRP. Two novel mathematical models which form the working basis of the proposed
FVRP are derived in these chapters. First, a mathematical model for creating master routes,
related to the strategic phase of the FVRP, is derived in Chapter 4. Thereafter, a mathematical
model for using these master routes during the generation of actual daily delivery routes over
a user-specified planning horizon, related to the operational phase of the FVRP, is derived in
Chapter 5. During the derivation of both models, the parameters, variables, constraints, and
objective function of each model are discussed in detail. The approaches followed to implement,
verify and empirically estimate the time complexity of each model is also documented.

Part III of the thesis also comprises two chapters, Chapters 6 and 7, which are collectively
dedicated to a real-world validation case study of the FVRP in the operational context of the
industry partner attached to this thesis. A general background on the case study is provided
and the real-world data utilised during the case study are described in Chapter 6. The numerical
results obtained during the case study are subsequently reported and discussed in Chapter 7.

The thesis closes in Part IV, which comprises a final two chapters, Chapters 8 and 9. Chapter 8
is devoted to a summary and self-appraisal of the contributions made in this thesis, while
prioritised possible follow-up work, related to the work reported in this thesis and which may
be pursued in the future, is proposed in Chapter 9.
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This chapter is devoted to a description of VRP variants based on a taxonomy proposed by
Toth and Vigo [137]. An introduction to the VRP and the proposed taxonomy may be found
in §2.1. The first class of variants, arising from changes in the network structure, are discussed
in §2.2. Variants that arise from di↵erent types of transportation requests are described next
in §2.3. Thereafter, variants resulting from the imposition of various intra-route and inter-
route constraints are discussed in §2.4 and §2.5, respectively. Furthermore, variants arising from
di↵erent fleet characteristics are discussed in §2.6. Finally, di↵erent objectives pursued in the
VRP literature are described in §2.7. The chapter closes in §2.8 with a brief summary of the
work presented in the chapter.

In order to limit the length of the discourse, mathematical formulations are not given for the
VRP variants reviewed in this chapter. Reference are, however, included in which the various
model formulations may be found.

2.1 Introduction

Dantzig and Ramser [34] were first to introduce the VRP in 1959. Thy were concerned with
determining the best set of routes for a fleet of gasoline delivery vehicles, with the objective
of minimising the total distance travelled by all of these vehicles. The VRP was formulated
in this early paper as the travelling salesman problem (TSP) with the addition of a vehicle
capacity constraint. An algorithmic solution approach was also suggested which is able to reach
near optimal solutions for small instances of the problem. Since 1959, major developments have
taken place in the research area of vehicle routing, including a large number of variations in the

13
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constraints and objectives of VRP formulations, as well as numerous exact and approximate
solution methodologies for these problem variations, driven by a wide range of practical applica-
tions in industry. Today, exact algorithms exist that are able to solve TSP instances containing
tens of thousands of vertices [2]. Although the VRP is a natural generalisation of the TSP, it
is much harder to solve, with the currently best exact algorithms only being able to solve VRP
instances containing of the order of one hundred vertices [9, 51].

Toth and Vigo [137] proposed a taxonomy for the numerous VRP variations available in the
literature. They classified VRPs according to

• their network structure,

• the type of transportation requests involved,

• the constraints that a↵ect each route individually (intra-route constraints),

• the fleet composition and the locations at which vehicles are stored,

• various inter-route constraints, and

• the optimisation objectives pursued.

The remainder of this chapter is devoted to a discussion on variations of the basic VRP of
Dantzig and Ramser [34], based on the above-mentioned taxonomy of Toth and Vigo [137].

2.2 Network structure

A VRP may be classified according to whether tasks are represented by the vertices or arcs
of a graph modelling the underlying transportation network. In the classical VRP, tasks are
performed at specific points in space represented by the graph vertices. It is therefore classified
as a so-called vertex routing problem [137]. The TSP is an example of a vertex routing problem
in which each vertex of the underlying graph should be visited once, at minimal cost [104]. In
an arc routing problem (ARP), on the other hand, tasks are not performed at vertices, but along
graph arcs which may represent street segments [137]. The problem of traversing each arc of
a graph at least once, at minimal cost, is known as the Chinese postman problem (CPP) and
is an example of an ARP. Another example of an ARP is the rural postman problem (RPP)
in which each arc in a subset of required arcs should be visited at least once, at minimal cost.
When tasks are performed on both the vertices and arcs of the underlying graph, the problem
is known as a general routing problem (GRP). In a GRP, each arc in a required subset of arcs
and each vertex in a required subset of vertices should be visited at least once, at minimal cost.

A VRP may also be classified according to the data representing travel costs. If travel costs are
symmetric (i.e. the same cost is incurred when traversing an arc in any direction), the problem
is called symmetric and may be modelled by means of an undirected graph. If some arcs in
the network may, however, only be traversed in a single direction, or the travel costs incurred
when traversing some arcs in opposite directions di↵er, the problem is called asymmetric and is
modelled by means of a directed graph [137].

A distinction between a VRP and an ARP/GRP may be made based on the granularity of the
underlying data and graph [137]. Arcs in an ARP or a GRP usually represent individual street
segments, whereas arcs in a VRP may represent entire shortest paths between vertices, which
may themselves consist of multiple street segments. The distances and travel times in a VRP
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therefore have to be determined by the routing component of a geographical information system
(GIS) and many optimal shortest paths may exist between a pair of vertices. Garaix et al.
[52] addressed this problem by proposing to model VRPs on multi-graphs in which parallel arcs
represent the optimal routes.

Finally, VRPs may be classified as dynamic or static, and deterministic or stochastic. In a
dynamic VRP, some data are not known in advance, but only become available during operation,
such as the travel time between vertices which may depend on the tra�c conditions on the day
of travel. If a VRP is not dynamic, it is called a static VRP. In a stochastic VRP, on the
other hand, some data may be described by random variables associated with given probability
distributions. If a VRP is not stochastic, it is called a deterministic VRP. The classic CVRP is
neither stochastic nor dynamic, but rather deterministic and static since all the underlying data
are fixed and known in advance.

2.3 Type of transportation request

According to the taxonomy proposed by Toth and Vigo [137], VRP variants in the literature
are also classified based on the nature of the following transportation requests:

Delivery and collection. In the CVRP, commodities are collected from a single point (a de-
pot) and delivered to multiple points (customers) in order to satisfy demand, resulting in
a one-to-many VRP. The opposite situation involves the collection of commodities from
customers (called pickups) and delivery thereof to a depot, and is known as a many-to-
one VRP. Examples of many-to-one VRPs include the collection of empty glass bottles at
consumption sites and the disposal of waste at homes to a waste site. New VRP variants
result when both pickups and deliveries are allowed. The earliest and simplest variant in
this class is the VRP with backhauls (VRPB) in which all deliveries are made from a depot
to customers and all collections are made from customers and brought to the depot [135].
In this VRP variant, all customers at which deliveries have to be made are visited first,
after which customers at which pickups occur are visited. Each delivery vehicle therefore
arrives empty at the first customer at which a pickup is performed. This is done to avoid
complications associated with rearranging items in delivery vehicles when pickups are per-
formed between deliveries. If, however, it is possible to rearrange items in delivery vehicles
(for example, loading and unloading from di↵erent sides), customers requiring pickups are
allowed to be serviced before customers requiring deliveries, and the resulting variant is
called the mixed VRPB (MVRPB) [142].

In the VRPB and MVRPB, each customer requires either a collection or a pickup, but
both are not allowed. The variant in which customers are allowed to require both pickups
and deliveries is called the VRP with simultaneous pickup and delivery (VRPSPD) [99].
Many real-world scenarios exist in which this variant is applicable, such as the simulta-
neous delivery of beverages and the pickup of empty bottles. The VRP with devisable
deliveries and pickups (VRPDDP) is a relaxation of the VRPSPD which may result in
cost savings [137]. Instead of performing the pickup from and delivery at a customer dur-
ing the same visit, customers may be visited more than once and the delivery and pickup
may be performed during di↵erent visits.

Simple visits. In some cases, neither collection nor pickup occurs at customers, but customers
simply have to be visited [137]. An example of such a case is the repair or service of a
product at customers that do not require commodities to be delivered or picked up.
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Alternative and indirect services. In some cases, each customer may be serviced at alter-
native locations. In this case, the choice of location and a routing based on these locations
have to be determined. An example of such a case is when a package may be delivered
either to a customer’s home, o�ce, or post box. The multi-vehicle covering tour prob-
lem (MVCTP) involves servicing customers by visiting a location close enough to each
customer (i.e. one of the alternative locations associated with the customer) [66].

Point-to-point transportation. When goods are not delivered from a depot to customers or
vice versa, but from any point in the network to any other point, the problem is considered a
many-to-many VRP and is often referred to as the pickup-and-delivery problem (PDP) [39]
in the case of goods transportation or the dial-a-ride problem (DARP) [137] in the context
of passenger transportation. A real-world application scenario corresponding to this type
of problem is a taxi driver assigned scheduled trips or a courier transporting items between
customers.

Repeated supply. In some cases, customers may require repeated visits throughout a planning
horizon consisting of multiple periods, rather than a single visit on a specific date. This
variant is referred to as the PVRP [28]. In the PVRP, a visiting pattern (the periods
during which particular customers are to be visited) first have to be selected for each
customer from a given set of admissible patterns. Thereafter, a VRP must be solved for
each period, in which the subset of customers to be visited and the commodities to be
delivered during each period depends on the visiting patterns selected [137]. A required
number of visits may be specified for each customer. The commodities to be delivered to
each customer during a period may then simply correspond to the total demand for the
planning horizon divided by the number of required visits [50].

In the inventory routing problem (IRP), repeated supply is also required, but no customer
orders take place [18]. Instead, the delivery company decides when to visit each customer
and how many commodities to deliver so that a stock-out does not occur at any customer.
This variant has enjoyed growing interest in the field of supply chain management due to
the faster and more reliable information exchange that is today possible between customers
and their suppliers, leading to shorter lead times, lower inventory levels, and higher service
levels [137]. Furthermore, additional objectives, such as minimising inventory holding
costs, are often included in the IRP. In both the IRP and the PVRP, the commodities
delivered to customers during any period may also be limited according to the maximum
storage capacity available at the customers.

Non-split and split services. Commodities may either be delivered at a customer in a single
drop by a single delivery vehicle, or may be split into multiple drops delivered by di↵erent
delivery vehicles. In the SDVRP, the demand of each customer may be split into arbitrarily
many smaller batches delivered by di↵erent delivery vehicles [43]. Cost savings of up to
50% of the total routing distance are reportedly possible if split deliveries are allowed,
compared to when not allowed, under the assumption of identical input data [137].

Combined shipment and multi-modal service. When the demand of a customer is not
split, but the full demand is satisfied by more than one delivery vehicle using transfer
points, the situation is referred to as combined shipments [137]. An example of combined
shipments is when larger delivery vehicles transport commodities over long distances, such
as from factories to depots, and smaller delivery vehicles are used for last-mile delivery from
the depots to customers. Variants that arise from allowing combined shipments include
hub-and-spoke delivery and crossdocking. The 2-echelon VRP (2E-VRP) involves utilising
intermediate depots, called satellites, as transfer points between depots and customers [85].
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Routing with profits and service selection. It is sometimes impossible to service all cus-
tomers with a limited delivery vehicle fleet. In this case, only a subset of the customers
can be visited, or only some of the demand of customers can be satisfied. Cost savings
may result from optimising routing and request selection simultaneously, instead of first
performing request selection and then routing. This can be achieved either by including
constraints on service levels and costs, by penalising unserviced requests, or by rewarding
serviced ones. Many variants of this type of problem exist in which di↵erent approaches
are adopted. In the capacitated profitable tour problem (CPTP), routing costs and profits
are combined into one objective [4]. In the team orienteering problem (TOP), the route
lengths of delivery vehicles are limited and the profit associated with servicing customers
is maximised [5]. In the prize-collecting VRP (PCVRP), there is a minimum profit to be
made and the routing cost is minimised [131].

The so-called VRP with private fleet and common carrier (VRPPC) has attracted interest
in the recent literature. In the VRPPC, a subset of customers may be serviced with owned
vehicles (a private fleet) while the remaining customers are subcontracted to a common
carrier at a fixed price [25].

Dynamic and stochastic routing. In the dynamic VRP, some information only becomes
available during operations, such as the locations of customers or the demand of cus-
tomers [133]. Moreover, in a stochastic VRP, some information is uncertain, but follows
a known distribution, such as the demand of customers, or the travel times between cus-
tomers or between the depot and customers [13]. In a stochastic VRP, the impact of
uncertainty on the routing cost and service levels is analysed [137].

2.4 Intra-route Constraints

According to the taxonomy proposed by Toth and Vigo [137], VRP variants in the literature are
further classified based on the constraints that determine whether a route is feasible or infeasible,
called intra-route constraints. Adherence to these constraints can be verified for each individual
route, independently of other routes.

Loading. In the basic CVRP, the loading constraint of a route involves checking whether the
commodities to be delivered to the customers visited along any route conform in number or
quantity with the corresponding capacity of the delivery vehicle. This constraint typically
only refers to a single dimension of capacity, such as weight or volume, although additional
constraints may be added to account for di↵erent dimensions of capacity [137].

More complex loading constraints may also be included to account for two-dimensional or
three-dimensional quantities. In these variants, multi-dimensional packing problems and
VRPs are combined. In the CVRP with three-dimensional loading constraints (3L-CVRP),
for example, additional loading constraints are included to ensure the stability of stacked
boxes, the safety of fragile boxes, and the ease of unloading at customers [53]. Many such
variants exist for specific cases such as two-dimensional quantities, pallet packing, and
delivery vehicles with compartments.

Route length. The length or duration of a route refers to the resources consumed on the arcs
traversed along the route. In the distance-constrained CVRP (DCVRP), a maximum route
length is specified [24]. This constraint may also be adapted to limit the duration, fuel
consumption, or other aspects associated with each route [8].
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Multiple use of vehicles. In the basic CVRP, it is assumed that each delivery vehicle only
performs a single trip. It is, however, possible for a vehicle to return to the depot, reload
commodities, and complete additional trips, if the total duration of all trips is still within
feasible bounds. In the multi-trip VRP (MTVRP), each vehicle may complete multiple
trips [130]. This variant has become increasingly popular due to the growing prominence
of electric delivery vehicles that often complete short trips before returning to the depot
for recharging purposes before departing to complete additional trips [137].

Time-windows and scheduling aspects. Many practical VRP variants require some form of
scheduling which may include the consideration of travel and service times, waiting times,
and time-windows [137]. In the VRPTW, each customer specifies an earliest and latest
possible time during which service is allowed to start at that customer [27]. Furthermore,
travel times are associated with the arcs of the network, and the service start times of
delivery vehicles at customers form part of the decision variables of the model. Generally,
it is possible for a delivery vehicle to arrive at a customer before the start of its time-window
by having the vehicle wait before starting service at the customer. The duration of such
a waiting period is called waiting time. The opposite situation, where a delivery vehicle
only arrives at a customer after the latest possible service start time of the customer,
is not allowed. Some variants also include the service duration at each customer, but
this may simply be included in the travel times to customers. Other variants allow for
multiple non-contiguous time-windows for each customer, where the service start time at
a customer must be within any of its specified time-windows. Furthermore, in the VRP
with soft time-windows (VRPSTW), linear penalties are added for late or early service
start times [129]. Some variants also exist that take into account driving regulations such
as maximum weekly or daily driving times and required daily rest periods.

2.5 Inter-route Constraints

Constraints that render individual routes feasible or infeasible, and the problem variants that
arise from these constraints, have already been discussed. Di↵erent variants may, however,
arise from inter-route constraints, also called global constraints, where the feasibility of solutions
not only depends on the feasibility of individual routes, but also on the combination of all
routes [137]. Variants may, for instance, arise from the use of balancing constraints, in which
the di↵erence between the maximum and minimum route duration, load, length, or number of
stops, may not exceed a certain threshold [14]. These constraints are often included to ensure
that the workloads of delivery vehicle drivers are evenly distributed.

Other variants also arise when vehicles compete for globally limited resources [137]. Practical
examples include a restriction on the number of vehicles that may be assigned to a specific depot,
or a limited processing capacity at a destination to which multiple deliveries must be made.

Finally, variants arise from the need for synchronisation between the routes and schedules of
di↵erent vehicles. Drexl [41] performed a systematic study of the VRP with multiple synchroni-
sation constraints (VRPMS) and o↵ered the following classification of synchronisation:

Task synchronisation. A decision must be made as to which vehicles jointly fulfil each task,
such as in the case of the SDVRP or the PVRP where each customer may receive multiple
visits from di↵erent delivery vehicles.

Operation synchronisation. Some tasks may require di↵erent vehicles to perform tasks at
the same or di↵erent locations, where the tasks may have to be performed at the same time
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or else at di↵erent times, but respecting operational precedence specifications. An example
of such a case occurs when two technicians are required to perform an installation in two
distinct phases, and one phase has to be completed before the other one may start [59].

Movement synchronisation. Some tasks may require that more than one vehicle should
travel along the same parts of a route. Examples of such a case include a trailer that
has to be pulled by a delivery vehicle, or multiple snow plows required to remove snow
along a street network at the same time [119].

Load synchronisation. It is required to ensure that the correct volumes or amounts of total
commodities are delivered to or picked up at customers by all of the delivery vehicles
combined.

Resource synchronisation. The total utilisation and consumption of resources available for
the delivery vehicles should not be exceeded at any point in time.

2.6 Fleet Characteristics

In the basic CVRP, it is assumed that all available delivery vehicles are identical, that they are
stationed at the same depot, and that they adhere to the same routing constraints. This is,
however, seldom the case and VRP variants with di↵erent fleet characteristics therefore exist.

The multiple depot VRP. In the multiple depot VRP (MDVRP), the available delivery ve-
hicles are identical, but the routes of each delivery vehicle may start and end at di↵erent
depots [114]. Each depot may therefore have a limited or unlimited fleet stationed at it,
called a subfleet. In another variant, depots can act as replenishment facilities along the
routes of delivery vehicles, therefore allowing vehicles to reload and service additional cus-
tomers [32]. This variant relates to the previously mentioned variants allowing for repeated
use of vehicles.

The heterogeneous or mixed fleet VRP. A classification scheme for heterogeneous fleet
VRPs was provided by Baldacci et al. [50]. In the heterogeneous VRP (HVRP), a limited
fleet of di↵erent delivery vehicles is available to service customers, whereas in the fleet size
and mix VRP (FSMVRP), an unlimited fleet of di↵erent delivery vehicles is available to
service customers. In both the HVRP and FSMVRP, delivery vehicles may have di↵erent
fixed costs, variable costs, capacities, travel times, and site-dependencies associated with
using them. Site-dependencies refer to compatibility dependencies between customers and
delivery vehicles, meaning that some types of delivery vehicles are only allowed to service
some of the customers. This is often included in VRP formulations to account for vehicle
size restrictions at customers. The FSMVRP may also be aimed at strategic decision mak-
ing, rather than operational routing, since it is often related to the optimal acquisition of
a fleet of delivery vehicles [137].

The routing of trucks and trailers. In the truck-and-trailer routing problem (TTRP), the
fleet consists of at least two types of delivery vehicles — single trucks (STs) which are ve-
hicles without trailers, and truck-and-trailer combinations (TTCs) [19]. Site dependencies
often exist because of the manoeuvring space required by a TTC. Furthermore, it may be
possible for a TTC to decouple its trailer at a customer and complete a subtour containing
customers that are not compatible with TTCs after which it returns to pick up the trailer
again.
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In the VRP with trailers and transshipments (VRPTT), there are no fixed assignments
between trailers and trucks [42]. A trailer may therefore be pulled by more than one
delivery vehicle on parts of its itinerary.

2.7 Objectives

The objective in the basic CVRP is to minimise the total distance travelled by all delivery
vehicles. As mentioned, some VRP variants include di↵erent or additional criteria in their
objective functions. Furthermore, some VRP variants have multiple objective functions.

Single objective optimisation. In a single-objective optimisation problem, the task is to find
a single solution that optimises the objective function [37]. In the context of a VRP, this
means that a single solution exists which minimises the total routing cost. Additional
terms may, however, be added to or removed from the objective function to take di↵erent
aspects of VRP variants into account. In the open VRP (OVRP), for example, vehicles
do not return to the depot after having serviced customers [86]. The cost of return trips
to the depot is therefore not included in the objective function.

When, for instance, the type of transportation request is modelled as routing with profits
and service selection, as discussed in §2.3, the objective function often includes a profit
term for tasks being performed. When accommodating intra-route constraints, such as
in routing with time-windows and scheduling components, as discussed in§2.4, additional
terms may be added to the objective function to achieve certain operational objectives.
The route duration or latest completion time of a delivery vehicle may, for example, be min-
imised. Customer satisfaction may also be incorporated by penalising a time discrepancy
between the actual service start times and the desired service start times at customers.
Furthermore, waiting times at customers may be penalised. In the HVRP and FSMVRP,
discussed in §2.6, the fixed costs associated with using delivery vehicles may be included
as an additional term in the objective function.

Many metaheuristics consider both feasible and infeasible solutions in order to retain
diversity in a population of candidate solutions and later arrive at high-quality feasible
solutions by applying neighbourhood search operators [140]. The infeasible aspects of
solutions, such as arriving at a customer after the latest possible service start time or
exceeding the capacity of a delivery vehicle, may be penalised using weights in the objective
function.

A recently introduced family of VRP variants is called the green vehicle routing problem
in which energy consumption and pollution is minimised [137].

Multiple hierarchical objectives. Minimising route length, duration, and the number of ve-
hicles used are usually conflicting objectives. Since high fixed costs are often associated
with using delivery vehicles, a hierarchical approach towards optimisation may be followed
in which the number of delivery vehicles used is first minimised, upon which the number
of vehicles is fixed and a second objective, such as distance travelled, is minimised [17].

Multi-criteria optimisation. Many real-world problems, including VRPs, exhibit multiple
conflicting objectives [37]. In the VRP with route balancing (VRPRB), for instance, two
objectives are minimised [72]. The total distance travelled by all delivery vehicles is min-
imised while also attempting to minimise the di↵erence between the longest route length
and the shortest route length. This approach is often adopted to ensure workload fairness
among delivery vehicle drivers.
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In a multi-objective optimisation problem, there is more than one objective function, and
there is usually no single optimal solution, but rather a set of many optimal solutions,
known as the Pareto set (PS) [37]. Many optimisation algorithms exploit the concept of
domination to determine the PS. A solution x(1) is said to dominate another solution x(2)

if both the following conditions are true:

1. Solution x(1) is no worse than solution x(2) in all objectives, and

2. solution x(1) is strictly better than solution x(2) in at least one objective.

If at least one of these conditions is not met, solution x(1) does not dominate solution
x(2). Given a finite set P of solutions, pairwise comparisons can be performed between
all solutions and a set of non-dominated solutions P 0 can be determined. This set of non-
dominated solutions has the property of not being dominated by any other solution in the
given finite set of solutions [37]. If the finite set of solutions represents the entire feasible
decision space, then the set of non-dominated solutions is also the PS.

Consider, for example, a bi-objective VRP instance in which both objectives are minimised,
and suppose that a finite solution set representing the entire feasible decision space for
this VRP has been identified, as indicated in the objective space in Figure 2.1. Upon
comparison of Solutions 1 and 2, it is clear that none of the objective function values of
Solution 1 is worse than the objective function values of Solution 2. Instead, Solution 1
is strictly better in terms of both objective function values than Solution 2. Since both
conditions for domination are met, it is concluded that Solution 1 dominates Solution 2.
Upon comparison of Solutions 1 and 3, it is clear that the first condition of domination is
not met, since the value of f1 for Solution 1 is worse than that of Solution 3. Solution 1
therefore does not dominate Solution 3. Upon continuation of such comparisons between
all pairwise solutions, it is found that only Solutions 1 and 3 are not dominated by any
other solution — they therefore form both the non-dominated and the PS.
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Figure 2.1: A set of five solutions to a VRP instance with two objectives which are both to be minimised.
The non-dominated solutions are Solutions 1 and 3.

2.8 Chapter Summary

This chapter was devoted to a discussion on VRP variants based on a taxonomy proposed
by Toth and Vigo [137]. A brief history of the VRP, as well as an overview of the proposed
taxonomy, was given in §2.1. This was followed by a discussion on VRP variants arising from
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changes in the network structure in §2.2. In §2.3, di↵erent transportation requests and their
resulting VRP variants were discussed. The variants that arise from di↵erent intra-route and
inter-route constraints were next discussed in §2.4 and §2.5, respectively. Penultimately, VRP
variants that are classified based in their fleet characteristics were discussed in 2.6. Finally,
di↵erent types of objectives in VRP variants were described in §2.7.
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This chapter is devoted to a discussion on algorithmic solution methodologies for solving VRPs.
Three exact solution approaches are discussed in §3.1. Thereafter, heuristic solution approaches
are described in §3.2, and this is followed by a brief review of metaheuristic solution approaches
in §3.3. A comparison of various metaheuristics is next presented within the context of vehicle
routing in §3.4. The working of the HGSADC algorithm, a state-of-the-art solution methodology
employed later in this thesis, is described in §3.5, and this is followed in §3.6 by a discussion
on approaches followed when solving multi-objective optimisation problems approximately. The
chapter is finally brought to a close with a brief summary of its contents in §3.7.
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3.1 Exact solution approaches

Three exact VRP solution approaches are discussed in this section, namely the branch-and-
bound method in §3.1.2, the cutting plane method in §3.1.3, and the branch-and-cut method1 in
§3.1.4. The section opens in §3.1.1, however, with a prerequisite discussion on the simplex algo-
rithm for solving linear programming problems, upon which all three exact solution approaches
considered in this section are based. The working of the various solution approaches discussed in
this section are all illustrated by solving a two-variable integer programming problem instance
in which the objective is to

maximise z = 8x1 + 5x2 (3.1)

subject to the constraints

x1 + x2  6, (3.2)

9x1 + 5x2  45, (3.3)

x1, x2 2 N. (3.4)

3.1.1 The simplex algorithm for linear programming

The standard form of a linear programming (LP) problem is to

maximise2 z = c1x1 + c2x2 + . . .+ cnxn (3.5)

subject to constraints of the form

ai1x1 + ai2x2 + . . .+ ainxn = bi, i = 1, . . . ,m, (3.6)

xj � 0, j = 1, . . . , n, (3.7)

where n denotes the number of decision variables and m denotes the number of constraints, with
n > m. The problem in (3.5)–(3.7) may be rewritten in matrix form by defining the matrix

A =

2

6664

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

3

7775
,

as well as the vectors

x =

2

6664

x1

x2
...
xn

3

7775
, b =

2

6664

b1

b2
...
bm

3

7775
and c =

2

6664

c1

c2
...
cn

3

7775
.

1An apology related to the method of review of the exact optimisation methods in this section is in order.
While it is acknowledged that there are considerable and beautiful theories underlying each of these methods,
their workings are described here purely from a methodological point of view, without referring to the theories
mentioned above and without proving the correctness of the methods. In this way, the length of the discourse is
limited while still achieving a degree of self-containment of the material in this thesis

2The fact that the objective is to maximise the value of z is without loss of generality, since any function f(x)
can be minimised by maximising its negation �f(x).
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In matrix form, the objective is therefore to

maximise z = cTx, (3.8)

subject to the constraints

Ax = b, (3.9)

x � 0, (3.10)

where 0 is a column vector containing n zeros. In 1947, Dantzig [33] developed a method, which
is e�cient on expectation and is called the simplex algorithm, for solving LP problems in their
standard form. Since n > m, a unique solution satisfying (3.9) cannot be found. Instead, n�m

variables are assigned the value zero, allowing for a unique solution to be found for the remaining
m variables, called a basic solution, if the rank of A is m. The n�m variables that are assigned
the value zero are called non-basic variables and the remaining m variables with potentially
non-zero values are called basic variables. A basic solution therefore depends on the choice
of non-basic variables. Any basic solution in which all decision variables are nonnegative (i.e.
xj � 0 for all j = 1, . . . , n) is called a basic feasible solution (BFS). A pseudo-code description
of the simplex algorithm for solving an instance of (3.8)–(3.10) is given in Algorithm 3.1.

Algorithm 3.1: Simplex algorithm (maximisation)

Input : An LP problem instance in standard form.
Output: An optimal solution to the LP problem instance (if it exists).

Construct the simplex tableau from the standard form of the LP problem instance.1

Compute the j-th entries of the g-row and z-row of a new simplex tableau of the format2

shown in Table 3.1 as gj =
Pm

i=1 ciaij and zj = gj � cj for all j = 1, . . . , n.
if zj � 0 for all j then3

The current solution is optimal — output this solution and stop.4

if aiq  0 for all i then5

The objective function is unbounded — stop.6

Identify zq as the most negative value in the z-row. The corresponding column q is called7

the pivot column and determines the non-basic variable that enters the basis.
Compute the ratios in the ✓-column as ✓i = bi/aiq (only if aiq > 0).8

Identify ✓p as the smallest ✓ ratio. The corresponding row p is called the pivot row and9

determines the basic variable that leaves the basis.
Perform a simplex iteration:10

(i) Divide the values in the pivot row by apq.

(ii) Calculate the values of new non-pivot rows entries as:
new non-pivot rowi = old non-pivot rowi � aiq ⇥ new pivot row.

Return to Step 2.11

The simplex algorithm iteratively explores adjacent BFSs, each represented in a so-called simplex
tableau format, as illustrated in Table 3.1, by ejecting a single basic variable per iteration from
the basis (set of basic variables) and replacing it with a non-basic variable so as to obtain a
di↵erent basic solution that again satisfies the constraint set in (3.9). The process of transitioning
from one BFS to another involves performing Gauss-Jordan elimination to solve for the basic
variables, and is summarised in the tableau form indicated in Table 3.1 during each algorithmic
iteration. The objective function value of the BFSs thus generated during the execution of
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the simplex algorithm improves from each BFS generated to the next (i.e. from one tableau
to the next), until the objective function value cannot improve any further and an optimal
BFS has been reached. This latter BFS is returned by the algorithm as an optimal solution to
(3.8)–(3.10).

Table 3.1: The simplex tableau format assumed in this thesis.

Vector c

Vector x RHS ✓

C
oe
�
ci
en
ts

B
as
ic

va
ri
ab

le
s

V
ec
to
r
b

R
at
io
s

Matrix A

g g-row Objective

z z-row function

The LP relaxation3 of the problem instance in (3.1)–(3.4) may, for example, be written in the
standard form presented in (3.5)–(3.7) by introducing non-negative slack variables s1 and s2

in order to replace the inequality constraints with equality constraints. The objective in this
relaxation is therefore to

maximise z = 8x1 + 5x2 (3.11)

subject to the constraints

x1 + x2 + s1 = 6, (3.12)

9x1 + 5x2 + s2 = 45, (3.13)

x1, x2, s1, s2 � 0. (3.14)

The feasible region4 of the problem instance in (3.11)–(3.14) is illustrated graphically in Fig-
ure 3.1.

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6
7
8
9

Figure 3.1: The feasible region of the LP problem instance in (3.11)–(3.14).

3The LP relaxation of an integer programming problem instance is obtained by relaxing all of the integer
variable constraints in the original integer programming problem to constraints involving non-negative, continuous
variables.

4The feasible region of an LP problem is the set of all points that satisfy all of the constraints and sign
restrictions in (3.9)–(3.10) [144].
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In order to demonstrate the working of Algorithm 3.1, it is applied to the the problem instance
(3.11)–(3.14). First, since n = 4 and m = 2, a total of n � m = 2 variables, s1 and s2, are
chosen as basic variables. After having completed Steps 1–2, the following simplex tableau is
generated:

8 5 0 0

x1 x2 s1 s2 RHS ✓

0 s1 1 1 1 0 6 6

0 s2 9 5 0 1 45 5  

g 0 0 0 0 0.

z �8 �5 0 0

"
The BFS corresponding to this simplex tableau is x1 = 0, x2 = 0, s1 = 6, and s2 = 45 with
an objective function value of z = 0. According to the condition in Steps 3–4, this solution
is not optimal, since not all zj-values are non-negative. The pivot column corresponds to the
column of the non-basic variable x1, since z1 is the most negative value in the z-row (as per
Step 7). Furthermore, the pivot row corresponds to the basic variable s2, since ✓2 is the smallest
ratio in the ✓ column (as per Step 9). The pivot row and the pivot column are indicated by
arrows in the tableau above. According to the condition in Steps 5–6, the objective function is
not unbounded and the basic variable s2 is replaced with the non-basic variable x1 in order to
find the next BFS. A simplex iteration is performed (as per Step 10) and the following simplex
tableau is generated:

8 5 0 0

x1 x2 s1 s2 RHS ✓

0 s1 0 4
9 1 �1

9 1 9
4  

8 x1 1 5
9 0 1

9 5 9

g 8 40
9 0 8

9 40.

z 0 �5
9 0 8

9

"
The BFS corresponding to this simplex tableau is x1 = 5, x2 = 0, s1 = 1, and s2 = 0 with an
objective function value of z = 40, which is strictly better than the objective function value of
the previous BFS. Once again, this BFS is not optimal, since not all zj-values are non-negative.
The pivoting column corresponds to the column of the non-basic variable x2 and the pivoting row
corresponds to the row of the basic variable s1. The basic variable s1 is therefore replaced with
the non-basic variable x2. Upon performing another simplex iteration, the following simplex
tableau is generated:

8 5 0 0

x1 x2 s1 s2 RHS

5 x2 0 1 9
4 �1

4
9
4

8 x1 1 0 �5
4

1
4

15
4

g 8 5 5
4

3
4

165
4 .

z 0 0 5
4

3
4
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The BFS corresponding this simplex tableau is x1 = 15
4 , x2 = 9

4 , s1 = 0, and s2 = 0 with
an objective function value of z = 165

4 , which is once again strictly better than the objective
function value of the previous BFS. Since all zj-values are non-negative, it is concluded that
this BFS is an optimal BFS (as per Steps 3–4). The BFSs found in the first, second, and third
simplex tableaus correspond to the extremal points A, B, and C, respectively, in Figure 3.1.

3.1.2 The branch-and-bound method

In an LP problem, all decision variables are non-negative continuous variables. An integer
programming (IP) problem, on the other hand, is an LP problem in which some of the decision
variables are required to assume non-negative integer values [144]. In a pure IP problem, all
decision variables are required to assume integer values, whereas in a mixed IP problem, only
some of the decision variables are required to assume integer values. The LP relaxation of an
IP problem instance is a less constrained version of the IP problem instance, with the property
that the

optimal objective value of LP relaxation � optimal objective value of IP problem instance.

Therefore, an optimal solution to an IP problem instance is at most as good as an optimal
solution to its LP relaxation. If an optimal solution to the LP relaxation is known, an upper
bound on the optimal objective function value of the IP problem instance is therefore available.
Furthermore, if the decision variables in an optimal solution to the LP problem assume integer
values, then the solution is also an optimal solution to the corresponding IP problem instance,
and so the objective function value of the LP problem instance in this case represents a lower
bound on the optimal objective function value of the corresponding IP problem instance [144].

The branch-and-bound method, proposed in 1960 by Land and Doig [84], is a popular method
for solving IP problem instances. An early application of the branch-and-bound method for
solving VRP instances was proposed by Christofides and Eilon [23] in 1969. When adopting
this method, a so-called branch-and-bound tree is constructed to represent the progression of
the method visually. A node in the tree represents a sub-problem of the original LP relaxation
to which certain branching constraints have been added. Branching on a sub-problem leads to
two di↵erent sub-problems. If an optimal solution to a sub-problem contains a decision variable
x which is, in fact, required to assume an integer value, but assumes a non-integer value with
an integer part a and a fractional part b, the additional constraints x  a and x � a + 1 are
imposed on the two sub-problems, respectively.

When further branching on a sub-problem cannot lead to any further improvement in objective
function value, the branch is considered fathomed. A sub-problem is deemed fathomed if (1) the
sub-problem is infeasible, (2) all the decision variables in an optimal solution to the sub-problem
assume integer values, in which case a lower bound is obtained on the optimal objective function
value of the original IP problem instance, or (3) the objective function value corresponding to
the optimal solution of the sub-problem is smaller than the best-known lower bound (in which
case it is certain that all solutions yielded by further branching on the sub-problem will not lead
to an improvement upon the current best solution) [144].

The traversal progression through the sub-problems in the branch-and-bound tree is governed
by a so-called search protocol. All search protocols return optimal solutions, although some
are more e�cient than others when utilised in certain contexts. In the last-in-first-out (LIFO)
protocol, for instance, the last sub-problem generated is always selected to be branched upon
next. According to the jumptracking protocol, on the other hand, all sub-problems are generated
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and the sub-problem corresponding to the best objective function value uncovered is selected to
be branched upon next [144].

The working of the branch-and-bound method in conjunction with the LIFO search protocol is
demonstrated in the remainder of this section for the example problem instance (3.1)–(3.4) and
the resulting branch-and-bound tree is illustrated graphically in Figure 3.2.

Figure 3.2: An example of the branch-and-bound tree obtained when adopting the LIFO search protocol
to solve the IP problem instance in (3.1)–(3.4). The order in which sub-problems are considered are
indicated by the t-values next to each sub-problem [144].

The branch-and-bound method begins by solving the LP relaxation of the IP problem instance,
represented by the root node of the tree (Sub-problem 1 in Figure 3.2). The optimal solution
to Sub-problem 1 is x1 = 15

4 , x2 = 9
4 , which yields an objective function value of z = 165

4 (as
determined in §3.1.1, using the simplex algorithm). Since the two decision variables, x1 and
x2, do not assume integer values, x1 is arbitrarily chosen to branch upon. Since the optimal
objective function value of the LP relaxation is z = 165

4 , it is known that the optimal objective
function value of the IP problem instance cannot exceed z = 165

4 , thereby establishing an upper
bound on the optimal objective function value of the IP problem instance. Branching on the
decision variable x1 yields the following two sub-problems:

Sub-problem 2: Sub-problem 1 + Constraint x1 � 4, and

Sub-problem 3: Sub-problem 1 + Constraint x1  3.
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Since neither of these sub-problems allows for the possibility that x1 =
15
4 , the optimal solution

to the sub-problem corresponding to the root node of the tree cannot reoccur. In the optimal
solution to Sub-problem 2, the decision variable x1 assumes an integer value, but not the decision
variable x2. The decision variable x2 is therefore chosen to branch upon next, yielding the
following two sub-problems:

Sub-problem 4: Sub-problem 2 + Constraint x2 � 2, and

Sub-problem 5: Sub-problem 2 + Constraint x2  1.

Sub-problem 4 is infeasible and therefore cannot yield an optimal solution to the IP, indicated
by the ⇥ in Figure 3.2. In the optimal solution to Sub-problem 5, the decision variable x1

does not assume an integer value. Branching on this decision variable yields the following two
sub-problems:

Sub-problem 6: Sub-problem 5 + Constraint x1 � 5, and

Sub-problem 7: Sub-problem 5 + Constraint x1  4.

In the optimal solution to Sub-problem 6, both decision variables assume integer values, yielding
an objective function value of z = 40. The solution to Sub-problem 6 is therefore a candidate
solution and yields a lower bound on the optimal objective function value of the original IP
problem instance. Following the LIFO search protocol, Sub-problem 7 is branched upon next,
since Sub-problem 6 cannot further be branched upon and Sub-problem 7 is the sub-problem last
generated. In the optimal solution to Sub-problem 7, all decision variables once again assume
integer values, but correspond to an objective function value of z = 37 which is less than the
lower bound value of 40, found in Sub-problem 6. The last unsolved sub-problem generated, Sub-
problem 3, is considered next. In the optimal solution to Sub-problem 3, all decision variables
assume integer values, but once again correspond to an objective function value smaller than
the known lower bound value of 40, indicating that the branch is fathomed. Since there are no
remaining unsolved sub-problems, it is concluded that the optimal solution to the original IP
problem instance is the solution found to Sub-problem 6. That is, x1 = 5 and x2 = 0 with an
optimal objective function value of z = 40.

When solving the example problem instance (3.1)–(3.4) using the branch-and-bound method in
conjunction with the jumptracking search protocol, instead of the LIFO search protocol, the
branch-and-bound tree illustrated graphically in Figure 3.3 is obtained. Only the root node
and the first level of the branch-and-bound tree are illustrated, since the child nodes of Sub-
problem 2 are the same as in Figure 3.2. Instead of arbitrarily branching on Sub-problem 2, as
was done when adopting the LIFO search protocol, Sub-problems 2 and 3 are first solved, and
Sub-problem 2 is selected to branch upon next, since it corresponds to the best objective function
value. The optimal solution to the example problem instance (3.1)–(3.4) is again obtained as
x1 = 5 and x2 = 0, with an optimal objective function value of z = 40.

3.1.3 The cutting plane method

The cutting plane method, proposed by Gomory [61] in 1958, is another method for solving
IP problems. Many cutting plane methods have been proposed for solving TSP instances,
such as the work of Miliotis [98] in 1978 and Fleischmann [48] in 1985, although cutting plane
methods are usually employed in conjunction with other methods for solving VRP instances, as
described later in §3.1.4. According to this method, cutting planes are iteratively inserted as
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Figure 3.3: A portion of the branch-and-bound tree obtained when adopting the jumptracking search
protocol to solve the IP problem instance in (3.1)–(3.4). The order in which sub-problems are considered
are indicated by the t-values next to each sub-problem [144].

additional constraints to the LP relaxation of an IP problem instance, thereby removing portions
of the feasible region containing the current optimal solutions and thus resulting in new optimal
solutions. If all decision variables in one of these new optimal solutions assume integer values, an
optimal solution to the IP problem instance has been found; otherwise the process of inserting
new cutting planes continues. A cutting plane has the properties that (1) any feasible solution
to the original IP problem instance satisfies the cut and (2) the current optimal solution to the
LP relaxation does not satisfy the cut.

Let [x] denote the largest integer not exceeding x. For example, if x = 3.5, then [x] = 3 while
if x = �1.25, then [x] = �2. Any real value x may be written in the form [x] + f , where
0  f < 1. For example, 3.75 = 3+0.75 while �1.25 = �2+0.75. Cutting planes are generated
by representing the coe�cients of decision variables in an LP relaxation constraint in the form
[x] + f . When generating a cutting plane, the following steps are executed: (1) An equality
constraint is arbitrarily selected from the simplex tableau representing an optimal solution to the
current LP relaxation, (2) each variable coe�cient is rewritten in the form [x]+f , as mentioned
above, (3) the terms in the constraint are rearranged so that all integer-valued coe�cients occur
on the left-hand side while all non-integer valued coe�cient occur on the right-hand side, and
(4) a cutting plane is generated by setting the right-hand side of this constraint equal to zero.
The cutting plane method is described in pseudo-code form in Algorithm 3.2.

While any constraint could, in fact, have been selected in Step 2 of Algorithm 3.2 to generate
the cut, the selection of a constraint whose right-hand side has a fractional part closest to 1

2 is
expected to remove the largest portion of the LP relaxation feasible domain not containing an
integer solution. This is, in turn, anticipated to accelerate the cutting plane method by reducing
the number of cuts that have to be generated.

Each cut generated is inserted into the LP relaxation problem instance by adding it as an
additional row to the simplex tableau. Since that part of the feasible region within which the
previous optimal solution existed is removed when inserting the cut, the dual simplex algorithm
is employed to regain a feasible solution. The working of the dual simplex method is similar to
that of the (primal) simplex method described in §3.1.1, and involves adapting Algorithm 3.1
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Algorithm 3.2: The cutting plane algorithm [144]

Input : An integer programming problem instance for which the linear programming
relaxation problem instance is in standard form.

Output: An optimal solution to the integer programming problem instance.

Find an optimal tableau for the LP relaxation of the IP problem instance by applying the1

simplex algorithm (Algorithm 3.1). If all variables in the optimal solution assume integer
values, then an optimal solution to the IP problem instance has been found; otherwise,
proceed to Step 2.
Pick a constraint to the linear programming relaxation optimal tableau whose right-hand2

side has a fractional part closest to 1
2 . This constraint is used to generate a cutting plane.

For the constraint identified in Step 2, write the coe�cient of each variable in the form3

[x] + f , for some 0  f < 1.
Rewrite the constraint used to generate the cut as4

All terms with integer coe�cients = all terms with fractional coe�cients.

Then the cut is inserted by imposing the additional constraint5

All terms with fractional coe�cients  0.

Use the dual simplex algorithm to find an optimal solution to the linear program6

relaxation, with the cut inserted as an additional constraint.

very slightly. In the dual simplex method, the pivot row is identified before the pivot column
(Steps 9 and 7 in Algorithm 3.1, respectively). The pivot row is determined by identifying the
basic variable with the smallest value in the right-hand side column of the simplex tableau.
Thereafter, the ratio

✓
0 =

coe�cient of xj in the z-row

coe�cient of xj in the pivot row

is calculated for each column and inserted as an additional row in the tableau. The pivot column
is then selected as the column corresponding to the smallest absolute value in the ✓0-row. A
normal simplex iteration is then performed (Step 10 of Algorithm 3.1), after which the initial
simplex algorithm is followed if an optimal solution has not yet been found.

The working of the cutting plane method is illustrated by means of the example problem instance
(3.1)–(3.4). First, the constraint

x1 � 1.25s1 + 0.25s2 = 3.75

is arbitrarily chosen from the simplex tableau representing the optimal solution to the LP re-
laxation. The constraint is then rewritten as

x1 � 2s1 + 0.75s1 + 0s2 + 0.25s2 = 3 + 0.75

to represent each coe�cient in the form [x] + f . The constraint is once again rewritten as

x1 � 2s1 + 0s2 � 3 = 0.75� 0.75s1 � 0.25s2

by placing all integer-valued coe�cients on the left-hand side and all non-integer valued co-
e�cients on the right-hand side. The cutting plane to be added therefore corresponds to
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0.75 � 0.75s1 � 0.25s2 = 0 and is represented by the dashed line in Figure 3.4(a). The cut
is imposed by enforcing the additional constraint

0.75� 0.75s1 � 0.25s2  0, (3.15)

which is equivalent to 3x1 + 2x2  15. A slack variable s3 may be introduced to rewrite the
constraint in (3.15) as the equality constraint �3

4s1�
1
4s2 + s3 = �3

4 . The constraint is inserted
into the previously optimal simplex tableau (as per Step 5 of Algorithm 3.2) and the following
tableau is obtained:

8 5 0 0 0

x1 x2 s1 s2 s3 RHS

5 x2 0 1 9
4 �1

4 0 9
4

8 x1 1 0 �5
4

1
4 0 15

4

0 s3 0 0 �3
4 �1

4 1 �3
4  

g 8 5 5
4

3
4 0 165

4 .

z 0 0 5
4

3
4 0

✓
0 – – 5

9 3 –

"
The above simplex tableau corresponds to point C in Figure 3.4(b), which no longer forms
part of the feasible region of the LP relaxation. Following the dual simplex method, the pivot
row is identified as the row corresponding to variable s3 and the pivot column is identified as
the column corresponding to variable s1, indicated by the arrows in the tableau above. After
performing a normal simplex iteration (as per Step 10 of Algorithm 3.1), the following tableau
is generated:

8 5 0 0 0

x1 x2 s1 s2 s3 RHS

5 x2 0 1 0 �1 3 0

8 x1 1 0 0 2
3 �5

3 5

0 s1 0 0 1 1
3 �4

3 1

g 8 5 0 1
3

5
3 40.

z 0 0 0 1
3

5
4

Since there are no negative values in the z-row and all of the basic variables assume non-negative
values, an optimal solution has been found. The optimal solution to the original IP problem
instance in (3.1)–(3.4) returned by the cutting plane method is therefore x1 = 5, x2 = 0, s1 = 1,
s2 = 0 and s3 = 0, which yields an objective function value of z = 40.

3.1.4 The branch-and-cut method

The well-known branch-and-cut method is a combination of the branch-and-bound method and
the cutting plane method described in the previous sections. Padberg and Rinaldi [105] were
the first to apply the concept of generating cutting planes intermittently at the nodes of branch-
and-bound trees. The branch-and-cut method involves alternating between branching and in-
serting cutting planes in order to generate a smaller branch-and-cut tree than the corresponding
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Figure 3.4: An example of (a) including a cutting plane (dashed line) through the feasible region of
the problem instance (3.1)–(3.4), thereby (b) reducing the size of the feasible region without eliminating
any integer-valued solutions.

branch-and-bound tree. Araque [3] reported on the solution of a VRP instance containing 48
customers which was solved exactly by means of a branch-and-cut method in 1989. The work-
ing of the branch-and-cut method, when employing the jumptracking search protocol, is again
demonstrated in the context of (3.1)–(3.4) with the resulting branch-and-cut tree illustrated in
Figure 3.5.

9
370

9
35

+

Figure 3.5: An example of a branch-and-cut tree obtained when adopting the jumptracking search
protocol to solve the IP problem instance in (3.1)–(3.4). The order in which sub-problems are considered
are indicated by the t-values next to each sub-problem and the feasible region of each sub-problem is
illustrated graphically in Figure 3.6.
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Similar to the branch-and-bound method, the first sub-problem in the branch-and-cut tree
corresponds to the LP relaxation of the original IP problem instance. The feasible regions
of the various sub-problems in the branch-and-cut tree are illustrated graphically in Figure 3.6.
The solution to Sub-problem 1 corresponds to x1 =

15
4 and x2 =

9
4 , yielding an objective function

value of z = 165
4 . The variable x2 is arbitrarily chosen to branch on, yielding Sub-problems 2

and 3 in Figure 3.5. In the optimal solution to Sub-problem 2, all decision variables assume
integer values, yielding a feasible solution to the original IP problem instance with an objective
function value of z = 39. Sub-problem 2 is therefore a candidate solution and produces a lower
bound on the optimal objective function value of the original IP problem instance.

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6
7
8
9

Figure 3.6: The feasible regions of the di↵erent sub-problems considered when applying the branch-
and-cut method to solve the IP problem instance in (3.1)–(3.4).

In the branch-and-bound method, the search process would have continued by branching on the
decision variable x1 to expand Sub-problem 3. In the branch-and-cut method, however, the next
step is to generate a cutting plane to be inserted as an additional constraint in Sub-problem 3.
The simplex tableau corresponding to the optimal solution to Sub-problem 3 is:

8 5 0 0 0

x1 x2 s1 s2 s3 RHS

5 s1 0 0 1 �1
9 �4

9
1
9

8 x1 1 0 0 1
9 �5

9
8
9

0 x2 0 1 0 0 1 2

g 8 5 0 8
9

5
9

370
9 .

z 0 0 0 8
9

5
9

Following the cutting plane method, the second constraint is arbitrarily selected and rearranged
as x1 � s3 � 3 = �1

9s2 �
4
9s3 + 8

9 , yielding the cutting plane �1
9s2 �

4
9s3 + 8

9 = 0, which is
equivalent to the hyperplane

x1 + x2 = 5.

The constraint x1 + x2  5 is therefore inserted as an additional constraint to Sub-problem
3, yielding Sub-problem 4. The dual simplex method is applied to regain feasibility in Sub-
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problem 4. This solution corresponds to x1 = 5 and x2 = 0, yielding an objective function value
of x = 40. In the optimal solution to Sub-problem 4, all decision variables assume integer values,
yielding a feasible solution to the original IP problem instance with an objective function value of
z = 40. Since each branch in the branch-and-cut tree is now fathomed, an optimal solution to the
IP problem instance in (3.1)–(3.4) has been found and the branch-and-cut process terminates
(because the latter solution is better than that corresponding to the previous lower bound).
The optimal solution to the IP problem instance in (3.1)–(3.4) returned by the branch-and-cut
method is therefore x1 = 5 and x2 = 0 with an objective function value of z = 40. The advantage
of combining the branch-and-bound method with the cutting plane method is evident when
comparing the size of the branch-and-bound tree in Figure 3.2 with that of the corresponding
branch-and-cut tree in Figure 3.5.

3.2 Heuristics

As mentioned in §3.1, exact solution approaches are employed to find optimal solutions to
optimisation problem instances. Some instances are, however, too complicated and/or large
to be solved to optimality within an acceptable time-frame, requiring the use of heuristics. A
heuristic is a rule-based solution approach which typically returns solutions of a relatively good
quality, but which are not necessarily optimal, within a modest time-frame [88, 134]. There are,
however, disadvantages associated with using heuristics as a solution approach. First, heuristics
are usually not designed to solve a variety of problem instances, but are rather tailored for
problems of a specific type. It may therefore be di�cult to adapt existing heuristics to solve
new problem types. Secondly, heuristics tend to converge towards local optima and may therefore
return poor solutions to problem instances having multiple local optima [88].

Heuristic solution approaches for solving VRP instances are often classified as one of three main
classes of heuristics, namely improvement heuristics, constructive heuristics, or two-phase heuris-
tics. A classification tree of heuristics for solving VRPs is illustrated graphically in Figure 3.7.

Heuristics

Improvement heuristics

Constructive heuristics

Two-phased heuristics

Cluster first, route second

Route first, cluster second

Figure 3.7: A classification tree of heuristic methods for solving VRPs.

In classical improvement heuristics tailored to solve routing problems (approximately), intra-
route and inter-route moves are iteratively applied to form new feasible solutions [137]. The
feasible region is iteratively explored to find a solution that is better than the current best
solution, and the best feasible solution found is returned when the search terminates [88]. A
popular intra-route move is the �-opt move, in which any � edges are removed and replaced by
� other edges. An example of a �-opt move with � = 2 is illustrated in Figure 3.8. Two popular
inter-route moves are relocate, in which k consecutive customers are removed from their current
route and inserted into a di↵erent existing route, and swap, in which k consecutive customers
are swapped with ` consecutive customers from a di↵erent existing route.

Unlike improvement heuristics, constructive heuristics do not improve upon existing feasible solu-
tions, but rather build up feasible solutions iteratively, guided by the objective function [134]. An
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Figure 3.8: A graphical illustration of the 2-opt move applied to a part of a route in a VRP instance.
The two edges changed in the move are presented in red.

example of a constructive heuristic is the savings algorithm, suggested by Clarke and Wright [26]
in 1964, applied to a VRP instance in which a fixed number of vehicles are to be used. The
savings algorithm starts by creating routes of the form (0, i, 0) for i = 1, . . . , n, where 0 denotes
the depot and n denotes the number of customers in the problem instance. When two routes
(0, . . . , i, 0) and (0, j, . . . , 0) may be merged into a single feasible route (0, . . . , i, j, . . . , 0), a cost
saving of sij = ci0+cj0�cij is obtained. In the savings algorithm, (1) the cost saving associated
with merging each pair of routes is calculated, and (2) the merge associated with the largest cost
saving and resulting in a feasible route, is performed. These two steps are iteratively performed
until the required number of vehicles are used, after which the final solution is returned.

In a two-phase heuristic, the VRP is decomposed into two components, namely the clustering of
vertices into groups and the actual route construction for each of these groups [137]. Two sub-
classes of two-phase heuristics exist, namely cluster-first, route-second methods, and route-first,
cluster-second methods. In the former sub-class, the clustering component is performed first
and the route construction component is performed thereafter, whereas in the latter sub-class,
the opposite order is followed. An example of a popular and simple route-first, cluster-second
method is the sweep algorithm, proposed by Wren and Holliday [145] in 1972. In the sweep
algorithm, (1) an unused delivery vehicle is chosen, (2) a ray centred at the depot is rotated in
polar angle form from the last vertex added (which may be any vertex if the algorithm has not
yet been initialised), adding vertices to a cluster as long as the total demand associated with
the vertices forming part of the cluster do not exceed the capacity of the delivery vehicle under
consideration, and (3) a route is constructed by solving a TSP instance for the vertices forming
part of the cluster and assigning them to a delivery vehicle. This process is performed iteratively
until each vertex has been included in a route.

In a route-first, cluster-second method, a TSP tour containing all of the customers in the VRP
instance is constructed, after which segments of the tour are segmented into feasible routes.
Beasly [12] was the first to propose segmentation of a TSP tour into routes using Dijkstra’s
shortest path-finding algorithm. Route-first, cluster-second approaches are, however, typically
not competitive with other heuristics [134].

3.3 Metaheuristics

In order not to converge to a local optimum of a problem instance, a structured approach must
be adopted to utilise the information gathered during the search for solutions, in order to guide
the search towards a global optimum of the problem instance [88]. A metaheuristic is a gen-
eral solution method that governs the interaction between local improvement procedures and
higher-level exploration strategies, in order to perform a robust search of the feasible region of a
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problem instance [58]. This allows the search process to escape from local optima, thereby hope-
fully approximating a global optimum. Metaheuristics provide a general structure and strategy
guidelines which may be applied to any type of problem, resulting in a more general solution
approach than simple heuristics [88]. Furthermore, metaheuristics typically perform a much
more thorough search of the solution space than heuristics by allowing for the consideration of
non-improving and sometimes infeasible moves, as well as the recombination of current solutions
to create new ones [29].

Braekers and Ramaekers [16] performed a taxonomic review of the VRP literature published
between the beginning of 2009 and the middle of 2015, and reported that more than 70% of the
articles reviewed employed metaheuristics as a proposed solution method. Elshaer and Awad [44]
proposed a taxonomy for metaheuristics tailored to solve the VRP and its variants. An adapted
classification tree of this taxonomy is illustrated in Figure 3.9. Metaheuristics may be classified
as either trajectory-based or population-based. These two classes di↵er in the number of candidate
solutions maintained during the search process. In trajectory-based methods, a single candidate
solution is perturbed during iteration t from a current solution xt to a new solution xt+1 which
resides in the neighbourhood N(xt) of xt, until a stopping criterion is met. The objective
function value f(xt+1) of the new solution xt+1 is not necessarily better than the objective
function value f(xt) of the previous solution xt. In trajectory-based methods, it is therefore
required to employ techniques to avoid cycling [134]. Trajectory-based methods are exploitation-
orientated, since they intensify the search for solutions in promising areas of the feasible region
of a problem instance. In population-based methods, on the other hand, a set of candidate
solutions is iteratively maintained and improved simultaneously until a stopping criterion is
met. Population-based methods are exploration-orientated, since they explore di↵erent areas of
the feasible region by considering multiple candidate solutions simultaneously.

Metaheuristics
Variable neighbourhood search

Simulated annealing

Large neighbourhood search

      Adaptive large
neighbourhood search

Tabu search

Iterated local search

Guided local search

Greedy randomised adaptive
        search procedure

Particle swarm optimisation

Ant colony optimisation

Biogeography-based
     optimisation

Bee colony optimisation

Evolutionary algorithm
Differential evolution

Genetic algorithm

Evolutionary programming

Estimation of distribution
           algorithm

Evolutionary strategy

Genetic programming

Cultural algorithm

Scatter search

Path relinking

Co-evolutionary algorithms

Trajectory-based

Population-based

Swarm intelligence

Figure 3.9: A classification tree of metaheuristic methods for VRPs (adapted from [44]).
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3.3.1 Trajectory-based metaheuristics

The principle of iterated local search (ILS) was first introduced by Baxter [11] in 1981. Accord-
ing to this metaheuristic, escape occurs form local optima by perturbing a current solution and
performing a local search procedure, starting from the perturbed solution. During iteration t,
(1) the current solution xt is perturbed to form an intermediate solution x

0
t, (2) a local search

procedure is applied, starting from x
0
t until a local optimum is reached, and (3) x

0
t is either

accepted as the new solution used during the next iteration (i.e. xt+1 = x
0
t) or rejected (i.e.

xt+1 = xt), according to an acceptance criterion [45]. The perturbation mechanism and accep-
tance criterion jointly control the trade-o↵ between diversification and intensification during the
search [15]. A successful ILS metaheuristic for solving CVRP instances was proposed by Chen
et al. [22] in 2010. In this metaheuristic, the perturbation strategy is based on the exchange of
a number of consecutively visited customers.

The method of simulated annealing (SA), proposed by Kirkpatrick et al. [78] in 1983, is based on
a simulation of the statistical mechanics of annealing in solids to solve combinatorial optimisation
problems. In condensed matter physics, annealing is a process during which a solid is melted
by increasing its temperature, after which the temperature is gradually lowered in stages until
the solid reaches a state of low energy, reducing the hardness and making it more workable [54].
An early implementation of simulated annealing in the context of solving VRP instances was
proposed by Robusté et al. [116] in 1990. In the method of SA, cycling is avoided by randomly
selecting a solution x in N(xt) during each iteration t. If the objective function value f(x) is
better than f(xt), then xt+1 = x, otherwise

xt+1 =

⇢
x with probability pt,
xt with probability 1� pt,

where pt is usually a decreasing function of t and f(x)� f(xt), often defined as

pt = exp(�[f(x)� f(xt)]/✓t),

where ✓t denotes a temperature parameter during iteration t [137]. During the SA procedure,
the temperature parameter is progressively lowered according to a pre-defined cooling schedule.
The method of SA exhibits the desired property of asymptotically converging towards the global
optimum of a problem instance if allowed enough search time [54].

Tabu search was proposed by Glover [56] in 1986. According to this method, the best solution
in the neighbourhood N(xt) of the current solution xt is selected as the current solution for the
following iteration xt+1, regardless of whether f(xt+1) is better than f(xt), therefore allowing
the search to escape from local optima. Furthermore, cycling is avoided by maintaining a short-
term memory, called a tabu list. Any solution in N(xt), which is also in the tabu-list, may
not be selected as the new solution for the next iteration. Willard [143] was among the first to
propose tabu search for solving VRP instances approximately in 1989.

Feo and Resende [47] proposed the greedy randomised adaptive search procedure (GRASP) in
1989 for solving combinatorial optimisation problems. Kontoravdis and Bard [81] proposed a
GRASP implementation tailored for solving VRPTW instances in 1995. During each iteration
of this procedure, (1) a feasible solution is constructed and (2) a local search procedure is applied
to the solution constructed. When constructing a feasible solution, a greedy search heuristic is
employed to build up a solution iteratively by randomly selecting the best elements from a set
of candidate elements, called the restricted candidate list, which is ordered according to a greedy
approach [15].
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Variable neighbourhood search (VNS), proposed by Mladenovic [101] in 1995, is another trajectory-
based metaheuristic in which a single solution xt is improved by exploring dynamically changing
neighbourhoods. VNS was originally proposed for solving combinatorial optimisation problems
in general and was illustrated by solving TSP instances. Kytöjoki et al. [83] proposed a suc-
cessful VNS for solving large VRP instances in 2007. This method requires a predefined set
of neighbourhood structures, often ordered as a sequence N1, N2, . . . , Nn of neighbourhoods in
increasing order of cardinality. Three steps are performed during each iteration, namely shaking,
local search, and moving. Starting with a randomly generated initial solution and n = 1 during
each iteration, (1) shaking is performed during which a solution x

0
t is randomly selected from the

n
th neighbourhood of solution xt, (2) a local search procedure is performed, starting from the so-

lution x
0
t, and (3) if the solution x

0
t is better than the current solution xt, then xt+1 = x

0
t, n 1,

and the cycle is restarted; otherwise xt+1 = xt, the algorithm moves to the next neighbourhood
(i.e. n  n + 1), and another iteration is performed. VNS performs well if the neighbourhood
structures contain di↵erent local optima, allowing the search to escape from one local optimum
to another [15].

Guided local search (GLS), proposed by Voudouris [141] in 1997, makes use of a memory struc-
ture to change the objective function dynamically. The result is called an augmented objective
function and is based on local optima found previously during the application of a local search
procedure. First, a set of features ftn is defined for n 2 {1, . . . , nmax}, where nmax denotes the
number of features. In the case of the VRP, a feature fti may represent the presence of an arc
from one vertex to another in a candidate solution. Furthermore, a penalty value pi is associated
with each feature fti. The augmented objective function f

0 of a solution x is calculated as

f
0(x) = f(x) + �

nmaxX

i=1

piIi(x),

where f(x) denotes the normal objective function value of solution x, � is an input parameter
to the algorithm, and Ii(x) is a Boolean variable assuming the value one if solution x exhibits
feature fti, or zero otherwise. Initially, each penalty value is assigned the value zero. When a
local optimum is reached upon applying a local search procedure, the penalty values are updated
to penalise features incurring a high cost. During future iterations, solutions exhibiting other
features will therefore become more attractive, allowing the search to escape from local optima.
A large value of � encourages diversification, whereas a small value of � intensifies the search in
the current area [15]. Kilby et al. [77] were among the first to propose a GLS implementation
tailored for solving VRPTW instances in 1999.

Large neighbourhood search (LNS) was proposed by Shaw [121] in 1998. During the execution
of this trajectory-based metaheuristic, a starting solution is partially destroyed according to
a so-called destructive heuristic and then rebuilt according to a constructive heuristic, with
multiple destructive and constructive heuristics available to choose from during each iteration.
In classical LNS metaheuristics, the selection of the destructive heuristic and the constructive
heuristic utilised during each iteration is probabilistic. In a variant of LNS, called adaptive
LNS (ALNS), the selection of destructive and constructive heuristics is, however, determined
stochastically, based on the previous performances of the available heuristics during the search.
Heuristics that previously yielded good results will have a higher probability of being selected
during future iterations [45]. A successful ALNS metaheuristic in the context of solving VRP
instances was proposed by Pisinger and Ropke [107] in 2007.
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3.3.2 Population-based metaheuristics

A population-based metaheuristic may further be classified as either an evolutionary algorithm
(EA) or as exhibiting swarm intelligence (SI). EAs are based on the concept of species evolving
and adapting to their environments over time, whereas SI methods are based on the behaviour
of elements in decentralised and self-organised systems, such as ant colonies, flocks of birds, or
schools of fish [10].

Evolutionary algorithms

The notion of an evolutionary strategy (ES), proposed by Reschenberg in 1965 [112], was inspired
by Darwin’s theory of natural selection [35]. The principle of natural selection is imitated by
means of a parent selection and mutation process. The first ES, called a two-membered ES,
was proposed as an approach towards parameter optimisation [15]. In a two-membered ES,
the population consists of a single parent producing a single o↵spring with the better solution
between the two forming the population during the next iteration. Further development of
the notion of a two-membered ES resulted in multi-membered ESs, consisting of two versions
proposed by Schwefel [120] in 1981, the (µ+�)-ES and the (µ,�)-ES, incorporating both mutation
and a recombination operators. In a (µ+�)-ES, parents are selected from a population consisting
of µ individuals to generate � � 1 o↵spring by means of recombination and mutation, after which
the � worst solutions are discarded in order to maintain a population size of µ individuals during
each iteration. In a (µ,�)-ES, where � > µ, � o↵spring are generated, after which the µ best
o↵spring form the population during the next iteration. A solution x is encoded by the decision
variables of the optimisation problem instance under consideration as x = (x1, x2, . . . , xn), where
n denotes the number of decision variables in the problem instance. According to the mutation
operator, a mutation value zi = N(0,�) is drawn from a normal distribution with zero mean and
standard deviation � for i = 1, . . . , n, with � called the mutation step size. For each decision
variable i in a solution encoding, the mutation value zi is added to xi to form an o↵spring y. The
mutation step size � may be constant over time or it may be adjusted dynamically, based on the
number of iterations or feedback received during the search process [15]. A popular method for
adjusting the mutation step size is the 1/5 success rule. This rule states that if more than one
out of the last five o↵spring generated resulted in a success, the mutation step size is increased
to diversify the search, whereas if none of the last five created o↵spring resulted in a success, the
mutation step size is decreased in order to intensify the search; otherwise no change is made [15].
Homberger and Gehring [70] proposed two successful ESs tailored for solving VRPTW instances
in 1999.

A class of metaheuristics similar to ESs is Evolutionary programming (EP), proposed by Fogel
et al. [49] in 1966. EP does not, however, include a recombination operator when generating
o↵spring. In EP, parent selection is probabilistic and mutation is the only operator used to
generate o↵spring. Solutions are also encoded by their decision variable values and the same
mutation operator is applied as in ESs. Due to its similarity to ES, EP is not employed as
often [15]. In 1997, Porto and Fogel [108] implemented EP for optimising the behaviour of a
fleet of military vehicles, which included the routing of these vehicles.

One of the most popular methods in the class of EAs is the genetic algorithm (GA), also
inspired by Darwin’s theory of natural selection [35]. Since Holland [69] proposed the first
GA in 1975, many variations tailored for specific problem types have been proposed. The
work of Prins [110] in 2004 lead to a breakthrough in the success of using GAs for solving
VRP instances [137]. A pure GA is a generic solution paradigm that allows for relatively
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easy adaptation to solve a wide variety of problem types [54]. According to this paradigm, a
population of individuals, representing candidate solutions to an optimisation problem encoded
as strings, evolves from one generation to the next as a result of operations simulating the
process of natural selection. The process starts with an initial population of individuals which
is usually generated randomly. During each iteration, (1) two parents are selected stochastically
according to a bias based on the objective function of the problem instance, (2) o↵spring are
generated by invoking a crossover procedure during which the genetic features of the parents
are combined to form the genetic features of the o↵spring, (3) mutations occasionally occur
within the o↵spring, and (4) the o↵spring and a subset of the current population are retained
to form the new population considered during the next iteration. These steps are iterated until
a stopping criterion is met and the best feasible solution found throughout the search process is
returned [88]. Due to the considerable success of GAs when solving single objective optimisation
problems, they have been adapted for solving multi-objective optimisation problems as well. The
notion of genetic programming (GP), proposed by Koza [82] in 1992, is an EA similar to the
GA, although solutions are not encoded as strings but rather as computer programs which may
be executed [15]. These programs are represented as syntax trees which undergo the same
operations as those utilised in GAs.

Scatter search (SS) and path relinking (PR) were proposed by Glover [55] in 1977. An early
application of SS and RR for solving VRP instances in particular was proposed by Rochat and
Taillard [117] in 1995. During both SS and PR, a subset of the population of individuals is
selected to form a set of reference individuals. During each iteration, (1) new individuals are
created from combinations of the individuals in the reference set, (2) these solutions are modified
according to a heuristic procedure, and (3) the reference set is updated by including some of
these modified solutions. The reference set is typically relatively small compared to the size of
populations in classical EAs. Furthermore, the selection criteria for individuals to be included in
the reference set not only depends on the objective function values of solutions, but also on the
diversity contribution of each solution to the reference set. SS and PR di↵er in the way that new
individuals are generated. In SS, new solutions are generated as linear combinations of subsets
of the reference solutions in Euclidean space, and the heuristic applied to each individual often
serves the purpose of yielding integer values for integer-constrained variables in the solution. In
PR, on the other hand, new solutions are generated as combinations of subsets of the reference
solutions in the neighbourhood space. Generating solutions in the neighbourhood space leads
to new solutions on the path from the initiating solution and the guiding solution. Generating
solutions in Euclidean space leads to solutions within and beyond solutions in the neighbourhood
space [57].

Co-evolutionary algorithms (CoEAs), proposed by Hillis [68] in 1990, are inspired by the phe-
nomenon in nature where the evolutions of two species influence each other, a notion called
co-evolution. Examples include predators and prey or insects and the flowers that they polli-
nate [15]. In contrast to other EAs, the fitness of an individual is not determined independently
of those of other individuals in the population, but rather as a function of its interactions
with other individuals. Two categories of CoEAs exist, namely cooperative co-evolution and
competitive co-evolution. Cooperative co-evaluation involves simulating the mutually beneficial
relationships between species, such as the relationship between insects and the flowers that they
pollinate. In these types of CoEAs, the problem is often decomposed into a collection of smaller,
easier sub-problems, each assigned to a population. Individuals therefore represent potential
components of a larger solution and the evolution of their populations occur simultaneously, but
in an isolated fashion, with interaction only taking place to determine fitness values. The way
in which a problem is decomposed may either be static (i.e. remain fixed for the entire duration
of the algorithm) or dynamic (i.e. change over time). Competitive co-evolution, on the other
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hand, involves simulating opposing relationships between species, such as between predators
and prey. In such a CoEA, the fitness of an individual is evaluated in terms of its competition
with other individuals. Changes in one individual may result in changes in another individual
competing for a better fitness value, therefore resulting in higher-quality individuals emerging
over time. In 2002, Machado et al. [93] implemented a cooperative CoEA specifically for solving
VRP instances.

Cultural algorithms (CAs) are a class of evolutionary algorithms based on the cultural evolution
process observed in nature [15]. Reynolds [115] proposed the first CA in 1994 by developing
an optimisation approach according to which cultural evolution is interpreted as both a micro-
evolutionary process (transmission of genetic material between individuals in a population) and
a macro-evolutionary process (knowledge gained from individual experiences). Ma et al. [91]
applied a CA in the context of vehicle routing in 2008. A CA comprises three components, which
are (1) the population of individuals that represent the micro-evolutionary process, consisting of
operations often included in GAs such as generating o↵spring, mutation, and survivor selection,
(2) a belief space, which represents the macro-evolutionary process, and stores the knowledge
gained by all individuals in the population, and (3) the communication protocol that governs
the communication between the population and the belief space. During each iteration of a CA,
all individuals in the population are evaluated, after which some are allowed to contribute their
knowledge to the belief space. O↵spring are then generated by invoking various operators with a
view to achieve desirable behaviours stored in the belief space. Finally, individuals are selected
to form the generation during the next iteration.

Estimation of distribution algorithms (EDAs), proposed by Mühlenbein and Paaß [102] in 1996,
are based on probabilistic models. The crossover and mutation operators of traditional EAs are
replaced by (1) the estimation of the probability distribution of selected individuals, and (2) the
generation of a new population by sampling from this probability distribution. New solutions
are then included in the population for use during the next generation, leading the search to
promising areas of the feasible region. The probabilistic models employed in EDAs depend
on the problem being solved [15]. Pérez-Rodŕıguez and Hernández-Aguirre [106] proposed a
successful hybrid EDA for solving VRPTW instances in 2019.

In di↵erential evolution (DE), originally proposed by Storn and Price [125] in 1997 for solving
continuous optimisation problem instances, a mutant individual is created from a base individ-
ual in the population. A set of target individuals are then utilised, each creating an o↵spring
with the mutant individual by invoking a crossover procedure to generate a set of trial individ-
uals. Each trial vector is then compared with its corresponding target individual and the best
individual is retained in the population. Variants of this paradigm of EAs are conventionally
named DE/x/y/z, where x denotes the way in which the base individual is selected (for ex-
ample, the best individual or randomly), y denotes the number of target individuals selected
from the population, and z denotes the crossover procedure to be used [109]. An advantage of
DE algorithms is that only three input parameters control the search process. Similar to GAs,
DE algorithms have achieved considerable success in solving single-objective optimisation prob-
lems and have therefore also been adapted for solving multi-objective optimisation problems as
well [97]. Mingyong and Erbao [100] were the first to propose a DE implementation specifically
for solving VRP instances in 2010.

Swarm intelligence

A class of swarm intelligence metaheuristics inspired by the communication and cooperation
mechanisms observed between ants, is ant colony optimisation (ACO), proposed by Dorigo et
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al. [40] in 1991. ACO was originally proposed for solving TSP instances, after which Kawamura
et al. [75] proposed an ACO algorithm for solving VRP instances in 1998. When searching for
food, an ant releases a chemical compound, called a pheromone, along its path [54]. The amount
of pheromone along a path depends on the length of the path and the quality of the food source.
Ants are attracted to paths along which more pheromone has been released. They then, in turn,
release more pheromone along the same paths, resulting in an e�cient reinforcement procedure
for ant colonies to procure food [134]. In the context of routing problems, new solutions are
generated by means of a savings-based procedure and local search. Instead of utilising a savings
value of sij = ci0 + c0j � cij , as was done in the savings algorithm of Clarke and Wright [26], an

attractiveness value �ij = ⌧
↵
ij � s

�
ij is used. The pheromone value ⌧↵ij is a representation of the

success associated with combining vertices i and j during previous iterations, and ↵ and � are
input parameter values to the algorithm. The combination of vertices i and j takes place with
probability pij = �ij/(

P
(h,l)2⌦k

�hl), where ⌦k is the set of feasible (i, j) combinations yielding
the k best savings. The probability of combining i and j therefore increases as the pheromone
value ⌧↵ij increases, just as the probability of an ant following a specific path increases when
more pheromone is released along that path.

Particle swarm optimisation (PSO), proposed by Kennedy and Eberhart [76] in 1995, involves
simulating the flocking behaviour of birds to solve optimisation problems. Chen et al. [21]
proposed a discrete PSO algorithm for solving CVRP instances in 2006. In the PSO algorithm,
many particles, each representing a candidate solution to an optimisation problem instance under

consideration, are randomly generated, and each particle i is associated with a location
�!
Xi in

the search space as well as a velocity
�!
Vi . Furthermore, each particle i is connected to a subset of

the total population of particles, called its neighbourhood. Moreover, each particle i is equipped
with a memory in which the best location uncovered by the particular particle throughout its

search
�!
Pi, as well as the best location found by any particle in its neighbourhood

�!
Pg, is stored.

During iteration t, the location
�!
Xi and the velocity

�!
Vi of each particle i is perturbed in each

dimension d of the search space, and the memory of each particle is updated. The velocity of a
particle i determines the distance and direction with which it should be perturbed, calculated
as

Vid(t+ 1) = Vid(t) + C1�1(Pid(t)�Xid(t)) + C2�2(Pigd(t)�Xid(t)),

where �1 and �2 are uniformly generated numbers in the range [0,1], and C1 and C2 are constants,
called acceleration coe�cients. The updated location of a particle i is then calculated as

Xid(t+ 1) = Xid(t) + Vid(t+ 1).

The basic PSO algorithm, however, often converges to a local optimum of the problem instance
under consideration [15].

Bee colony optimisation (BCO), first proposed by Lučić and Teodorović [89] in 2001, is a class
of optimisation algorithms based on imitations of various behaviours of honey bee colonies, such
as waggle dancing, food foraging, the role of the queen bee, task selection, mating, and many
more [74]. Lučić and Teodorović [90] implemented BCO for solving stochastic VRP instances
in 2003. Some of the most widely used BCO algorithms include the marriage in honey bees
optimisation algorithm [1] proposed in 2001 in which the mating and marriage of the queen
bee in beehives are simulated, the discrete bee dance algorithm [62] proposed in 2003 in which
the waggle dance of bees for communicating food locations is simulated, and the queen bee
evolutionary algorithm [73] also proposed 2003 in which the structure of a bee hive is simulated.
A survey of algorithms simulating bee swarm intelligence was performed by Karaboga and
Akay [74].
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Biogeography-based optimisation (BBO), proposed by Simon [122] in 2008, is an optimisation
approach inspired by MacArthur and Wilson’s [92] equilibrium theory of island biogeography.
According to the equilibrium theory of island biogeography, the number of species inhabiting an
island depends on the balance between new species immigrating to the island and established
species emigrating from the island. According to the basic BBO algorithm, a set of candidate
solutions, called islands, share information with each other. Each island is associated with a
habitat suitability index, representing the fitness of a candidate solution to the optimisation
problem instance under consideration, as well as an immigration rate � and an emigration rate
µ. The immigration rate �i and the emigration rate µi of island i may be calculated as

�i = I

 
1�

Si

Smax

!
and µi = E

 
Si

Smax

!
,

where I denotes the maximum immigration rate (when no species is established on an island),
E denotes the maximum emigration rate (when all possible species, denoted by Smax, are es-
tablished on an island), and Si denotes the number of species currently established on island
i. Islands hosting many established species (good solutions) therefore often share their features
with islands hosting fewer established species (poor solutions), in order to improve candidate
solutions and thus approximate a global optimum. In 2011, Ergezer and Simon [46] proposed a
framework for applying BBO in the specific context of solving discrete combinatorial optimisa-
tion problems, such as the VRP.

3.4 A comparison of metaheuristics

Many metaheuristics have been proposed for solving VRP instances approximately, with most
of the powerful ones often being hybridisations of stand-alone techniques proposed earlier [137].
Toth and Vigo [137] compared a set of successful metaheuristics in terms of their solution
quality and computational time. The metaheursitics considered in their comparison, along with
appropriate references and the algorithmic approaches adopted, are summarised in Table 3.2.
The comparison was based on the reported results of these metaheuristics when solving two
widely used benchmark data sets for the VRP. The first data set, proposed by Christofides et
al. [24], is referred to as the CMT data set and contains fourteen instances ranging in size from
50 to 200 customers. The second data set, proposed by Golden et al. [60], is referred to as the
GWKC data set and contains twenty instances involving 240 to 483 customers. The locations
of customers in the GWKC instances are distributed spatially according to symmetric patterns,
whereas the CMT instances have more realistic locations of customers. When evaluating the
computational time and solution quality of the di↵erent metaheuristics in the context of solving
the CMT instances, the computational time varied significantly, although relatively good solution
quality was achieved by all metaheuristics. When solving the GWKC instances, on the other
hand, a larger spread in solution quality was observed and even new best solutions were found.
The GWKC instances may therefore be used to compare the computational time and solution
quality of the metaheuristics.

The run times reported by the authors of the metaheursitics were normalised to match the
corresponding run time on an Intel Core i7 CPU operating at 2.93 GHz. The run time required
and average gap associated with the best-known solutions to the GWKC benchmark instances
are plotted in Figure 3.10 for each of the metaheuristics listed in Table 3.2. Metaheuristics for
which more than one configuration have been published are indicated by an “A”, “B” or “C”
after the identifier of the metaheuristic, with “A” denoting the most powerful configuration. The
two configurations marked in red in Figure 3.10, represent the HGSADC algorithm, proposed by
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Table 3.2: The set of metaheuristics included in the comparison carried out by Toth and Vigo [137].

Heuristic Reference Approach

CLM01 Cordeau et al. [30] Tabu Search
TV03 Toth and Vigo [136] Granular Tabu Search
RDH04 Reiman et al. [113] Ant Colony Optimisation
T05 Tarantilis [132] Adaptive Memory + Tabu Search
MB07 Mester and Bräysy [96] Evolutionary Algorithm + Evolutionary

Local Search
PR07 Pisinger and Ropke [107] Adaptive Large Neighbourhood Search
NB09 Nagata and Bräysy [103] Hybrid Genetic Algorithm
P09 Prins [111] Greedy Randomise Adaptive Search

Procedure + Evolutionary Local Search
GGW10 Groër et al. [63] Route-to-Route + Evolutionary

Computation
ZK10 Zachariadus and Kiranoudis [146] Guided Local Search + Tabu Search
GGW11 Groër et al. [64] Parallel Route-to-Route
CM12 Cordeau and Maischberger [31] Parallel Iterated Tabu Search
JCL12 Jin et al. [71] Parallel Cooperative Tabu Search
VCGLR12 Vidal et al. [139] Hybrid Genetic Algorithm
SUO13 Subramanian et al. [127] Set Partitioning + Iterated Local Search

Vidal et al. [140] in 2012, and an improved version of this algorithm published in 2013, denoted
by VCGLR12-B and VCGLR12-A, respectively. Both of these configurations are non-dominated
in terms of their solution quality and run time compared with other metaheuristics. Moreover,
these algorithmic configurations appear on the elbow of the Pareto front in Figure 3.10 which
represents an e↵ective trade-o↵ between relatively small optimality gaps achieved upon having
expended relatively limited computational resources. The 2013 algorithmic version achieved
the best solution quality of all metaheuristics that have a normalised run time of less than ten
thousand seconds. Furthermore, the HGSADC algorithm is known to be able to solve a wide
variety of VRP variants such as the PVRP, the MDVRP, the VRPTW, or any combination of
these variants, and it can easily be adapted to solve other VRP variants. For this reason, the
HGSADC algorithm was selected as solution methodology for the VRP models proposed in this
thesis.

3.5 The HGSADC algorithm

In 2013, Vidal et al. [140] proposed the HGSADC algorithm for solving a large class of VRPs
with time-windows approximately. This algorithm is similar to the one proposed in 2012 by
Vidal et al. [139], but includes an additional decomposition phase aimed at e↵ectively addressing
large problem instances. The later algorithm also includes new move evaluation techniques in
the neighbourhood search phase. Moreover, the algorithm reportedly outperforms all current
state-of-the-art algorithms on benchmark instances representing any combination of periodic,
multi-depot, site-dependent, and duration-constrained VRPs with time-windows. It combines
the exploration breadth of genetic algorithms with the improvement capabilities of local search
metaheuristics, and employs powerful population-diversity management schemes.
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Figure 3.10: The normalised run time and average gap to the best-known solutions for the GWKC
benchmark instances for each of the metaheuristics listed in Table 3.2. Metaheuristics for which more
than one algorithmic configuration have been proposed are indicated by an “A”, “B” or “C” after the
identifier of the metaheuristic, with “A” denoting the most powerful configuration [137].

3.5.1 Solution representation

Each individual P in the population of candidate solutions maintained by the HGSADC al-
gorithm is presented as a set of three chromosomes. They are the pattern chromosome, the
depot chromosome, and the giant tour chromosome, as illustrated in Figure 3.11. The giant
tour chromosome is the most important, since the other two chromosomes can be deduced from
this chromosome. The pattern chromosomes registers, for each customer i, its so-called pattern
⇡i(P ), which is a set containing the periods of the planning horizon during which customer i

is visited. The depot chromosome registers the depot assignment �i(P ) of customer i (each
customer may only be assigned to a single depot). The final chromosome, the giant tour chro-
mosome, contains, for each depot o and period ` combination, a sequence of customers Vo`(P )
which is the concatenation of all routes from depot o during period ` in an arbitrary manner,
with the removal of visits to the depot. In Figure 3.11, for example, the two routes 0, 4, 6, 0 and
0, 3, 2, 0 are visible, departing from depot 0 during period 1, and these routes are presented as
a giant tour chromosome V01(P ) = 4, 6, 3, 2 which is the concatenation of the two routes in an
arbitrary order, excluding visits to the depot. The giant tour chromosome allows for simple and
e�cient crossovers between individuals.

In order to extract routes from a giant tour chromosome, a so-called split algorithm is invoked
to find optimal route delimiters within the giant tour (such that the load associated with each
route is less than double the capacity of the delivery vehicle). Prins [110] reported the first
successful utilisation of a giant tour representation within a genetic algorithm by proposing a
split algorithm for extracting optimal routes from giant tours. His split algorithm was based on
Bellman’s shortest path finding algorithm which can be adapted to the current VRP setting by
incorporating penalisation costs and a limited fleet size. The split algorithm of Prins [110] can be
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Figure 3.11: Three chromosomes representing a candidate solution to an MDPVRP instance produced
by the HGSADC algorithm [140].

implemented in O(n2) time for unlimited fleets, where n denotes the number of customers, but
an updated version of the algorithm, proposed by Vidal [138], runs in O(n) time for unlimited
fleets and in O(nm) time for limited fleets containing m delivery vehicles. The Linear split
algorithm for a limited fleet is described in pseudo-form in Algorithm 3.3.

Algorithm 3.3: Linear split

p[0] 01

⇤ (0)2

for t = 1 to n do3

p[t] p[front] + f(front, t)4

pred[t] front5

if t < n then6

if not dominates(back, t) then7

while |⇤| > 0 and dominates(t,back) do8

popBack()9

pushBack()10

while Q[t+ 1] > Q+Q[front] do11

popFront()12

Let D[i] denote the cumulative distance and let Q[i] denote the cumulative load associated with
customers 1 to i 2 {1, . . . , n}, computed as

D[i] =
i�1X

k=1

dk,k+1

and

Q[i] =
iX

k=1

qk,
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respectively, where di,i+1 denotes the cost associated with travelling from vertex i to the next
vertex in the giant tour, and q[i] denotes the demand volume associated with vertex i. Further-
more, for i < j, let c(i, j) denote the cost associated with departing from the depot, visiting
customers i+ 1, . . . , j, and returning to the depot, computed as

c(i, j) = d0,i+1 +D[j]�D[i+ 1] + dj,0,

where the arc (i, j) is only present if the demand volume associated with the route visiting
customers i, . . . , j does not exceed the capacity Q of a delivery vehicle (i.e. if Q[j]�Q[i]  Q).
Let ⇤ = (�1, . . . ,�|⇤|) denote a double-ended queue to which the following operations may be
applied in O(n) time:

front � access the oldest element in the queue,

front2 � access the second oldest element in the queue,

back � access the most recent element in the queue,

push back � add an element to the queue,

pop front � remove the oldest element from the queue,

pop back � remove the most recent element from the queue.

A function f(i, x) denotes the cost incurred when extending the route from a predecessor node i
to a node x 2 {i+1, . . . , n}. This function returns an infinite value if the arc (i, j) /2 A because
the cumulative volume of demand delivered to customers {i, . . . , x} exceeds the capacity of a
delivery vehicle. The function may be defined as

f(i, x) =

⇢
p[i] + c(i, x), Q[x]�Q[i]  Q,

1, otherwise.

Furthermore, a boolean function dominates(back, t) returns True if the node i dominates node
j as a predecessor, or the value False otherwise. The function is defined as

dominates(i, j) ⌘
⇢

p[i] + d0,i+1 �D[i+ 1]  p[j] + d0,j+1 �D[j + 1] and Q[i] = Q[j] if i  j,

p[i] + d0,i+1 �D[i+ 1]  p[j] + d0,j+1 �D[j + 1] if i > j.

Algorithm 3.3 does not iterate over all arcs to compute minimum-cost paths, but rather main-
tains a set of non-dominated predecessors in the queue ⇤. For each node t 2 {1, . . . , n}, this
structure facilitates the identification of a best predecessor for t, stored in pred[t], along with
the cost of a shortest path from vertex 0 to vertex t, stored in p[t]. The final routes are then
determined by working backwards through the predecessor matrix pred[i].

3.5.2 Solution evaluation

In the HGSADC algorithm, the population consists of both feasible and infeasible individuals,
stored in two separate subpopulations. A route r which forms part of a solution P is characterised
by its load q(r), its distance c(r), its time-warp tw(r), and its duration ⌧(r). Time-warp is the
opposite of waiting time, where a driver arrives at a customer after the end of its specified
time-window, as illustrated in Figure 3.12. Drivers are allowed to wait at a customer until the
start of its time-window, but time-warp renders a route infeasible. When a driver arrives late at
a customer, time-warp is penalised during evaluation of the route, and the driver is assumed to
leave the customer at the end of its time-window. Routes are, in fact, allowed to be infeasible in
terms of their load, duration, and time-warp, by penalising these infeasibilities with appropriate
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weights when calculating the costs associated with these routes. The penalised cost of a route
r is calculated as

�(r) = c(r) + !
D max{0, ⌧(r)�D}+ !

Qmax{0, q(r)�Q}+ !
TW ⇥ tw(r),

where D denotes the maximum duration of a route, Q denotes the maximum capacity of a
delivery vehicle, and !D, !Q, and !TW denote the weights with which infeasible loads, durations,
and time-warps are penalised in routes, respectively. The penalised cost �(P ) of a solution is
then calculated as the sum of the penalised costs of all its routes.

Figure 3.12: A graphical illustration of waiting time and time-warp for the time-windows (denoted by
brackets) of five customers v1, . . . , v5.

Any individual P in the population is characterised by its penalised cost �(P ) and its diversity
contribution �(P ). The diversity contribution of an individual is defined as the average Ham-
ming distance � from the individual to its closest neighbours Nclose in the subpopulation. That
is,

�(P ) =
1

Nclose

X

P22Nclose

�(P, P2).

Any individual P in the population is also evaluated based on its biased fitness

BF (P ) = fit(P ) +

 
1�

Nelite

Nindiv

!
dc(P ),

where fit(P ) denotes the rank of an individual P in the subpopulation in terms of its pe-
nalised cost cost �(P ), and where dc(P ) denotes the rank of the individual in the subpopulation
with respect to its diversity contribution �(P ). This ensures that high-quality individuals are
maintained in the population, but also that the population is diverse, and therefore su�ciently
explores the solution space.

3.5.3 Pseudo-code description

The HGSADC algorithm is described in pseudo-code form in Algorithm 3.4. First, a population
is initialised by creating 4µ individuals. An individual is created by randomly assigning each
customer to a pattern and randomly inserting the customer into routes according to its selected
pattern. Each initialised individual undergoes eduction and then repair, after which it is inserted
into the appropriate subpopulation. The education and repair phases are essential for fast pro-
gression to high-quality solutions, but incur 90–95% of the computational e↵ort of the algorithm.
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The education phase is performed by invoking two local search procedures, namely route im-
provement (RI) and pattern improvement (PI), which are called in the order RI, PI, and then RI
again. PI is performed by evaluating, for each customer in random order, the best combination
of re-insertions within periods. Any improving re-insertion is immediately performed until all
possible insertions have been evaluated. RI is performed by exploring a neighbourhood based
on relocations and exchanges of customer visits, for each period. The following neighbourhoods
are evaluated:

• N1 (Swap and relocate): Swap two disjoint visitation sequences containing between zero
and two visits. Combine this with the reversal of one or both sequences.

• N2 (2-opt*): Swap two visitation sequences involving the extremities of two distinct routes.

• N3 (2-opt): Reverse a visitation sequence.

Neighbourhoods N1 and N2 may involve one empty sequence (i.e. one of the two sequences may
contain no customer visits). Each neighbourhood is explored in random order and the best
improving move is implemented as soon as 5% of the neighbourhood has been explored since
having accepted the last improving move. The neighbourhoods are pruned based on customer
correlation measures with a view to improve the computational e�ciency of the education phase.
The neighbourhood of a customer vi is defined as the set vj 2 �(vi) consisting of the |�| closest
customers vj determined according to the correlation measure

� (vi, vj) = cij + �
WT max {ej � ⌧i � tij � `i, 0}+ �

TW max {ei + ⌧i + tij � `j , 0} ,

where cij is the cost associated with travelling from customer i to customer j, ei is the earliest
service start time at customer i, `i is the latest service start time at customer i, ⌧i is the service
duration at customer i, tij is the travel time from customer i to customer j, and �WT and �TW are
coe�cients that form part of the parameter set of the algorithm. The set of correlated customers
�(vi) can be viewed as the best options for a direct visit from customer vi, therefore restricting
the neighbourhood search to a subset of “promising arcs,” and thus lowering computational
e↵ort required during the education phase.

The algorithm iterates for a maximum time limit Tmax or over at most ItNI iterations since
last having improved the best feasible solution. During each iteration, parents are selected
according to a binary tournament selection scheme from the union of both the feasible and
infeasible populations. An o↵spring is then created by invoking the periodic crossover with
insertions (PIX) operator [139] when solving a PVRPTW instance, or the Ordered crossover
operator [36] when solving a VRPTW instance. Both these crossover operators are known to
facilitate important structural changes, yet also allow for small solution refinement [140]. The
PIX crossover is dedicated specifically to periodic routing problems and is designed to combine
high-quality sequences of visits, while allowing for pattern, depot, and route recombinations.
The PIX crossover is described in pseudo-code form in Algorithm 3.5. First, an inheritance rule
is defined. Let ⇤1, ⇤2, and ⇤mix denote the sets of (depot, period) (o, `) couples for which the
o↵spring solution C inherits material from the first parent P1, the second parent P2, or both
parents, respectively. Data are inherited from P1. For (o, `) 2 ⇤1, the sequence of customer
visits in V(o,`)(P1) is copied to V(o,`)(C). For (o, `) 2 ⇤mix, on the other hand, two chromosome
cutting points ↵kl and �kl determine the substring of customer visits in V(o,`)(P1) to be copied
to V(o,`)(C). Thereafter, data are inherited from P2. For (o, `) 2 ⇤2 [ ⇤mix in random order,
visitation of customer i in V(o,`)(P2) is copied to the end of V(o,`)(C) if customer i is already
assigned to depot o or if no depot assignment have been made yet, and the addition of period ` to
the current visitation pattern ⇡i(C) of customer i in solution C is feasible (included in the list of
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Algorithm 3.4: HGSADC [140]

Initialise population1

while number of iterations without imporvement  ItNI , and time  Tmax do2

Select parent solutions P1 and P23

Create o↵spring C from P1 and P2 (crossover)4

Educate C (local search procedure)5

if C infeasible then6

Insert C into infeasible subpopulation,7

Repair with probability Prep8

if C feasible then9

Insert C into feasible subpopulation10

if maximum subpopulation size reached then11

Select survivors12

if best solution not improved for Itdiv iterations then13

Diversify population14

Adjust penalty parameters for infeasibility15

if number of iterations = k ⇥ Itdec where k 2 N then16

Decompose the master problem17

Use HGSADC on each subproblem18

Reconstitute three solutions, and insert them in the population19

Return best feasible solution20

allowable visitation patterns, denoted by Li). Finally, customer services are completed so as to
ensure that each customer is assigned a feasible visiting pattern. The split algorithm is invoked
to extract routes from the current giant tour chromosome of C, and the visitation frequency
of each customer is determined. While customers with unsatisfied visitation frequencies exist,
these customers are selected in random order and an insertion corresponding to the minimum
increase in penalised cost is performed. When the crossover procedure has been completed, the
o↵spring undergoes education, after which it is placed in the appropriate subpopulation (feasible
or infeasible). If it is infeasible, it is repaired with probability Prep and then placed in the feasible
subpopulation if feasible.

Both subpopulations are managed to contain between µ and µ+� individuals (except when the
population is initialised). If any subpopulation size reaches µ+ � individuals, survivor selection
takes place by removing � individuals from the subpopulation in order once again to contain the
minimum number of µ individuals in the subpopulation. A total of � individuals are removed
by first removing duplicate individuals after which the worst individuals are removed in terms
of biased fitness — ensuring that good solutions are maintained in the subpopulation and that
diversity is also maintained.

Another phase that contributes to the diversity of the population, is diversification. This phase
occurs whenever Itdiv iterations have passed since last having improved the best feasible solution.
The best µ/3 individuals are retained in each subpopulation and 4µ individuals are introduced
into the population in the same manner as when the population was initialised.

The penalty parameters !D, !Q, and !
TW are adjusted every one hundred iterations. The

parameter ⇣REF represents the target proportion of feasible individuals. If the feasible portion
of the last one hundred newly generated individuals is between ⇣

REF � 5% and ⇣
REF + 5%,
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Algorithm 3.5: The PIX operator [139]

Step 0: Inheritance rule1

Pick two random numbers between zero and the total number of (depot,period) (o, `)2

couples according to a uniform distribution. Let n1 and n2 be the smallest and the
largest of these numbers, respectively
Randomly select n1 (depot, period) couples to form the set ⇤13

Randomly select n2 � n1 remaining couples to form the set ⇤24

The remaining td� n2 couples make up the set ⇤mix5

Step 1: Inherit data from P16

for each (depot,period) (o, `) belonging to the set ⇤1 or ⇤mix do7

⇤1: Copy the sequence of customer visits from Vo,`(P1) to Vo,`(C)8

⇤mix: Randomly select two chromosome-cutting points ↵kl and �kl according to a9

uniform distribution and copy the ↵kl to �kl substring of Vo,`(P1) to Vo,`(C)

Step 2: Inherit data from P210

for each (depot,period) (o, `) 2 ⇤2 [ ⇤mix selected in random order do11

Consider each customer visit i inVo,`(P2) and copy it to the end of Vo,`(C) when12

(1) The depot choice �i(C) is equal to o or undefined (no visit to i has been copied to13

C yet), and
(2) At least one visit pattern of customer i contains the set ⇡i(C) [ ` of visit periods.14

Step 3: Complete customer services15

Invoke the split algorithm to extract routes for each (depot, period) pair16

if the service frequency requirements are satisfied for all customers then17

Stop18

else19

while customers with unsatisfied frequency requirements exist do20

Randomly select a customer i for which service frequency requirements are not21

satisfied
Let F be the set of admissible (depot,period) (o, `) couples with respect to its22

pattern list Li and the visits already included in C. Let  (i, o, `) be the minimum
penalised cost for the insertion of customer i into a route from depot o during
period `. Insert i into (o⇤, `⇤) = arg min(o,`)2F (i, o, `)
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the penalty parameters remain unchanged. If, however, the portion of feasible newly generated
individuals are below or above this range, the penalty parameters are increased or decreased,
respectively, in order to achieve the target proportion of feasible individuals.

The decompistion phase occurs every Itdec iterations and enables the algorithm to solve large
problem instances e↵ectively. During this phase, the problem is decomposed into smaller sub-
problem instances and the HGSADC algorithm is applied to each of them for Itdec/2 iterations.
An elite individual is uniformly chosen from the 25% best feasible individuals and used to de-
compose the problem. In the VRPTW case, subproblem instances are created by sweeping the
routes of the elite solution circularly around the depot by polar angle and adding routes to the
subproblem instance until a certain number of customers have been included or all the routes
have been swept. In the PVRPTW case, the period assignments of the elite individual can
be fixed to decompose the problem instance naturally and treat each period as a subproblem
instance. Once the HGSADC algorithm has been applied to each subproblem instance, an elite
solution is attained by joining the best feasible solution to each subproblem instance and insert-
ing it into the population. Two additional elite solutions are created in the same manner and
also inserted into the population.

3.5.4 Parameter calibration

A metacalibration approach [95] was adopted in order to identify good parameter values for the
HGSADC algorithm. This approach was adopted due to its ability to perform particularly well
for genetic algorithm calibration [123]. Metacalibration involves invoking metaheuristics to solve
the problem of parameter optimisation [139]. Parameter tuning for the HGSADC algorithm was
performed by means of the evolutionary strategy with covariance matrix adaptation (CMA-ES)
proposed by Hansen and Ostermeier [67]. A set of training instances for various VRP classes was
employed during the calibration process and an appropriate set of parameters was determined
for each VRP class, as indicated in Table 3.3. It was found that this set of parameters appears
to be independent of the VRP class, with the exception of the generation size �. For VRP
classes with time-windows, a separate calibration procedure was performed in order to obtain
good parameter values for �TW and �WT , which balances the role of geometrical and temporal
aspects during neighbourhood pruning in VRP classes with time-windows. It was found that
the performance of the HGSADC algorithm appears to increase with parameter values close to
(�TW

, �
WT ) = (1, 0.2). Furthermore, in order to balance the run time of the algorithm with

those incurred by other authors, the parameter values ItNI = 5000 and Itdec = 2000 were
recommended.

3.6 Approximate multi-objective optimisation

The problem of solving multi-objective optimisation problems approximately has resulted in
a large number of methods being proposed for the task. Crucially, a method is required for
assigning fitness values to solutions in such a manner that all objectives are considered during
selection or evaluation procedures of approximate solution approaches. Many classical methods
are available according to which a vector of objective function values can be scalarised into a
single fitness value. In the objective weighting method, M objectives f1, . . . , fM (which are all
to be minimised) are combined into one overall value

Z =
MX

i=1

wifi(x), x 2X,
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Table 3.3: The results of the parameter calibration performed for the HGSADC algorithm for di↵erent
VRP classes [139].

Parameter Range PVRP MDVRP MDPVRP Final
parameters

µ Population size [5,200] 18 24 30 25
� Number of o↵spring in

a generation
[1,200] 33 87 146 40\70\100

el Proportion of elite individuals,
such that nbElit = el ⇥ µ

[0,1] 0.38 45 0.36 0.4

nc Proportion of close individuals
considered for distance
evaluation, such that
Nclose = nc⇥ µ

[0,0.25] 0.24 0.18 0.15 0.2

Prep Repair rate [0,1] 0.57 0.61 0.33 0.5
h Granularity threshold in RI [0,1] 0.53 0.36 0.35 0.4
⇠
REF Reference proportion of

feasible individuals
[0,1] 0.1 0.3 0.2 0.2

where X represents the feasible region, and wi denotes the weight associated with objective
function fi, such that

PM
i=1wi = 1. The solution returned when employing this method, of

course, depends on the weight vector w = [w1, . . . , wM ]. An advantage of using this method
is that subjective preference of one objective over another can easily be controlled and that
a Pareto-optimal solution is associated with a minimal value of Z in the case of a convex
optimisation problem. A major disadvantage of the objective weighting method, however, is
that Pareto-optimal solutions in non-convex regions of the decision space are masked (i.e. are
not identifiable by large values of Z).

According to the distance functions method, scalarisation is performed using a so-called demand-
level vector ȳ, representing the individual optima of each objective function. Multiple objectives
may be combined into a single value

Z =

"
MX

i=1

|fi(x)� ȳi|r
#1/r

, r � 1, x 2X,

where r is often assigned the value 2. An inappropriate demand-level vector ȳ will, however,
lead to a non-Pareto-optimal solution being returned [124].

According to the min-max method, the relative deviations of the objective function values
from their demand-level values are minimised. For a problem in which all objectives are to be
minimised, the corresponding min-max problem is

minimise F(x) = max[Zi(x)], i = 1, . . . ,M x 2X,

where Zi(x) is calculated for non-negative target optimal values ȳi of each objective function
value fi(x) as

Zi(x) =
fi(x)� ȳi

ȳi
, i = 1, . . . ,M.

This method often returns good solutions when all objectives are of equal importance. Classical
methods are, however, very sensitive to the weights or demand-levels used to scalarise vectors
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and therefore require prior knowledge of the problem being solved [124]. Furthermore, a single
solution is returned in such approaches, whereas it may be preferred to return a set of non-
dominated solutions in order to have many possible solutions to select from, based on the
multiple objectives of the problem.

Srinivas and Deb [124] proposed a non-dominated sorting procedure in 1995 for assigning fitness
values to solutions based on their degree of dominance relative to each other. Instead of only
di↵erentiating between dominated and non-dominated solutions, each solution is assigned a rank
based on the non-dominated front in which it resides. This rank, denoted by F , is assigned a
value by iteratively identifying non-dominated fronts, removing the solutions residing in these
fronts, and repeating the process until no unassigned solutions remain. For example, the first set
of non-dominated solutions may be identified and assigned a rank of F = 1. The subset of non-
dominated solutions with rank F = 1 are then removed, and the new subset of non-dominated
solutions among the remaining solutions are assigned a rank of F = 2. The process is continued
until all solutions have been assigned a rank value. This concept is illustrated graphically in
Figure 3.13 by indicating the non-dominated front (or rank) in which each solution resides.
Solutions 1, 3, and 7 form the first set of non-dominated solutions and are therefore assigned
a rank value of F = 1. If these solutions are removed from the set of solutions, Solutions 2
and 4 form the second set of non-dominated solutions and are therefore assigned a rank value
of F = 2. Finally, if all of the aforementioned solutions are removed from the set of solutions,
Solutions 5 and 6 form the third set of non-dominated solutions and are therefore assigned a rank
value of F = 3. Since each solution has been assigned a rank value, the non-dominated sorting
procedure terminates. Furthermore, in order to di↵erentiate between solutions residing within
the same non-dominated front, a dummy fitness value is assigned to each solution based on the
number of solutions surrounding it in close proximity. The dummy fitness values of solutions
within a non-dominated front, however, remain larger (in the case of minimisation) than the
dummy fitness values in the previous front, thus ensuring that preference is a↵orded to solutions
in better ranked non-dominated fronts.

2
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Figure 3.13: The rank F assigned to individuals residing in each non-dominated front during the
non-dominated sorting procedure of Srinivas and Deb [124].

Deb et al. [38] applied this non-dominated sorting procedure, with the addition of a crowding
distance density (CDD) measure for each solution in each non-dominated front, in order to fur-
ther di↵erentiate between solutions within the same non-dominated front. The CDD associated
with a solution is a measure of its proximity to other solutions in the same non-dominated front.
A smaller CDD value indicates that a solution occurs within a dense area of its non-dominated
front, whereas a larger CDD value indicates that a solution is more isolated. A pseudo-code
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description of the assignment of the CDD measure to solutions in a non-dominated front is
provided in Algorithm 3.6.

Algorithm 3.6: Crowding distance density assignment [38]

Input : A non-dominated set C of solutions to a multi-objective optimisation problem
instance, containing the objective function values for each solution in a vector
denoted by z.

Output: The crowding distance C[i]dist for each solution in C.

` |C|1

for i 2 C do2

C[i]dist  03

for m = 1, . . . ,M do4

C  sort(C,m)5

C[1]dist|m 16

C[`]dist|m 17

for i = 2, . . . , (`� 1) do8

C[i]dist|m (C[i+ 1]|m�C[i� 1]|m)/(zmax
m � zmin

m )9

for i = 1, . . . , ` do10

C[i]dist =
PM

m=1C[i]dist|m11

Return C[i]dist for each solution i 2 C12

The CDD value is assigned to each non-dominated front C by successively considering as input
the solutions in the non-dominated front and a vector z containing their corresponding objective
function values for each of the M objectives. Let ` denote the number of solutions in the non-
dominated front C. First, the CDD of each solution i 2 C, denoted by C[i]dist, is set to a value
zero. Thereafter, for each objective m 2 {1, . . . ,M}, the solutions are sorted in ascending order
in terms of that objective by invoking the sort function. The mth objective function value of the
i
th solution in the sorted list is denoted by C[i]|m. Furthermore, the CDD of the ith solution for
the m

th objective is denoted by C[i]dist|m. For each objective m, the solutions corresponding
to the minimum and maximum objective function values, represented by the first and the last
elements in the sorted list C, are assigned an infinite CDD measure (i.e. C[1]dist|m = 1 and
C[`]dist|m = 1). For the intermediate solutions i 2 {2, . . . , ` � 1} in the ordered list C, each
solution i is assigned a CDD value by calculating the normalised distance between the solutions
below Solution i � 1 and above Solution i + 1 it in the ordered list C. This is calculated as
(C[i + 1]|m � C[i � 1]|m)/(zmax

m � zmin
m ), where zmax

m and zmin
m denote the maximum and

minimum values for the m
th objective in the non-dominated front C, respectively. Finally, the

CDD value associated with each solution i 2 C is calculated as the sum of all CDD values
calculated for each objective for the corresponding solution. A graphical illustration of the CDD
measure for a bi-objective optimisation problem is shown in Figure 3.14, where solid vertices
represent solutions that form part of the set of non-dominated solutions under consideration.

Since a GA is a population-based metaheuristic operating on many solutions at once, it is
often employed for solving multi-objective optimisation problems in order to capture a number
of approximately Pareto-optimal solutions [124]. In order to direct the search for solutions
towards the approximate Pareto optimal solutions already uncovered, measures such as the
non-dominating sorting procedure have been employed in conjunction with the CDD measure in
a variety of GAs [38]. During selection procedures, such as parent selection or survivor selection,
the rank of the non-dominated front in which solutions reside may be used as selection criterion.
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In the case of two or more solutions residing in the same non-dominated front, the solutions
associated with the largest CDD value may be selected in order to direct the search towards
sparser areas of the approximate Pareto front.

In order to compare the relative performances of di↵erent multi-objective optimisation meth-
ods, a procedure is required to compare the sets of non-dominated solutions returned by these
methods for multi-objective optimisation problem instances. In the context of single-objective
optimisation problems, the solutions returned by two di↵erent methods may easily be compared
by simply comparing the objective function values associated with the solutions. In the context
of multi-objective optimisation problems, however, a set of many solutions may be returned
for a single problem instance, therefore not allowing for easy comparison of the sets of solu-
tions returned by di↵erent optimisation methods. Sets of solutions may, of course, be compared
by visually inspecting them in objective space, although this approach does not quantify the
quality of solutions and becomes di�cult to employ when more than three objectives are to be
optimised [87].

Figure 3.14: A graphical illustration of the CDD measure calculation for solution i, indicating the
di↵erence between the objective function values of the lower and higher ranked solutions within the non-
dominated front of solution i. Solid vertices represent solutions residing within the non-dominated front
under consideration [38].

A popular measure employed to quantify the quality of a set of solutions is the hypervolume (HV)
quality indicator proposed by Zitzler and Thiele [147] in 1998. This measure is often employed,
due to its ability to compare two sets of solutions, without requiring the Pareto set. The HV
of a set of non-dominated solutions is the volume enclosed in objective space between the set of
solutions and a reference point, and is illustrated graphically in Figure 3.15. When comparing
sets of solutions, the set corresponding to the largest HV measure is considered to be better [87].

When computing the HV measure, the choice of reference point is an important decision, because
di↵erent reference points may lead to results being inconsistent, yet no consensus has been
reached in the literature on how to choose a reference point for a given problem instance [80].
It is common practice to take the nadir point or 1.1 times the nadir point as reference point.
The nadir point corresponds to the worst objective function values for solutions in the Pareto
set [79]. The nadir point therefore corresponds to lower and upper bounds for the Pareto set,
in the case of an objective being maximised or minimised, respectively. If, however, the nadir
point is estimated incorrectly and a solution outside the objective space bounds of the nadir
point is present, a disproportional HV measure will be returned for the corresponding set of
solutions [79].

Furthermore, the HV measure is sensitive to the range of a problem instance’s objectives. It is
therefore recommended to normalise the objectives of the problem to prevent objectives with
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Non-dominated solution

Hypervolume reference point

Figure 3.15: A graphical illustration of the HV measure for a bi-objective problem instance in which
both objectives are to be minimised.

larger ranges from having a greater e↵ect on the HV measure [87]. In order for each objective
to have an equal e↵ect on the HV measure of a set of solutions, objectives are converted to lie
within the same range, such as the unit interval [0, 1], for instance. It is common practice to
transform the objectives of solutions as a0m = (am �minm)/(maxm �minm), where a

0
m and am

denote the transformed and original values of objective function m of solution a, respectively,
and minm and maxm denote the minimum and maximum values of objective function m in
the Pareto set, respectively. If the Pareto set is not known, then minm and maxm denote the
minimum and maximum values for objective function m with respect to the combined set of
non-dominated solutions of the collection of all solution sets being considered [87].

3.7 Chapter summary

This chapter was devoted to a discussion on algorithmic solution techniques for solving VRPs.
Two main classes of solution methodologies were discussed, namely exact solutions methodolo-
gies and approximate solution methodologies. Three exact solution approaches applicable to the
methodologies employed later in this thesis were discussed in §3.1. Thereafter, a classification of
heuristic solution methods used to solve VRPs was discussed in §3.2, along with an example of
a heuristic in each of the discussed classes. Similarly, a classification of metaheuristic solutions
was discussed in §3.3. A comparison of various metaheuristics in the context of VRPs was dis-
cussed in §3.4. The working of the HGSADC algorithm, a state-of-the-art solution methodology
employed later in this thesis, was described in §3.5, and this was followed in §3.6 by a discussion
on approaches that have been adopted in the literature for solving multi-objective optimisation
problems approximately.
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In this chapter, a mathematical model is proposed for a portion of the FVRP. This model as-
sumes the form of a mixed binary programming problem. The model is applicable during the
strategic phase of the FVRP for which decision support is pro↵ered by the framework of the
previous chapter. First, the model is derived in §4.1, after which an exact solution approach
for the model, involving the branch-and-cut method, is described in §4.2. The model is imple-
mented in the CPLEX optimisation environment in order to invoke this solution methodology.
The methodology followed to verify the model implementation is discussed in §4.3. The time
complexity of the model is next studied empirically in §4.4, and thus is followed by a discussion
on the approximate solution methodology adopted for realistically sized instances of model in
§4.5. The chapter closes in §4.7 with a summary of its contents.
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4.1 Model derivation

This section is devoted to a derivation of the aforementioned model for the strategic phase
of the FVRP. First, the required input data are elucidated in §4.1.1 in terms of the model
parameters employed to configure an instance of the model. The decision variables of the model
are next declared in §4.1.2, after which the constraints of the model are derived and explained
in §4.1.3. The objective function of the model is then derived and motivated in §4.1.4, upon
which an additional constraint set, aimed at improving the performance of the exact solution
methodology, is derived in §4.1.5.

4.1.1 Model parameters

In the model for the strategic phase of the FVRP proposed in this chapter, a set of master routes
is computed as the routing solution for a fleet of available delivery vehicles. In the remainder of
this section, the routes travelled by these delivery vehicles represent the aforementioned master
routes. Let V = {0, 1, . . . , n, n+1} index the set of FVRP vertices, with 0 and n+1 representing
virtual copies of the depot — the former representing the depot at vehicle departure and the
latter representing the depot at vehicle return. The set V 0 = V\{0, n+1} furthermore represents
the set of customers to be serviced. Let A denote the set of directed road links, called arcs,
that delivery vehicles are allowed to traverse. The directed travel graph on which the FVRP is
defined, is denoted by G(V,A), which has V as vertex set and A as arc set. Let �+(i) denote
the set of vertices to which there are arcs from vertex i 2 V in the travel graph G(V,A) and let
�
�(i) denote the set of vertices from which there are arcs to vertex i 2 V.

Let L = {1, 2, . . . , |L|} index the set of vehicle types to which each delivery vehicle may belong.
Moreover, let K = {1, 2, . . . , |K|} index the set of (heterogeneous) delivery vehicles available at
the depot to service customers, ordered in such a way that delivery vehicles of the same type
` 2 L are indexed successively. Let K` denote the number of identical delivery vehicles of vehicle
type ` 2 L, so that

P
`2LK` = |K|. Let Qk denote the cargo volume capacity of delivery vehicle

k 2 K and let Ck denote the fixed cost associated with using delivery vehicle k 2 K. Also, let
�k denote a cost coe�cient associated with lengthening the trip duration of vehicle k 2 K by
one minute. Moreover, define the binary parameters

gik =

⇢
1 if vehicle k 2 K is able to visit customer i 2 V 0,
0 otherwise

in order to allow for potential size restrictions preventing certain vehicles from visiting certain
customers. Since di↵erent vehicle types may have di↵erent travel times and travel costs associ-
ated with them, let cijk denote the cost of vehicle k 2 K travelling from vertex i 2 V to vertex
j 2 V and let tijk denote the expected time (in minutes) spent by vehicle k 2 K travelling from
vertex i 2 V to vertex j 2 V.

In order to incorporate the multiple visits attribute into the model, it is necessary to specify the
number of di↵erent vehicles that are required to visit customer i 2 V 0, denoted by fi. Moreover,
in order to specify time-windows for each customer, let ai denote the earliest possible vehicle
service start time at customer i 2 V 0 and let bi denote the latest possible vehicle service start time
at customer i 2 V 0 (both measured in minutes after some fixed reference time). Additionally, let
qi denote the average demand volume of customer i 2 V 0 per planning period. Furthermore, let
si denote the average service time duration at customer i 2 V 0 (measured in minutes), calculated
as a function based on the average demand volume qi per planning period associated with each
customer, to which a fixed service setup time is added.
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An arc overlap amongst the master routes is defined as the occurrence of a vehicle traversing
an arc (i, j) 2 A while another vehicle already traverses the same arc (in any direction). For
instance, if no vehicle, or only one vehicle, traverses an arc (i, j) 2 A, then no overlap is
associated with that arc amongst the master routes. If, however, two vehicles traverse the same
arc (i, j) 2 A (in any direction), a single overlap is associated with that arc amongst the master
routes. Moreover, if three vehicles traverse the same arc (i, j) 2 A (in any direction), two
overlaps are associated with that arc amongst the master routes, and so forth. While such arc
overlaps amongst the master routes are undesirable (because they represent a reduction in the
variety of approach directions to customers available for vehicle routing during the operational
phase of the FVRP), a certain number of overlaps is tolerable. Let ↵1 denote the total number
of arc overlaps amongst the master routes that are allowed without penalty, and let ⇢ be a cost
coe�cient associated with penalising the number of arc overlaps amongst the master routes over
and above the maximally tolerated penalised number ↵1.

4.1.2 Model variables

The binary decision variables

xijk =

⇢
1 if vehicle k 2 K travels from vertex i 2 V directly to vertex j 2 V
0 otherwise

capture all vehicle flows and are stored in row i and column j of slice k in a three-dimensional
(n+ 2)⇥ (n+ 2)⇥ |K| flow matrix X. The binary auxiliary decision variables

yk =

⇢
1 if vehicle k 2 K is utilised
0 otherwise

are also defined and stored in a vector Y containing |K| entries.

The service start time at node i 2 V, when serviced by vehicle k 2 K, is captured in a real-valued
variable Tik and stored in an (n+2)⇥ |K| matrix T . The service start time of delivery vehicle k
(if utilised) at vertex 0, is denoted by T0k and represents the time at which the delivery vehicle
departs from the depot. In addition, the service start time at vertex n+ 1 of the same delivery
vehicle (if utilised) is denoted by Tn+1,k and represents the time at which the delivery vehicle
returns to the depot, after having departed from the depot and having served all customers
assigned to it. The trip duration of vehicle k 2 K (if utilised) is therefore Tn+1,k � T0k.

The number of overlaps amongst the master routes involving an arc (i, j) 2 A is captured
in a real-valued variable rij and stored in an (n + 2) ⇥ (n + 2) matrix R. Finally, the total
number of penalised arc overlaps amongst the master routes is captured in a variable ↵2. If
there are, for example,

P
(i,j)2A rij = 5 arc overlaps in total amongst all of the master routes

and ↵1 = 2 arc overlaps are allowed without penalty, then the number of penalised arc overlaps
is ↵2 =

P
(i,j)2A rij � ↵1 = 5� 2 = 3.

4.1.3 Model constraints

A number of constraints are imposed in the model to ensure the practical feasibility of solutions.
In order to ensure that each customer i 2 V 0 is visited exactly once by fi distinct vehicles, the
constraint set X

k2K

X

j2�+(i)

xijk = fi, i 2 V 0 (4.1)
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is imposed. Moreover, in order to enforce a source (depot) to sink (depot) path for each delivery
vehicle utilised, the three constraint sets

X

j2�+(0)

x0jk = yk, k 2 K, (4.2)

X

i2��(j)

xijk �
X

i2�+(j)

xjik = 0, j 2 V 0
, k 2 K, (4.3)

X

i2��(n+1)

xi,n+1,k = yk, k 2 K (4.4)

are imposed. Imposition of the constraint sets

Tik + si + tijk � Tjk  Mijk(1� xijk), k 2 K, (i, j) 2 A, (4.5)

ai

X

j2�+i

xijk  Tik  bi

X

j2�+i

xijk, i 2 V \ {n+ 1}, k 2 K, (4.6)

an+1

X

i2��n+1

xi,n+1,k  Tn+1,k  bn+1

X

j2��n+1

xj,n+1,k, k 2 K (4.7)

furthermore enforce adherence to customer delivery time-windows, where constraint set (4.5)
also implicitly avoids subtour formation along vehicle routes. The parameter Mijk in constraint
set (4.5) represents a large constant, which can be set to max{bi + si + tijk � aj , 0}, with the
maximum taken over all i, j 2 V 0 and k 2 K. In order to ensure that each delivery vehicle
utilised is able to service all customers along its assigned route without exceeding its capacity,
the constraint set

X

i2V 0

X

j2�+i

qi

fi
⇥ xijk  Ckyk, k 2 K, (4.8)

is imposed. In order to ensure that a vehicle which is, in fact, able to visit any particular
customer i 2 V 0 is assigned to service that customer, the constraint set

X

j2�+(i)

xijk  gik, i 2 V 0
, k 2 K, (4.9)

is imposed, while the constraint set
X

(i,j)2A

xijk  (n+ 1)yk, k 2 K, (4.10)

ensures that a vehicle is considered utilised if it services at least one customer. Moreover, the
constraint sets

X

k2K
(xijk + xjik)� 1  rij , (i, j) 2 A, (4.11)

rij � 0, (i, j) 2 A, (4.12)

are imposed in order to count the number of master route link overlaps that occur at each arc
(i, j) 2 A, denoted by rij . Constraint sets (4.11) and (4.12) together ensure that the value of
rij is max{

P
k2K(xijk + xjik)� 1, 0}. The additional constraint

X

(i,j)2A

rij

2
 ↵1 + ↵2, (4.13)
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is imposed in order to count the total number of edge overlaps amongst the master routes. In
constraint (4.13), the sum of the entries of the matrix R is divided by two, since the number
of overlaps rij involving the arc (i, j) 2 A is represented by both rij and rji, and is therefore
counted twice. As a mere convention for a valid model formulation, the constraint

s0 = 0 (4.14)

is also imposed. The domain constraints

xijk 2 {0, 1}, k 2 K, (i, j) 2 A, (4.15)

yk 2 {0, 1}, k 2 K, (4.16)

Tik � 0, i 2 V, k 2 K, (4.17)

are finally imposed to enforce the variable nature (binary and real-valued, respectively).

4.1.4 Objective function

During the generation of master routes, the model objective is to

minimise
X

k2K
Ckyk +

X

k2K

X

(i,j)2A

cijkxijk +
X

k2K
�k(Tn+1,k � T0,k) + ⇢↵2. (4.18)

This objective function takes into account the fixed costs associated with utilising vehicles (the
first term above), the variable costs associated with actual vehicle trips (the second term), the
total time duration of the vehicle trips (the third term), and the total number of penalised arc
overlaps among the master routes (the last term).

In the first term in (4.18), the fixed cost Ck associated with each vehicle is added to the objective
function value if the vehicle is utilised (i.e. if yk = 1), but no contribution is made if the vehicle
is not utilised (i.e. if yk = 0). This ensures that the number of vehicles utilised is minimised. By
summing across all elements in the matrix X, the second term in the function in (4.18) captures
the variable cost of every vehicle’s route. If vehicle k travels from customer i to customer j (i.e.
if xijk = 1), the associated variable cost, denoted by cijk, contributes to the objective function
value; otherwise no contribution is made (i.e. if xijk = 0). In the third term of the function in
(4.18), the trip duration of vehicle k is calculated as Tn+1,k � T0,k and multiplied by the cost
coe�cient �k. This ensures that the trip duration of each vehicle is minimised by scheduling
the start of service at each customer as early as possible and ensuring that a vehicle k which
does not visit customer i will have a service start time of Tik = 0 at that customer. The final
term in (4.18) ensures that the number of penalised arc overlaps among the master routes are
minimised.

4.1.5 Symmetry-breaking constraints

Symmetry breaking constraints of the form

yk � yk+1, k =
X

`2{1,...,j�1}

K` + 1, . . . ,
X

`2{1,...,j}

K` � 1, j 2 {0, . . . , |L|� 1} (4.19)

may additionally be imposed so as to speed up any exact solution duration of the model.
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4.2 Exact model solution approach

The model derived in §4.1 was implemented in CPLEX for verification purposes. CPLEX is
an optimisation software environment designed to solve mixed IP problems to optimality by
invoking a parallel algorithm based on the branch-and-cut method described in §3.1.4. The
model of §4.1 was implemented in CPLEX via its Python programming language interface,
allowing for easy generation of input data and visualisation of solutions, thereby facilitating
verification of the model.

The code for declaring the decision variables, implementing the objective function, and enforcing
the constraints of the model in the Python interface of CPLEX is shown in Figure 4.1. The
first two sets of decision variables, captured in the matrices X and Y , are defined as binary
variables and are therefore already constrained to the set {0, 1} as a result enforcing constraint
sets (4.15) and (4.16), respectively. The following two sets of decision variables, captured in
the matrices T and R, are defined as continuous variables with a lower bound of zero already
defined for both sets of decision variables, thereby implicitly imposing constraint sets (4.17) and
(4.12), respectively. The final decision variable, ↵2, is also defined as a continuous variable.
Furthermore, the variable name vehicles represents the set K, whereas the variable name K[`]
represents the parameter K`.

Figure 4.1: The code for the implementation of the model in §4.1 in the Python interface of CPLEX.

In the remainder of this section, a small example problem instance containing ten customers
is considered in order to illustrate the input data and verify the output data of an instance of
the model (4.1)–(4.18). The information associated with each vertex in this problem instance
was randomly generated and is presented in Table 4.1, whereas information about the types of
delivery vehicles are presented in Table 4.2.

In the pre-processing code to the model implementation, the travel distances between vertices
were calculated as the Euclidean distances between the vertices, resulting in the symmetric
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Table 4.1: The input data related to vertices in an illustrative example problem instance. The horizontal
axis and vertical axis coordinates of customers are denoted by ⇣i and ⌘i, respectively, and is measured in
kilometres. The number of visits required by each customer is denoted by fi. Furthermore, the demand
volume in cubic metres associated with each customer is denoted by qi, and the service duration in
minutes at each customer is denoted by si. Finally, the time-window start time and end time associated
with each customer is denoted by ai and bi, respectively, and is measured in minutes from the start of
the day.

Vertex, i ⇣i ⌘i fi qi si a b

0 50 50 – – 0 0 600
1 60.28 54.49 1 14.61 53.84 0 270
2 42.37 64.59 2 17.81 36.71 270 540
3 43.76 89.18 1 11.18 43.55 0 270
4 96.37 38.34 1 16.40 59.20 270 540
5 79.17 52.89 1 11.43 44.30 270 540
6 56.80 92.56 2 19.45 39.17 270 540
7 7.10 8.71 2 15.22 32.83 270 540
8 2.02 83.26 2 14.15 31.22 270 540
9 77.82 87.00 1 12.65 47.94 0 270
10 97.86 79.92 2 17.74 36.61 0 270

Table 4.2: The input data related to vehicle types in an illustrative example problem instance. The
fixed cost associated with each delivery vehicle in Rand is denoted by Cz, whereas the maximum cargo
capacity in cubic metres of each delivery vehicle is denoted by Qz. The variable cost in Rand per kilometre
travelled of each delivery vehicle is denoted by hz. A speed factor, denoted by vz, is associated with each
type of delivery vehicle. Finally, each type of delivery vehicle is associated with a cost coe�cient, denoted
by �z Rand per minute, with which the duration of each route is penalised in the objective function.

Vehicle type, z Size Cz Qz hz vz �z

1 Small 3 000 30 5.85 0.9 0.1
2 Medium 3 250 50 6.175 1 0.1
3 Large 3 500 70 6.5 1.1 0.1

distance matrix

d =

2

666666666666666664

– 11.21 16.47 39.67 47.81 29.32 43.10 59.54 58.38 46.29 56.44
11.21 – 20.56 38.42 39.54 18.96 38.23 70.16 64.97 36.94 45.38
16.47 20.56 – 24.63 60.04 38.62 31.48 66.07 44.46 41.94 57.57
39.67 38.42 24.63 – 73.15 50.70 13.48 88.42 42.15 34.13 54.89
47.81 39.54 60.04 73.15 – 22.52 67.12 94.05 104.49 52.07 41.60
29.32 18.96 38.62 50.70 22.52 – 45.54 84.53 82.91 34.14 32.86
43.10 38.23 31.48 13.48 67.12 45.54 – 97.47 55.57 21.73 42.96
59.54 70.16 66.07 88.42 94.05 84.53 97.47 – 74.72 105.50 115.36
58.38 64.97 44.46 42.15 104.49 82.91 55.57 74.72 – 75.89 95.90
46.29 36.94 41.94 34.13 52.07 34.14 21.73 105.50 75.8 – 21.26
56.44 45.38 57.57 54.89 41.60 32.86 42.96 115.36 95.90 21.26 –

3

777777777777777775

.

The travel time matrix tk for each delivery vehicle k 2 K was then calculated by multiplying each
value in the distance matrix by the speed parameter vk of the corresponding delivery vehicle.
Similarly, the cost matrix ck for each delivery vehicle k 2 K was calculated by multiplying each
value in the distance matrix by the cost parameter hk of the corresponding delivery vehicle.
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In this small problem instance, two of each type of delivery vehicle is assumed to be available
to service customers. The vehicle type ` 2 L and corresponding information associated with
each delivery vehicle k 2 K are indicated in Table 4.3. Furthermore, the number of arc overlaps
allowed without penalty was assigned the value ↵1 = 1, and the cost coe�cient associated with
penalising an arc overlap was assigned the value ⇢ = 200 kilometres.

Table 4.3: The input data related to the fleet of vehicles available to service customers in the example
problem instance.

Vehicle number, k Type, z Size Ck Qk hk vk �k

1 1 Small 3 000 30 5.85 0.9 0.1
2 1 Small 3 000 30 5.85 0.9 0.1
3 2 Medium 3 250 50 6.175 1 0.1
4 2 Medium 3 250 50 6.175 1 0.1
5 3 Large 3 500 70 6.5 1.1 0.1
6 3 Large 3 500 70 6.5 1.1 0.1

In the post-processing code to the model implementation, the decision variable values are pro-
cessed and routes are deduced for each delivery vehicle. These routes are stored in a text file,
along with additional information about the solution, such as the run time required and the opti-
mal objective function value. The routes are also plotted in a figure, using theMatplotlib package
in the Python programming language, and is stored under an appropriate name specifying the
particular problem instance.

The solution to the small, illustrative example problem instance described above returned by
CPLEX is illustrated graphically in Figure 4.2. The depot is represented by the black square,
whereas each customer is represented by either a yellow vertex or a green vertex. A yellow vertex
represents a customer i 2 V having a morning time-window (i.e. ai = 0 minutes to bi = 270
minutes), whereas a green vertex represents a customer i 2 V having an afternoon time-window
(i.e. ai = 270 minutes to bi = 540 minutes). Furthermore, the index i 2 V associated with each
customer is indicated, along with the required number of visits fi associated with the customer,
indicated in brackets. This solution corresponds to an objective function value of R 14 876.35,
comprising a fixed cost of R 10 000, a variable cost of R 4 733.91, a trip duration penalty cost of
R 142.44, and an overlap penalty cost of zero Rand. In this solution, three delivery vehicles (two
medium delivery vehicles (type ` = 2) and one large delivery vehicles (type ` = 3)) are utilised.
Moreover, the number of penalised overlaps, denoted by ↵2, is zero.

The route of each delivery vehicle, the volume of commodities delivered to each customer, the
total volume of commodities delivered by each delivery vehicle, and the service start times at
customers are summarised in Table 4.4. By inspecting these output data, it may be confirmed
that the solution retured by CPLEX satisfies all of the constraints in the model and is therefore
feasible. Each delivery vehicle utilised departs from the depot and returns to the depot after
having serviced the customers along its route. Each customer is also visited the specified number
of times and the service at each customer starts during its specified time-window. Furthermore,
each customer’s demand is satisfied and the capacity of each delivery vehicle utilised is not
exceeded. The overall utilisation of the capacity of delivery vehicles used is 88.59%.
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Figure 4.2: Optimal solution to a small, illustrative example problem instance to the model (4.1)–(4.18)
for the strategic phase of the FVRP.

4.3 Systematic model verification

In order to ensure that the model derivation in §4.1 and its implementation in §4.2 are correct,
further verification was performed. This involved solving the model for sixty randomly generated
instances of the model (4.1)–(4.18) and ensuring that feasible solutions were returned by CPLEX,
similar to the procedure followed for the small, illustrative example problem instance solved in
§4.2.

In order to generate reproducible synthetic problem instances of the model (4.1)–(4.18) for
the strategic phase of the FVRP, a problem instance generator was created in the Python
programming language. This problem instance generator may be downloaded from the author’s
Gitthub repository1. The synthetic problem instance generator takes nine parameters as input.
First, a width, denoted by wc, is specified. The Cartesian coordinates of customers are uniformly
distributed within a wc ⇥ wc square. Another width, denoted by wd, specifies the location in
which the depot may be placed. The location of the depot is uniformly placed in a wd ⇥ wd

square which shares the same midpoint as the wc ⇥ wc square. When specifying wd = 0, the

1Gitthub repository for producing problem instances of the model for the strategic phase of the FVRP:
https://github.com/JacobusKing/Problem-Instance-Generator-for-Phase-1.git

https://github.com/JacobusKing/Problem-Instance-Generator-for-Phase-1.git
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Table 4.4: Output data related to the optimal solution to a small illustrative example problem instance
of the model for the strategic phase of the FVRP.

Vehicle, k From i To j qj/fj Tjk

3 Depot 3 11.18 182.40
3 8 7.07 270
8 2 8.90 347.68
2 7 7.61 453.43
7 Depot — 548.47

Total 34.76

4 Depot 10 8.87 140.52
10 9 12.65 199.35
9 6 9.72 270
6 8 7.07 367.24
8 7 7.61 476.54
7 Depot — 571.59

Total 45.92

5 Depot 1 14.61 75.17
1 10 8.87 183.47

10 4 16.40 270
4 5 11.43 356.22
5 6 9.72 455.17
6 2 8.90 532.12
2 Depot — 588.58

Total 69.93

depot is therefore placed in the centre of the wc ⇥ wc unit square. The travel times and travel
costs associated with each arc are calculated based on the Euclidean distance between vertices.

A minimum and maximum demand volume, denoted by qmin and qmax, respectively, is also
specified. The demand qi of each customer i 2 V is randomly generated according to a uniform
distribution so that qmin  qi  qmax. The service duration si associated with each customer
i 2 V is then calculated as si = qi� +  , where � denotes the variable service rate and  

denotes the fixed service duration. A storage capacity ei, assigned to each customer i 2 V, is
uniformly distributed between a minimum storage capacity, denoted by emin, and a maximum
storage capacity, denoted by emax. The number of visits fi associated with each customer
i 2 V is then determined as qi/ei, rounded up to the nearest integer, since this represents the
minimum number of times that a customer must be serviced in order to satisfy the demand
associated with that customer without delivering more commodity volumes during a single visit
than the storage capacity of the customer. A maximum time-window end time, denoted by
bmax, is specified and represents the time at which service may start at the customer with the
latest ending time-window. Customers are randomly assigned either a morning time-window
(i.e. between 0 and bmax/2 minutes) or an afternoon time-window (i.e. between bmax/2 and
bmax minutes) and the time-window of the depot is specified as between 0 and bmax + 60. The
number of arc overlaps allowed without penalty, denoted by ↵1, as well as the cost coe�cient
associated with penalising the number of arc overlaps, denoted by ⇢, must also be specified. The
feasible vehicle-to-customer visitation assignments, denoted by gi, associated with each customer
i 2 V is simply assigned in such a way that each customer may be serviced by all vehicle types.
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The output of the problem instance generator is a Problem Instance class consisting of multiple
Python dictionaries2, one for each input parameter to the model (4.1)–(4.18) for the strategic
phase of the FVRP, specifying the value associated with each customer for the corresponding
parameter. Finally, an arbitrary number of problem instances may be created by specifying the
number of customers in the problem instance, denoted by n and the seed number, denoted by
seed1, which represents the problem instance number. The standard input parameters of the
problem instance generator (used if no value is specified for a parameter) are wc = 100, wd = 0,
qmin = 10, qmax = 20, � = 3,  = 10, bmax = 540, ↵1 = 1, and ⇢ = 200. The only compulsory
input parameters required for the generation of a problem instance is therefore the number of
customers in each problem instance n and a desired seed number seed1. The small problem
instance solved in §4.2 can be generated by providing the parameters n = 10 and seed1 = 1 to
the problem instance generator.

The sixty problem instances solved in pursuit of further verifying the model (4.1)–(4.18) for the
strategic phase of the FVRP in §4.1 and its implementation in §4.2 were generated by providing
all combinations of the input parameters n = 8, . . . , 13 and seed1 = 1, . . . , 10 to the problem
instance generator. The information associated with the vehicle types to which each of the
available delivery vehicles may belong is the same as the information presented in Table 4.2,
and five delivery vehicles of each type were made available to service customers. The synthetic
problem instances were solved on a computer with an Intel Core i7 CPU operating at 2.90GHz
with 16GB of memory. Furthermore, a run time limit of eight hours was specified for each
problem instance. The objective function value, required run time, and remaining optimality gap
obtained when solving each of these sixty instances using CPLEX are summarised in Table 4.5.
The memory of the computer was exceeded when solving some of the instances before the eight
hours run time limit was reached. In these cases, the best solution found and the remaining
optimality gap at that point in time were recorded, resulting in a run time shorter than the run
time limit (of 28 800 seconds), yet with a positive optimality gap remaining.

For each of these synthetic problem instances, output data pertaining to the final solution
returned by CPLEX was inspected and compared with the input parameters of the problem
instance in order to verify feasibility of the solution. The following aspects of the output data
were inspected to ensure feasibility:

• Each delivery vehicle utilised must be assigned a route that departs from the depot and
returns to the depot after having serviced the customers along its route.

• The sum of all delivery quantities assigned to each delivery vehicle utilised may not exceed
the capacity associated with the delivery vehicle.

• The sum of all delivery quantities received by each customer must equal the total volume
of demand associated with the customer.

• Customers may only be assigned to delivery vehicles that are considered utilised and of a
type compatible with visiting the customer.

• The service start time at each customer must be within its specified time-window.

• The service start time at each customer must be later than the service start time at the
previous customer along the route, or the departure time at the depot if it is the first
customer along the route.

2A Python dictionary is an unordered and changeable container that stores a value for each unique key in the
dictionary. The f -values of a problem instance containing five customers, for example, are stored in a dictionary
such that the keys are the customer indices, and the values of these keys their corresponding f -values in the form
f = {1 : 1, 2 : 2, 3 : 1, 4 : 2, 5 : 1}.
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Table 4.5: The instance number, number of customers (n), seed number (seed1), run time, and remain-
ing optimality gap for each instance of the model (4.1)–(4.18) for the strategic phase of the FVRP solved
according to the exact solution approach.

Inst n seed1 z T ime Gap Inst n seed1 z T ime Gap

1 8 1 13 794.81 2.55 0.00 31 11 1 17 325.52 3 356.41 0.00
2 8 2 12 624.84 2.70 0.00 32 11 2 17 123.57 227.72 0.00
3 8 3 11 583.99 9.27 0.00 33 11 3 12 940.34 4.11 0.00
4 8 4 12 421.91 1.39 0.00 34 11 4 17 516.01 954.27 0.00
5 8 5 13 587.02 0.78 0.00 35 11 5 18 242.14 112.61 0.00
6 8 6 9 943.26 0.42 0.00 36 11 6 13 520.00 27.28 0.00
7 8 7 14 559.62 4.09 0.00 37 11 7 18 003.02 31.25 0.00
8 8 8 13 365.80 1.19 0.00 38 11 8 13 729.71 4.39 0.00
9 8 9 8 750.91 0.13 0.00 39 11 9 13 852.75 1.44 0.00

10 8 10 17 276.51 10.19 0.00 40 11 10 18 464.30 310.33 0.00
11 9 1 14 571.51 3.45 0.00 41 12 1 17 901.95 4 727.39 0.00
12 9 2 12 939.48 4.95 0.00 42 12 2 17 099.55 14 265.33 0.00
13 9 3 9 241.64 0.16 0.00 43 12 3 13 716.29 149.70 0.00
14 9 4 13 248.37 12.03 0.00 44 12 4 20 116.82 28 800.00 0.15
15 9 5 17 102.64 8.83 0.00 45 12 5 20 595.02 1 198.16 0.00
16 9 6 12 918.15 4.19 0.00 46 12 6 13 865.97 1 597.08 0.00
17 9 7 16 068.26 110.44 0.00 47 12 7 17 373.35 3 467.70 0.00
18 9 8 17 501.68 67.08 0.00 48 12 8 17 483.07 355.70 0.00
19 9 9 12 989.34 6.78 0.00 49 12 9 16 829.56 211.16 0.00
20 9 10 17 837.26 289.27 0.00 50 12 10 22 489.83 28 800.00 0.12
21 10 1 14 876.35 11.41 0.00 51 13 1 18 883.85 28 800.00 0.01
22 10 2 13 066.65 11.39 0.00 52 13 2 21 310.63 28 800.00 0.12
23 10 3 9 384.24 0.30 0.00 53 13 3 17 732.17 28 800.00 0.01
24 10 4 16 389.40 2118.56 0.00 54 13 4 20 968.86 13 013.00 0.14
25 10 5 17 928.33 15.17 0.00 55 13 5 22 963.72 1 463.55 0.00
26 10 6 12 563.86 10.83 0.00 56 13 6 17 017.14 726.84 0.00
27 10 7 17 511.59 155.27 0.00 57 13 7 18 370.59 1 421.38 0.00
28 10 8 17 150.79 143.59 0.00 58 13 8 17 174.01 317.91 0.00
29 10 9 12 886.50 2.05 0.00 59 13 9 17 084.55 116.83 0.00
30 10 10 18 106.12 14.91 0.00 60 13 10 22 489.83 28 800.00 0.12

• The number of penalised arc overlaps ↵2 must equal the di↵erence between the total
number of arc overlaps in the solution and ↵1 or it must assume a value of zero if the
aforementioned value is less than zero.

The final solution returned by CPLEX for each of the sixty problem instances was inspected
and the above requirements were indeed satisfied in each case. The model derived in §4.1 and
its implementation in §4.2 has therefore been verified empirically.

4.4 Time complexity of exact model solution approach

In order to determine the relationship between the number of customers in a randomly generated
instance of the model (4.1)–(4.18) and the run time required by CPLEX to find an optimal
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solution to the corresponding problem instance, the information summarised in Table 4.5 was
analysed. The run times of the exact solution approach for the model (4.1)–(4.18) of the strategic
FVRP phase are plotted on a logarithmic scale for di↵erent numbers of customers in Figure 4.3.
The remaining optimality gaps associated with solving the instances are plotted in Figure 4.4.

Figure 4.3: The run times recorded when solving synthetic instances of the model (4.1)–(4.18) exactly,
involving di↵erent numbers of customers, during the strategic phase of the FVRP. The red horizontal line
represents the eight hour run time limit specified when solving each problem instance. The mean trend
of the run times is indicated by means of a dotted line.

Despite being plotted on a logarithmic scale, the aforementioned run times seem to increase
with a strong linear trend as the number of customers in the problem instance increases. This
clearly demonstrates that the computational complexity of the model increases exponentially
as the number of customers in the problem instances increase for a fixed number of available
delivery vehicles. Furthermore, seven of the problem instances (two instances containing twelve
customers and five instances containing thirteen customers) could not be solved to optimality due
to the computer either running out of memory or CPLEX not being able to solve the instances
to optimality within the eight hour time limit, resulting in the optimality gaps observed in
Figure 4.4. The exact solution approach for the model of the strategic phase of the FVRP
would therefore not seem to be scalable to the size of real-world problem instances in which
it may be required to solve problem instances, typically containing hundreds of customers.
This motivates the need for an approximate solution approach in which high-quality, but not
necessarily optimal, solutions may be achieved for large problem instances within an acceptable
time-frame.

4.5 Approximate solution approach

An approximate solution approach is proposed in this section for the model (4.1)–(4.18) of
the strategic phase of the FVRP. This solution approach is based on the second version of the
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Figure 4.4: The optimality gaps recorded when solving synthetic instances of the model (4.1)–(4.18)
involving di↵erent numbers of customers during the strategic phase of the FVRP.

HGSADC algorithm proposed by Vidal et al. [140], described in §3.5, with some adaptions made
to the structure and the working of the algorithm in order to be able to accommodate instances
of the model in (4.1)–(4.18).

A pseudo-code description of the proposed solution approach is presented in §4.5.1. This is
followed by a description of the adaptions made to the original HGSADC algorithm. Thereafter,
an exact solution approach component included in the proposed approximate solution approach
is discussed in §4.5.2. Furthermore, additions of a heterogeneous fleet attribute and a multiple
visits attribute are described in §4.5.3 and §4.5.4, respectively. The approach adopted towards
penalising arc overlaps in the master routes is elucidated in §4.5.5, and this is followed by
a discussion in §4.5.6 on the manner in which the service start times of delivery vehicles at
customers were determined. The parameter values adopted during the implementation of the
approximate solution approach are reviewed in §4.5.7, whereas the classes and functions created
during the implementation of the approximate solution approach in the programming language
Python are discussed in §4.5.8 and §4.5.9, respectively.

4.5.1 Pseudo-code description

The proposed approximate solution approach is described in pseudo-code form in Algorithm 4.1.
The pseudo-code description is similar to that of the HGSADC algorithm pro↵ered in Algo-
rithm 3.4, but with the addition of lines 20–25 in which an exact solution component is included.
The proposed solution approach begins by initialising a population consisting of a feasible sub-
population and an infeasible subpopulation, by randomly generating individuals representing
“candidate” solutions. The main loop of the algorithm is then executed for ItNI non-improving
iterations or for a maximum duration of Tmax minutes, after which the best solution found is
returned. During each iteration, two parent solutions, P1 and P2, are selected according to a
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Algorithm 4.1: Approximate solution approach for the model (4.1)–(4.18)

Initialise population1

while number of iterations without imporvement  ItNI , and time  Tmax do2

Select parent solutions P1 and P23

Create o↵spring C from P1 and P2 (crossover)4

Educate C (local search procedure)5

if C infeasible then6

Insert C into infeasible subpopulation,7

Repair with probability Prep8

if C feasible then9

Insert C into feasible subpopulation10

if maximum subpopulation size reached then11

Select survivors12

if best solution not improved for Itdiv iterations then13

Diversify population14

Adjust penalty parameters for infeasibility15

if number of iterations = k ⇥ Itdec where k 2 N then16

Decompose the master problem17

Use HGSADC on each subproblem18

Reconstitute three solutions, and insert them in the population19

if number of iterations = `⇥ Itexact where ` 2 N then20

Select the best individual I in the feasible subpopulation21

Provide I as a warm start to an exact solution approach for Texact seconds22

Insert I in the population23

if I is optimal then24

Terminate the search25

Return best feasible solution26
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binary tournament selection scheme from the union of the feasible and infeasible subpopulations,
and an o↵spring solution C is created by invoking the PIX crossover operator. Each o↵spring
solution created undergoes education during which two local search procedures are performed.
If the o↵spring solution is not feasible, it is placed in the infeasible subpopulation and undergoes
repair with probability Prep, during which education is performed with increased penalty weights
for infeasibility. If, however, the o↵spring solution created is feasible, it placed in the feasible
subpopulation.

Both subpopulations are managed to contain between µ and µ + � individuals. If any sub-
population contains more than µ + � individuals, survivor selection takes place during which
� individuals are removed from the corresponding subpopulation. In order to explore a larger
area of the search space, diversification takes place every Itdiv non-improving iterations, during
which µ/3 individuals are retained in each subpopulation and 4µ new individuals are generated
randomly and introduced into the population in the same manner as when the population was
initialised. Furthermore, in order to solve large problem instances e↵ectively, decomposition
occurs every Itdec iterations. During decomposition, the problem instance is decomposed into
smaller subproblem instances and each subproblem instance is solved approximately after which
they are reconstituted once again to obtain a complete solution which is inserted into the ap-
propriate subpopulation. An exact solution approach is invoked every Texact iterations. The
best solution in the feasible subpopulation is provided as input to the exact solution approach, a
practice referred to as providing a “warm” start to the exact model solution methodology, after
which it is improved for Texact seconds and the improved solution is re-introduced back into the
feasible subpopulation. If a proven optimal solution is found by the exact solution approach, the
execution of the algorithm is is terminated and this optimal solution is returned. Finally, upon
termination of the algorithm, the best feasible solution found during the search is returned

4.5.2 Exact solution approach component

In order to combine the advantages of hybrid metaheuristics and exact solution approaches,
such as the branch-and-cut method, an exact solution approach component is included in the
approximate solution approach for the model of the strategic phase. After each Itexact iterations,
the best solution in the feasible subpopulation uncovered by the adapted HGSADC algorithm
is transformed into an appropriate format and provided as a warm start to the exact solution
approach described in §4.2. This initial solution is then further improved for a duration of Texact

seconds via the Python interface in CPLEX after which the final solution returned by CPLEX
is transformed into the format of an individual and inserted as an additional individual in the
subpopulation of feasible individuals, and then the execution of the algorithm resumes.

This exact solution component is particularly e�cient in quickly solving small problem instances
to optimality, or proving that an optimal solution has already been found by the metaheuristic.
For larger problem instances, the exact solution approach is often able to find a diverse improving
solution quickly which, in turn, accelerates the search for improving feasible solutions by the
metaheuristic. The parameters associated with this component are to be selected based on the
exact solution approach adopted.

4.5.3 Heterogeneous fleet attribute

Whereas the original HGSADC algorithm is capable of solving VRP instances containing multi-
ple depots, master routes are computed for a single depot and its assigned customers in the model
(4.1)–(4.18) for the strategic phase of the FVRP. Assigning customers to depots is therefore not
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required in the FVRP. The model (4.1)–(4.18) for the strategic phase of the FVRP, however,
makes provision for having a heterogeneous fleet of delivery vehicles stationed at the depot — an
attribute not included in the original HGSADC algorithm. This di↵erence in capability required
by the model (4.1)–(4.18) may be accommodated by replacing the depot chromosome according
to which individuals are represented, illustrated in Figure 3.11, with a vehicle type chromosome.
Instead of assigning each customer to a depot, customers are assigned to multiple vehicle types,
and a giant tour is generated for each decision period and vehicle type combination (p, `). This
giant tour is then partitioned into multiple routes, each performed by a delivery vehicle of type
` during decision period p. When evaluating a route, the fixed cost associated with the delivery
vehicle to which the route is assigned, is added to the penalised cost. Moreover, the distance
measure incorporated into the penalised cost of a route is adapted to take into account the
di↵erent costs associated with travelling between vertices by the di↵erent vehicle types.

When initialising the population, individuals are created by randomly assigning each customer
to a feasible visiting pattern, and then randomly adding the customer to the giant tour of any
type of delivery vehicle within each of the decision periods associated with the assigned pattern.
Furthermore, during any stage of the algorithm, a customer may only be assigned to a giant
tour of a vehicle type and period combination (p, `) if the customer is, in fact, allowed to be
visited by the vehicle type `, thereby ensuring feasible vehicle-customer assignments.

4.5.4 Multiple visits attribute

The original HGSADC algorithm does not allow for a customer to be visited more than once
during a single decision period, although the proposed model for the strategic phase of the FVRP
requires that some customers receive multiple visits by di↵erent master routes. Furthermore,
the original HGSADC algorithm is capable of solving problem instances containing multiple
decision periods organised into a planning horizon, whereas the model for the strategic phase of
the FVRP computes master routes which are not associated with any specific decision period.
This di↵erence in capability required by the model (4.1)–(4.18) is accommodated by retaining
the multiple decision periods attribute of the HGSADC algorithm and creating “dummy” de-
cision periods when solving instances of the model (4.1)–(4.18). Customers requiring multiple
visits by di↵erent master routes may then be visited during di↵erent dummy decision periods of
the planning horizon. Once a final solution has been obtained, all routes in the dummy decision
periods are simply combined into a single period, resulting in master routes that are not asso-
ciated with any specific decision period. The number of dummy decision periods specified for
each problem instance is at least as large as the largest number of visits required by any single
customer.

4.5.5 Penalising the number of arc overlaps

The original HGSADC algorithm does not, of course, penalise overlapping master route arcs.
When evaluating a solution, the number of penalised arc overlaps is therefore counted and
penalised accordingly in the fitness values of an individual, as required in the model (4.1)–(4.18)
for the strategic phase of the FVRP.

4.5.6 The service start times at customers

No mention was made by Vidal et al. [140] as to which approach should be followed to determine
the service start time of delivery vehicles at customers in order to identify instances of time-warp
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in solutions. An approach was therefore adopted in which each delivery vehicle departs from its
current location and arrives at its next location as early as possible. Although this approach
may result in large amounts of vehicle waiting time, it results in the minimum amount of time-
warp. At termination of the HGSADC algorithm, before returning the best feasible solution
found during the entire search, this best feasible solution is once again provided as a warm start
to CPLEX and is returned as soon as CPLEX recognises the warm start as a feasible solution.
The optimal service start times for the given solution may then be deduced from the solution
returned by CPLEX, which are returned as the service start times for the best solution returned
by the approximate solution approach.

4.5.7 Parameters of the algorithm

Since the parameter values do not depend on the type of VRP being solved, all parameters
included in both the proposed approximate solution approach and those that were in the orig-
inal HGSADC algorithm were set to recommended values based on the parameter calibration
performed by Vidal et al. [139, 140] and described in §3.5.4. The only parameter value which
would seem to depend on the type of VRP being solved is the generation size � which was
fixed at the value proposed for the MDPVRP, since its structure is most similar to that of the
FVRP. Additional parameters not included in the original HGSADC algorithm are the param-
eters Texact and Itexact described in §4.5.2. When adopting the CPLEX model implementation
as the exact solution approach, the parameters were set to Texact = 20n and Itexact = ItNI/2,
allowing for su�cient time to find an improving solution each time the component is executed,
and executing the component twice between the iterations during which an improving solution
is found and before the maximum number of non-improving iterations is reached.

4.5.8 Classes created during the implementation

A alluded to, proposed approximate solution approach was implemented in the Python pro-
gramming language, adopting an object oriented approach. The following classes were created
during the implementation:

The Globals class stores global variables which should be accessible to all objects and func-
tions in the implementation.

The ProblemInstance class stores the input parameters required in an instance of the model
(4.1)–(4.18) for the strategic phase of the FVRP.

The Settings class stores all the configuration parameters of the metaheuristic.

The Fleet class stores information associated with the available fleet of delivery vehicles sta-
tioned at the depot.

The Individual class stores an individual (solution) in the population as well as all informa-
tion associated with the individual.

The Population class stores the current population of individuals.

The Phase I class stores the main function responsible for executing the metaheuristic.

Variables stored in the Globals class include an object of the ProblemInstance class, an object
of the Settings class, and an object of the Population class. This allows all functions and classes
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access to these variables without the need to pass information regularly between functions.
The input parameters stored in the ProblemInstance class may either be provided manually or
generated by invoking the problem instance generator described in §4.3. Furthermore, an object
of the Fleet class also forms part of the ProblemInstance class. An object of the ProblemInstance
class cannot be created without specifying all input parameters required for an instance of the
model (4.1)–(4.18), therefore serving the purpose of input data validation. When an object of
the ProblemInstance class is created, the pre-processing of input parameters is also performed.

The Individual class calculates and stores all information associated with an individual, such
as the chromosomes and fitness values associated with the individual. This information is also
continually updated throughout the execution of the metaheuristic in order to store new fitness
values after having updated penalty parameters or after operations, such as Education, have
been performed on the individual. An object of the Population class stores the current feasible
and infeasible subpopulations which, in turn, each consists of potentially many objects of the
Individual class.

Finally, the Phase I class stores the main function which executes the metaheuristic by accessing
and changing the variables stored in an object of the Globals class.

4.5.9 Functions created during the implementation

The main functions used during the execution of the metaheuristic are as follows:

The ParentSelection function forms part of the Population class and returns two parents
selected from the population, each an object of the Individual class, to participate in the
crossover procedure.

The Crossover function is a stand-alone function which takes two individuals, each an object
of the Individual class, as input to perform the PIX crossover, and returns the o↵spring
generated as an object of the Individual class.

The Evaluate function forms part of the Individual class and is responsible for evaluating all
fitness measures of an individual based on the three chromosomes representing it.

The EvaluatePopulation function forms part of the Population class and facilitates the
calculation of all fitness measures for individuals in the population.

The Educate function forms part of the Individual class and is responsible for performing the
local search procedure after which the updated chromosomes representing an individual
are stored and the individual is re-evaluated.

The Diversify function forms part of the Population class and its purpose is to carry out the
population diversification component of the metaheuristic.

The SurvivorSelection function forms part of the Population class and carries out the sur-
vivor selection component of the metaheuristic.

The AdjustPPs function is a stand-alone function which adjusts the penalty parameters
based on the number of feasible o↵spring generated.

The Decompose function is a stand-alone function which is responsible for carrying out the
decomposition component of the metaheuristic.

The Solve function forms part of the Phase 1 class and executes the metaheuristic.
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While many smaller functions not mentioned above also appear in the Python implementation
of the approximate solution approach, the above-mentioned functions are the main functions
utilised to execute the metaheuristic. Two smaller functions, for example, are a function for
plotting the routes of a solution and a function responsible for counting the number of non-
improving iterations. These functions typically form part of the Phase I class.

When the Solve function is called, the metaheuristic is executed to solve an instance of the model
(4.1)–(4.18) represented by the objects stored in the Globals class. The population of individuals,
also stored in the Globals class, is continually updated and is accessible to all functions.

In the Decomposition function, the problem instance is decomposed into smaller subproblem
instances and each subproblem instance is solved approximately by the proposed approximate
solution approach. This is done by temporarily replacing the objects in the Globals class with
objects representing the problem instance only containing those customers associated with the
decomposed problem instance. Once each subproblem instance has been solved, the variables in
the Globals class are replaced with the objects representing the original problem instance.

4.6 Systematic approximate solution approach verification

A verification of the approximate solution approach proposed for the strategic phase of the
FVRP discussed in §4.5 was performed in order to ensure its capability of returning high-
quality feasible solutions. The sixty problem instances solved during the systematic model
verification performed in §4.3 were again solved, this time approximately, during a verification
of the approximate solution approach. Furthermore, the solutions returned by CPLEX for these
sixty instances were taken as reference points to verify the implementation of the approximate
solution approach.

The run time and objective function value of the best solution found were recorded for each
instance. Furthermore, a maximum run time of eight hours and a stopping criterion of five
thousand non-improving iterations were specified for each instance. The average di↵erences in
objective function values of the solutions returned by the exact solution approach and those of
the best solutions returned by the approximate solution approach are summarised in Table 4.6.
The approximate solution approach returned solutions which are identical to those returned by
CPLEX for fifty five of the sixty problem instances. Four of the solutions returned were worse
than the solutions returned by the exact solution approach, whereas one solution returned was
an improvement. This was possible since not all instances were solved to optimality by the exact
solution approach. Furthermore, an average gap of 0.0154% was achieved for the 54 instances for
which an optimal solution is known. The approximate solution approach is therefore considered
to have been verified successfully.

A comparison between the run times recorded when solving the aforementioned sixty problem
instances according to the exact solution approach and those required by the approximate so-
lution approach is presented graphically on a logarithmic scale in Figure 4.5. The run times
returned by the exact solution approach are indicated in green, whereas those returned by the
approximate solution approach are indicated in blue. Furthermore, the average run time re-
turned by each solution approach for each number of customers is indicated by the orange lines.
It is evident that the slope of increase of the average run times required by the approximate
solution approach is much smaller than that of the exact solution approach. The run times
of the exact solution approach also fluctuated to a much larger extent than those of the ap-
proximate solution approach. It is important to note that the average run time of the exact
solution approach for instances containing twelve or thirteen customers was a↵ected by the
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Table 4.6: Mean percentage di↵erences in objective function values, denoted by � Cost, between
the solutions returned by the exact solution approach and those returned by the approximate solution
approach of the model (4.1)–(4.18) for the strategic phase of the FVRP. The proportions of identical,
worse, and improving solutions returned by the approximate solution approach are also shown.

Number of
customers, n

� Cost Identical Worse Improving

8 0% 100% 0% 0%
9 0% 100% 0% 0%

10 0.0072% 90% 10% 0%
11 0.0403% 90% 10% 0%
12 0.0523% 80% 20% 0%
13 �0.3321% 80% 0% 20%

run time limit of eight hours imposed, whereas the approximate solution approach never met
this stopping criterion. Moreover, the memory of the computer was never exceeded when solv-
ing instances approximately by invoking the approximate solution approach. A further set of
problem instances (containing fourteen to eighteen customers) was also solved according to the
approximate solution approach and a similar slope of increase was observed as for the smaller
sized problem instances. The solution time incurred by the approximate solution approach is
considered to be acceptable.

Figure 4.5: The run times recorded when solving synthetic instances of the model (4.1)–(4.18), involving
di↵erent numbers of customers, during the strategic phase of the FVRP exactly and approximately. The
mean trends of the run times are indicated by means of dotted lines.
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4.7 Chapter summary

In this chapter, a mathematical model was proposed for the strategic phase of the FVRP. The
model was derived in §4.1 after which an exact solution approach was proposed in §4.2 and
implemented for the model in the CPLEX optimisation environment using its Python interface.
This was followed by a systematic model verification in §4.3 in which a random problem instance
generator was described and used to generate sixty problem instances for model verification
purposes. The time complexity of the exact solution approach was discussed in §4.4 and it
was found that the exact solution approach is not scalable to the size of real-world problem
instances. An approximate solution approach was therefore proposed in §4.5, based on the
HGSADC algorithm of Vidal et al. [140]. A systematic verification of the approximate solution
approach followed in §4.6 during which it was found that the approximate solution approach is
acceptable and that it is capable of returning high-quality solutions.
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In this chapter, a mathematical model is proposed for the final phase of the FVRP. This model
again assumes the form of a mixed binary programming problem. The model is applicable during
the operational phase of the FVRP for which decision support is pro↵ered by the framework
of the previous chapter. First, the model is derived in §5.1, after which an exact solution
approach for the model, involving the branch-and-cut method, is described in §5.2. The model
is again implemented in the CPLEX optimisation environment in order to invoke this solution
methodology. The methodology followed to verify this model implementation is discussed in
§5.3. This is followed by a discussion on the approximate solution approach proposed for this
model in §5.5. The chapter closes in §5.7 with a summary of its contents.
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5.1 Model derivation

This section is devoted to a derivation of the aforementioned model for the operational phase of
the FVRP. First, the various input data required are elucidated in §5.1.1 in terms of the model
parameters required to configure an instance of the model. The decision variables of the model
are then declared in §5.1.2, after which the constraints of the model are derived and explained
in §5.1.3. The objective functions of the model are then derived and motivated in §5.1.4, and
this is followed by the derivation of an additional constraint set in §5.1.5, aimed at improving
the exact solution duration of the model.

5.1.1 Model parameters

In the model for the operational phase of the VRP proposed in this chapter, an input set of
master routes is taken as blueprints to create actual delivery schedules for multiple decision
periods in a planning horizon. Let V = {0, 1, . . . , n, n+1} again index the set of FVRP vertices,
with 0 and n+1 representing the depot — the former representing the depot at vehicle departure
and the latter representing the depot at vehicle return. The set V 0 = V \ {0, n+ 1} furthermore
represents the set of customers to be serviced. Let A denote the set of directed road links,
called arcs, that delivery vehicles are allowed to traverse. The directed travel graph on which
the FVRP is defined, is denoted by G(V,A), which has V as vertex set and A as arc set. Let
�
+(i) denote the set of vertices to which there are arcs from vertex i 2 V in the travel graph
G(V,A) and let ��(i) denote the set of vertices from which there are arcs to vertex i 2 V 0.

In order to compute delivery schedules over a planning horizon containing multiple periods,
let P = {1, . . . , |P|} index the set of decision periods contained within the planning horizon.
Furthermore, let L = {1, 2, . . . , |L|} index the set of vehicle types to which each delivery vehicle
may belong. Moreover, let K = {1, 2, . . . , |K|} index the set of (heterogeneous) delivery vehicles
available at the depot to service customers, ordered in such a way that delivery vehicles of the
same type are indexed successively. Let K` denote the number of identical delivery vehicles of
vehicle type ` 2 L, let Qk denote the cargo volume capacity of delivery vehicle k 2 K, and let
Ck denote the fixed cost associated with utilising a delivery vehicle k 2 K. Also, let �k be a
cost coe�cient associated with lengthening the trip duration of vehicle k 2 K by one minute.
Moreover, define the binary parameters

gik =

⇢
1 if vehicle k 2 K is able to visit customer i 2 V 0,
0 otherwise

in order to allow for potential size restrictions preventing certain vehicles from visiting certain
customers. Since di↵erent vehicle types may have di↵erent travel times and costs associated
with them, let cijk denote the variable cost associated with vehicle k 2 K when travelling from
vertex i 2 V to vertex j 2 V and let tijk denote the expected time (in minutes) spent by vehicle
k 2 K travelling from vertex i 2 V to vertex j 2 V.

In order to specify time-windows for each customer, let ai denote the earliest possible vehicle
service start time at customer i 2 V 0 and let bi denote the latest possible vehicle service start
time at customer i 2 V 0 (both measured in minutes after some fixed reference time). Also, let
qi denote the total demand volume of customer i 2 V 0 over the entire planning horizon. Let
ei denote the maximum storage capacity (i.e. the maximum volume of commodities that can
be delivered during a single decision period) at customer i 2 V 0, measured in units of demand
exhibited. Moreover, let Fi denote the number of visits required by a customer i 2 V 0 during the
planning horizon in order for its total demand qi to be satisfied without exceeding its maximum
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storage capacity ei during any decision period. The number of visits required by each customer
over the entire planning horizon may therefore be calculated as Fi = dqi/eie. Furthermore, let si
denote the average service time duration at customer i 2 V 0, measured in minutes and calculated
as a function based on the demand volume qi/Fi satisfied per visit during the planning horizon
associated with each customer, to which a fixed service setup time is added. Finally, define the
binary parameters

mij =

⇢
1 if arc (i, j) 2 A forms part of the set of master route arcs,
0 otherwise,

based on the master routes computed for the same depot and corresponding set of customers
by solving the model for the strategic phase of the FVRP derived in §4.1.

5.1.2 Model variables

The binary variables

x
p
ijk =

⇢
1 if vehicle k 2 K travels from vertex i 2 V to vertex j 2 V during period p 2 P,
0 otherwise

capture all vehicle flows and are stored in row i and column j of slice k in a three-dimensional
(n + 2) ⇥ (n + 2) ⇥ |K| flow matrix Xp for each decision period p 2 P. The binary auxiliary
variable

y
p
k =

⇢
1 if vehicle k 2 K is utilised during decision period p 2 P,
0 otherwise

is also defined and stored in a |K|⇥ |P| matrix Y .

The service start time at vertex i 2 V, when serviced by vehicle k 2 K during decision period
p 2 P, is captured in a real-valued variable T

p
ik and stored in an (n + 2) ⇥ |K| ⇥ |P| matrix T .

The service start time of delivery vehicle k (if utilised) at vertex 0 during decision period p, is
denoted by T

p
0k and represents the time at which the delivery vehicle departs from the depot

during that period. In addition, the service start time at vertex n + 1 of the same delivery
vehicle during the same decision period (if utilised) is denoted by T

p
n+1,k and represents the time

at which the delivery vehicle returns to the depot, after having departed from the depot and
having served all customers assigned to it during that decision period. The trip duration of
vehicle k 2 K (if utilised) during decision period p 2 P is therefore T

p
n+1,k � T

p
0k.

5.1.3 Model constraints

A number of constraints are imposed in the model to ensure the practical feasibility of solutions.
In order to ensure that each customer i 2 V 0 is visited exactly Fi times throughout the planning
horizon, the constraint set X

k2K

X

j2�+(i)

X

p2P
x
p
ijk = Fi, i 2 V 0 (5.1)

is imposed. Moreover, in order to ensure that each customer i 2 V 0 is visited no more than once
during any single decision period within the planning horizon, the constraint set

X

k2K

X

j2�+(i)

x
p
ijk  1, i 2 V 0

, p 2 P (5.2)
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is imposed. In order to enforce a source (depot) to sink (depot) path for each vehicle utilised
during each decision period, the three constraint sets

X

j2�+(0)

x
p
0jk = y

p
k, k 2 K, p 2 P, (5.3)

X

i2��(j)

x
p
ijk �

X

i2�+(j)

x
p
jik = 0, j 2 V 0

, k 2 K, p 2 P, (5.4)

X

i2��(n+1)

x
p
i,n+1,k = y

p
k, k 2 K, p 2 P (5.5)

are imposed. Imposition of the constraint sets

T
p
ik + si + tijk � T

p
jk  M

p
ijk(1� x

p
ijk), k 2 K, (i, j) 2 A, p 2 P, (5.6)

ai

X

j2�+i

x
p
ijk  T

p
ik  bi

X

j2�+i

x
p
ijk i 2 V \ {n+ 1}, k 2 K, p 2 P, (5.7)

an+1

X

i2��n+1

x
p
i,n+1,k  T

p
n+1,k  bn+1

X

j2��n+1

x
p
j,n+1,k k 2 K, p 2 P (5.8)

furthermore enforce adherence to customer delivery time-windows during every decision period,
while constraint set (5.6) also implicitly avoids subtour formation along vehicle routes. The
parameter Mp

ijk in constraint set (5.6) represents a large constant, which can be set to max{bpi +
si + tijk � a

p
j , 0}, with the maximum taken over all i, j 2 V 0, k 2 K, and p 2 P. In order to

ensure that each delivery vehicle utilised is able to service all customers along its assigned route
during each decision period without exceeding its capacity, the constraint set

X

i2V 0

X

j2�+i

qi

Fi
⇥ x

p
ijk  Qky

p
k, k 2 K, p 2 P (5.9)

is imposed. In order to ensure that only vehicles which are, in fact, able to visit a customer is
assigned to that customer during every decision period, the constraint set

X

j2�+(i)

x
p
ijk  gik, i 2 V 0

, k 2 K, p 2 P (5.10)

is imposed, while the constraint set
X

(i,j)2A

x
p
ijk  (n+ 1)ypk, k 2 K, p 2 P (5.11)

ensures that a vehicle is considered utilised during any specific decision period if it services at
least one customer during that period. As a mere convention for a valid model formulation, the
constraint

s0 = 0, (5.12)

is also imposed. The domain constraints

x
p
ijk 2 {0, 1}, k 2 K, (i, j) 2 A, p 2 P, (5.13)

y
p
k 2 {0, 1}, k 2 K, p 2 P, (5.14)

T
p
ik � 0, k 2 K, p 2 P (5.15)

are finally imposed to enforce variable nature (binary and real-valued).
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5.1.4 Objective function

During the creation of delivery schedules, the model objectives are to

minimise
X

k2K

X

p2P
Cky

p
k +

X

k2K

X

p2P

X

(i,j)2A

cijkx
p
ijk +

X

k2K

X

p2P
�k(T

p
n+1,k � T

p
0,k) (5.16)

and to

maximise

P
k2K

P
p2P

P
(i,j)2A dijx

p
ijkmijP

k2K
P

p2P
P

(i,j)2A dijx
p
ijk

. (5.17)

The objective function in (5.16) represents the total transportation cost associated with the
delivery schedule over the entire planning horizon. In the first term in (5.16), the fixed cost Ck

associated with utilising each vehicle is added to the objective function value if the vehicle is
utilised during any decision period (i.e. if ypk = 1), but no contribution is made if the vehicle is
not utilised during the period (i.e. if ypk = 0). This ensures that the number of vehicles actually
utilised is minimised. By summing across all elements in the matrices Xp for all p 2 P, the
second term in the function in (5.16) captures the cost of each vehicle’s route. If vehicle k travels
from customer i to customer j during decision period p (i.e. if xpijk = 1), then the associated
cost, denoted by cijk, contributes to the objective function value; otherwise no contribution is
made (i.e. if xpijkp = 0). In the third term of the function in (5.16), the trip duration of vehicle k

during decision period p 2 P is calculated as T p
n+1,k �T

p
0,k and multiplied by the cost coe�cient

�k. This ensures that the trip duration of each vehicle is minimised by scheduling the start
of service at each customer as early as possible and ensuring that a vehicle k which does not
visit customer i during decision period p 2 P will have a service start time of T p

ik = 0 at that
customer.

The conflicting objective function in (5.17) represents the proportion of the total distance trav-
elled by all delivery vehicles along master route arcs over the entire planning horizon. The
denominator of the fraction in the objective function in (5.17) is the total distance travelled by
all delivery vehicles over all decision periods, while the numerator of this fraction is the total
distance travelled along the master route arcs by all delivery vehicles over all decision periods.

5.1.5 Symmetry-breaking constraints

Symmetry breaking constraints of the form

y
p
k � y

p
k+1, k =

X

`2{1,...,j�1}

K` + 1, . . . ,
X

`2{1,...,j}

K` � 1, j 2 {0, . . . , |L|� 1}, p 2 P (5.18)

may additionally be imposed so as to speed up any exact solution duration of the model.

5.2 Exact solution approach

The model derived in §5.1 was also implemented in CPLEX via its Python programming lan-
guage interface for verification purposes. Due to the limited functionality of CPLEX when
solving bi-objective optimisation problems, an approach was adopted in which a subset of the
Pareto set is generated by implementing the familiarity objective function in (5.17) as an addi-
tional constraint in the model (5.1)–(5.16) and iteratively optimising the cost objective function
for di↵erent minimum values of the familiarity objective function.
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The code for this implementation in the Python interface of CPLEX is shown in Figure 5.1. The
first two sets of decision variables, X and Y , are defined as binary variables and are therefore
already constrained to the set {0, 1} as a result enforcing constraint sets (5.13) and (5.14),
respectively. The decision variables captured in the set T are defined as continuous variables
with a lower bound of zero, thereby imposing constraint set (5.15). Furthermore, the objective
function in (5.17) was imposed as an additional constraint in the model implementation by
limiting the objective function value to be at least as large as a specified value, called familiarity.
Furthermore, the variable name vehicles represents the set K, whereas the variable name K[`]
represents the parameter K`.

Figure 5.1: The code for the implementation of the model in §5.1 in the Python interface of CPLEX.

A pseudo-code description of the exact solution approach adopted is described in Algorithm 5.1.
The function Solve2() returns an optimal solution and corresponding familiarity objective func-
tion value when first maximising familiarity, fixing the familiarity objective function value re-
turned, and then minimising cost. The function Solve1(i,S[j]) returns an optimal solution and
corresponding familiarity objective function value when minimising cost as well as specifying
a minimum familiarity value of i and providing the starting solution S[j] as a warm start to
CPLEX. Let P denote the number of portions into which the range of the familiarity objective
function is partitioned in order to find a subset of the Pareto set across the entire range. Fur-
thermore, let S[t] denote the solution returned during the t

th iteration and let F [t] denote the
familiarity objective function value associated with solution S[t].

The exact solution approach starts by returning a solution corresponding to the maximum pos-
sible familiarity objective function value (Line 1). The solution corresponding to the minimal
cost, regardless of familiarity, is returned next by providing the solution returned in Line 1 as
a starting solution, as well as specifying a minimum familiarity value of zero (Line 2). The
two solutions, S[0] and S[P ], therefore represent the solutions at the extreme points of the
Pareto-optimal set. Furthermore, the minimum and maximum familiarity objective function
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Algorithm 5.1: Exact solution approach for the model (5.1)–(5.17)

S[P ], F [P ]  Solve2()1

S[0], F [0]  Solve1(0, S[P ])2

I = �(F [P ]� F [0])/P3

for i = 1 to P � 1 do4

S[P � i], F [P � i]  Solve1(F [P ] + i⇥ I, S[P � i+ 1])5

values of solutions in the Pareto set correspond to F [0] and F [P ], respectively. In the remain-
der of the algorithm, minimum familiarity values ranging from F [P ] to F [0] in increments of
I = �(F [P ] � F [0])/P are specified and the solutions returned as well as their corresponding
familiarity objective function values are stored in S and F , respectively. Furthermore, since
each solution S[i] is a feasible solution when solving for S[j], where i > j (since the minimum
familiarity is already adhered to), a starting solution S[i+ 1] is provided as a warm start when
solving for solution S[i] in order to speed up the run time of CPLEX during each iteration. The
output of the algorithm is a subset S of the Pareto set for the problem instance.

In the remainder of this section, a small example problem instance containing ten customers is
described in order to illustrate the input data and verify the output data of an instance of the
model (5.1)–(5.17). This small problem instance corresponds to that solved in §4.2, with the
addition of a planning horizon consisting of |P| = 2 decision periods and a maximum storage
capacity ei associated with each customer i 2 V. Furthermore, a di↵erent demand volume qi,
service duration si, and number of required visits Fi is associated with each customer i 2 V. The
demand volume associated with each customer is normally distributed from the average demand
volume of the corresponding customer used to compute the master routes, with a standard
deviation � = 5. The number of required visits Fi of each customer i 2 V was then calculated
as described in §5.1.1. The information associated with each vertex in this problem instance is
presented in Table 5.1, whereas information about the types of delivery vehicles to which each
delivery vehicle may belong are presented in Table 4.2. Two of each type of delivery vehicle were
made available to service customers during each decision period, therefore resulting in the same
information pertaining to the fleet of delivery vehicles available as in Table 4.3. Furthermore,
the set of master route arcs is based on the solution to the problem instance solved in §4.2 and
illustrated graphically in Figure 4.2. If an arc (i, j) forms part of the set of master arcs, the arc
(j, i) in the opposite direction is also considered to form part of the set of master route arcs.

The small problem instance was solved by invoking the aforementioned exact solution approach
to generate thirty solutions. Among the thirty solutions generated, there were nine distinct solu-
tions which are plotted in objective space in Figure 5.2. The familiarity objective function value
of the two solutions corresponding to the extreme points of the Pareto-optimal set were 0.7582
and 0.9229, whereas the cost objective function values of these two solutions were R14 026.94
and R27 464.57, respectively. It is clear that a trade-o↵ exists between the transportation cost
and the driver-route familiarity of solutions. Furthermore, relatively large sparse segments are
observed in terms of the cost objective function along the frontier of non-dominated solutions
returned, but not in terms of the familiarity objective function. This phenomenon may be as-
cribed to the fixed costs associated with utilising delivery vehicles. When an increased minimum
familiarity objective function value is specified, it may be required to utilise an additional or
more expensive delivery vehicle, resulting in a significant increase in transportation cost and a
sparse segment in the cost objective function values of solutions returned.

The solution indicated in red in Figure 5.2 is illustrated graphically in Figure 5.3. Once again, the
depot is represented by a black square, whereas each customer is represented by either a yellow or
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Table 5.1: The input data related to vertices in an illustrative example problem instance. The horizontal
axis and vertical axis coordinates of customers are denoted by ⇣i and ⌘i, respectively, and are measured in
kilometres. The number of visits required by each customer is denoted by Fi. Furthermore, the demand
volume in cubic metres associated with each customer is denoted by qi, and the maximum volume of
demand in cubic metres allowed to be delivered to each customer during a single period is denoted by
ei. Furthermore, the service duration in minutes at each customer is denoted by si. Finally, the time-
window start time and end time associated with each customer is denoted by ai and bi, respectively, and
is measured in minutes from the start of the day.

Vertex, i ⇣i ⌘i Fi qi ei si ai bi

0 50 50 – – – 0 0 600
1 60.28 54.49 2 22.74 16.98 44.10 0 270
2 42.37 64.59 2 14.75 10.60 32.12 0 270
3 43.76 89.18 1 8.54 16.67 35.63 270 540
4 96.37 38.34 1 11.03 16.71 43.10 0 270
5 79.17 52.89 2 15.76 12.10 33.64 270 540
6 56.80 92.56 1 7.94 11.29 33.82 270 540
7 7.10 8.71 2 23.94 13.15 45.91 270 540
8 2.02 83.26 1 10.34 13.64 41.02 270 540
9 77.82 87.00 1 14.24 15.70 52.72 0 270
10 97.86 79.92 2 16.50 14.39 34.74 0 270

a green vertex (in the case of a morning or afternoon time-window, respectively). Furthermore,
arcs traversed that form part of the set of master route arcs are represented by dotted lines.
This solution corresponds to a cost objective function value of R14 912.23, comprising a fixed
cost of R10 250, a variable cost of R4 522.07, and a trip duration penalty cost of R140.16, as
well as a familiarity objective function value of 0.8970. In this solution, a single delivery vehicle
(of type ` = 3) is utilised during decision period p = 1 and two delivery vehicles (of types ` = 2
and ` = 3) are utilised during decision period p = 2.

The route of each delivery vehicle utilised during each decision period, the volume of commodities
delivered to each customer, the total volume of commodities delivered by each delivery vehicle,
and the service start times at customers are summarised in Table 5.2. By inspecting these output
data, it may be confirmed that the solution retured by CPLEX satisfies all of the constraints
in the model and is therefore feasible. Each delivery vehicle utilised during each period departs
from the depot and returns to the depot after having serviced the customers along its route.
Each customer is also visited the specified number of times throughout the planning horizon,
yet no more than once during any decision period, and service at each customer starts during its
specified time-window. Furthermore, each customer’s demand for the entire planning horizon is
satisfied and the capacity of no delivery vehicle utilised is exceeded. The overall utilisation of
the capacity of those delivery vehicles used is 76.72%.

5.3 Model verification

In order to ensure that the model derivation in §5.1 and its implementation in §5.2 are correct,
further verification was performed. This involved solving the model for thirty randomly gen-
erated instances of the model (5.1)–(5.17) by obtaining five Pareto-optimal solutions for each
instance and ensuring that feasible solutions were returned by CPLEX for each of the hundred
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Figure 5.2: A subset of the Pareto set returned by the exact solution approach for the model (5.1)–(5.17)
of the operational phase of the FVRP for a small example problem instance.

and fifty solutions, similar to the procedure followed for the small, illustrative example problem
instance solved in §5.2.

In order to generate reproducible synthetic problem instances of the model (5.1)–(5.17) for the
operational phase of the FVRP, a problem instance generator was once again created in the
programming language Python, as was done in §4.3. This problem instance generator may be
downloaded from the author’s Gitthub repository1. The synthetic problem instance generator
for the operational phase takes twelve parameters as input. Once again, the input parameters wc,
wd, qmin, qmax, �,  , bmax and seed1 are taken as input in order to generate the same locations
in the transportation network, as well as the same average demand volumes, service duration
times, and time-windows associated with each customer for the corresponding seed1 value. Two
new input parameters, denoted by seed2 and �, are used to update the average demand volume
qi associated with each customer i 2 V 0 over the planning horizon with the actual demand
volumes for the planning horizon. This is achieved for each customer by randomly assigning
its value according to a normal distribution with the average demand volume as mean and �

as standard deviation. By specifying di↵erent values for seed2, an arbitrary number of actual
demand volumes may therefore be generated for a transportation network and corresponding set
of master routes, in order to simulate multiple future planning horizons for which actual delivery
routes may be computed. The number of required visits Fi associated with each customer i in
V 0 is calculated as Fi = dqi/eie. Finally, the number of decision periods in the planning horizon,
denoted by p, is also taken as input.

The output of the problem instance generator for the operational phase is also a Problem Instance
class consisting of multiple Python dictionaries, one for each input parameter to the model (5.1)–
(5.17) for the operational phase of the FVRP. The standard input parameters of the problem

1Gitthub repository for producing problem instances for the operational phase of the FVRP:
https://github.com/JacobusKing/Problem-Instance-Generator-for-Phase-2.git

https://github.com/JacobusKing/Problem-Instance-Generator-for-Phase-2.git
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(a) Period 1 (b) Period 2

Figure 5.3: A Pareto-optimal solution to a small problem instance of the model (5.1)–(5.17) for the
operational phase of the FVRP. Arcs traversed that also form part of the set of master route arcs are
indicated using dotted lines.

Table 5.2: The output data related to the solution to a small problem instance of the model for the
operational phase.

Decision
period, p

Vehicle, k From i To j qj/fj T
p
jk

1 5 Depot 1 11.37 17.495
1 10 8.25 116.054

10 9 14.24 176.311
9 5 7.88 270.000
5 2 7.37 349.987
2 7 11.97 461.394
7 Depot – 578.753

Total 61.08

2 3 Depot 3 8.54 190.323
3 8 10.34 270.000
8 7 11.97 389.106
7 Depot – 497.237

Total 30.85

2 5 Depot 1 11.37 86.779
1 10 8.25 185.338

10 4 11.03 270.000
4 5 7.88 340.128
5 6 7.94 428.419
6 2 7.37 500.009
2 Depot – 551.888

Total 53.84
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instance generator (used if no value is specified for a parameter) are wc = 100, wd = 0, qmin = 10,
qmax = 20, � = 3,  = 10, bmax = 540, and � = 5. The only compulsory input parameters
required for the generation of a problem instance is therefore the number of customers in each
problem instance n, the number of decision periods in the planning horizon p, and the seed
numbers, seed1 and seed2. The small problem instance solved in §5.2 can be generated by
providing the parameters n = 10, p = 2, seed1 = 1, and seed2 = 1 to the problem instance
generator for the operational phase.

The thirty problem instances solved in pursuit of further verifying the model (5.1)–(5.17) for
the operational phase of the FVRP in §5.1 and its implementation in §5.2 were generated by
providing all combinations of the input parameters n = 8, . . . , 13, p = 2, and seed numbers
seed1 = 1, . . . , 5 and seed2 = 1 to the problem instance generator. The information associated
with the vehicle types to which each of the available delivery vehicles may belong is the same
as the information presented in Table 4.2, and five delivery vehicles of each type were made
available to service customers during each period. Furthermore, five Pareto-optimal solutions
were computed for each of the thirty problem instances according to the method described in
Algorithm 5.1, resulting in a total of one hundred and fifty solutions returned. The synthetic
problem instances were again solved on a computer with an Intel Core i7 CPU operating at
2.90GHz with 16GB of memory. Furthermore, a run time limit of eight hours was imposed for
each solution computed to any problem instance, resulting in a maximum possible run time
duration of forty hours per problem instance.

For each of the aforementioned solutions, the output returned by CPLEX was inspected and
compared with the input parameters of the problem instance in order to verify the feasibility of
solutions. The following aspects of the output data were inspected to ensure feasibility:

• Each delivery vehicle utilised during any decision period must be assigned a route that
departs from the depot and returns to the depot after having serviced the customers along
its route during that decision period.

• The sum of all delivery quantities assigned to each delivery vehicle utilised during any
decision period may not exceed the capacity associated with the delivery vehicle.

• The sum of all delivery quantities received by each customer throughout the planning
horizon must equal the total quantity of demand associated with the customer.

• Customers may only be assigned to delivery vehicles that are considered utilised and of a
type compatible with visiting the customer.

• The service start time at each customer must be within its specified time-window.

• The service start time at each customer must be later than the service start time at the
previous customer along the route, or the departure time at the depot if it is the first
customer along the route.

• Each customer must be visited the specified number of times throughout the planning
horizon.

• No customer may be visited more than once during any decision period.

The final solution returned by CPLEX for each of the hundred and fifty solutions were inspected
and the above requirements were indeed satisfied in each case. The model derived in §5.1 and
its implementation in §5.2 have therefore been verified empirically.



96 Chapter 5. Model for the operational phase

5.4 Time complexity of the exact model solution approach

In order to determine the relationship between the number of customers in a randomly generated
instance of the model (5.1)–(5.17) and the run time required by CPLEX to return Pareto-optimal
solutions to the corresponding problem instance, the run times and optimality gaps returned
by CPLEX for each of the hundred and fifty solutions generated in §5.3 were analysed. The
run time of the exact solution approach for the model (5.1)–(5.17) of the operational phase
of the FVRP for each solution generated in each problem instance is plotted on a logarithmic
scale in Figure 5.4. The remaining optimality gaps associated with generating each solution
are plotted in Figure 5.5. Furthermore, the total run times associated with the thirty problem
instances (summing the run times of the five solutions returned for each instance), are plotted
on a logarithmic scale in Figure 5.6.

Figure 5.4: The run times recorded when generating a single Pareto-optimal solution to synthetic
instances of the model (5.1)–(5.17), involving di↵erent numbers of customers, during the operational
phase of the FVRP. The red horizontal line represents the eight hour run time limit specified when
generating each Pareto-optimal solution to each problem instance. The mean trend of the run times is
indicated by means of a dotted line.

Yet again, despite being plotted on a logarithmic scale, the aforementioned run times associated
with generating each solution seem to increase with a strong linear trend as the number of
customers in the problem instance increases. This clearly demonstrates that the computational
complexity of the model increases exponentially as the number of customers in the problem
instances increase for a fixed number of available delivery vehicles. Furthermore, seven of the
solutions generated for instances containing eleven customers could not be solved to optimality
due to CPLEX not being able to return proven optimal solutions within the eight hour time
limit, resulting in the optimality gaps observed in Figure 5.5. Upon analysis of the total run
times recorded for generating five solutions to each problem instance, an even larger slope of
increase is observed, as expected. As in the case of the strategic phase of the FVRP, the exact
solution approach for the model of the operational phase of the FVRP would therefore not seem
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Figure 5.5: The remaining optimality gaps recorded when generating Pareto-optimal solutions to syn-
thetic instances of the model (5.1)–(5.17) involving di↵erent numbers of customers during the operational
phase of the FVRP.

to be scalable to the size of real-world problem instances in which it may be required to generate
more non-dominated solutions to problem instances, typically containing hundreds of customers.
This motivates the need for an approximate solution approach in which many non-dominated
high-quality, but not necessarily Pareto-optimal, solutions may be achieved for large problem
instances within an acceptable time-frame.

5.5 Approximate model solution approach

An approximate solution approach is proposed in this section for the model (5.1)–(5.17) pertain-
ing to the operational phase of the FVRP. As in the case of the approximate solution approach
proposed for the model (4.1)–(4.18) pertaining to the strategic phase of the FVRP, this solu-
tion approach is based on the second version of the HGSADC algorithm proposed by Vidal et
al. [140], with some adaptions made to the structure and the working of the algorithm in order
to be able to accommodate instances of the model (5.1)–(5.17). Furthermore, in order for the
approximate solution approach to be able to solve bi-objective optimisation model instances,
the non-dominated sorting procedure proposed by Srinivas and Deb [124] and the CDD measure
proposed by Deb et al. [38] are employed when evaluating solutions.

A pseudo-code description of the proposed solution approach is presented in §5.5.1, and this
is followed by a description of the adaptions made to the original HGSADC algorithm. Adap-
tions made to the trajectory-based algorithmic component aimed at accommodating bi-objective
problems are discussed in §5.5.2. Furthermore, an additional set of penalty parameters required
to allow for the infeasibility of solutions are described in §5.5.3. Thereafter, the non-dominated
sorting of solutions and the application of the CDD measure during the execution of the al-
gorithm are explained in §5.5.4. An additional step performed during the initialisation of the
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Figure 5.6: The run times recorded when generating five single Pareto-optimal solutions to synthetic
instances of the model (5.1)–(5.17), involving di↵erent numbers of customers, during the operational
phase of the FVRP. The mean trend of the run times is indicated by means of a dotted line.

population, where the master routes computed during the strategic phase of the FVRP are em-
bedded into a solution and included in the population, is discussed in §5.5.5. The addition of a
heterogeneous fleet attribute is described next in §5.5.6, and this is followed by a discussion in
§5.5.7 on the manner in which the service start times of delivery vehicles at customers were de-
termined. Finally, the parameter values adopted during the implementation of the approximate
solution approach are described in §5.5.8, whereas the classes and functions created during the
implementation of the approximate solution approach in the programming language Python are
discussed in §5.5.9 and §5.5.10, respectively.

5.5.1 Pseudo-code description

The pseudo-code description of the proposed solution approach is the same as that for the
second version of the HGSADC algorithm provided in Algorithm 3.4. The proposed solution
approach begins by initialising a population consisting of a feasible subpopulation and an in-
feasible subpopulation, by randomly generating individuals representing “candidate” solutions,
as well as constructing a solution based on the master routes computed during the strategic
phase to be included in the population. The main loop of the algorithm is then executed over
ItNI non-improving iterations or for a maximum duration of Tmax minutes, after which the
set of non-dominated solutions found during the search is returned. During each iteration, two
parent solutions, P1 and P2, are selected according to a binary tournament selection scheme
from the union of the feasible and infeasible subpopulations. An o↵spring solution C is created
from the two parent solutions by invoking the PIX crossover operator, after which the o↵spring
solution undergoes education during which two local search procedures are performed. If the
o↵spring solution is not feasible, it is placed in the infeasible subpopulation and undergoes repair
with probability Prep, during which education is performed with increased penalty weights for
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infeasibility. If, however, the o↵spring solution generated is feasible, it placed in the feasible
subpopulation.

Both subpopulations are managed to contain between µ and µ + � individuals. If any sub-
population contains more than µ + � individuals, survivor selection takes place during which
� individuals are removed from the corresponding subpopulation. In order to explore a larger
area of the search space, diversification takes place every Itdiv non-improving iterations, during
which µ/3 individuals are retained in each subpopulation and 4µ new individuals are generated
randomly and introduced into the population in the same manner as when the population was
initialised. Furthermore, in order to solve large problem instances e↵ectively, decomposition
occurs every Itdec iterations. During decomposition, the problem instance is decomposed into
smaller subproblem instances and each subproblem instance is solved approximately after which
they are reconstituted once again to obtain complete solutions which are inserted into the ap-
propriate subpopulations. Finally, upon termination of the algorithm, the set of non-dominated
solutions found during the search is returned.

5.5.2 Alternating objectives during local search procedures

During the education and repair procedures, two local search procedures are performed in order
to improve the o↵spring solution generated. When executing these procedures, however, solu-
tions are only improved in terms of a single objective. In order to approximate Pareto-optimal
solutions to instances to the bi-objective model (5.1)–(5.17) of the operational phase of the
FVRP, an approach was adopted in which the objective function to be optimised during the
education and repair procedures is alternated. Each one hundred iterations, when the penalty
parameters for infeasibility are updated, the objective function to be optimised during these
procedures is alternated. This ensures that the approximate Pareto front is improved in both
directions of increased familiarity and decreased cost in the objective space.

5.5.3 The evaluation of solutions

Recall from §3.5.2 that in the original HGSADC algorithm solutions are allowed to be infeasible
in terms of their load, duration, and time-warp, by penalising these infeasibilities with the ap-
propriate penalty weights (!D, !Q, and !TW , respectively) when calculating the penalised cost
of a solution. In the proposed approximate solution approach, solutions are evaluated based on
their penalised cost (representing their cost objective function values to which penalised infeasi-
bilities are added) as well as their penalised familiarity (representing their familiarity objective
function values to which penalised infeasibilities are added). Since the range of the familiarity
objective function values di↵ers from that of the cost objective function values, separate sets
of penalty weights are considered when calculating the penalised cost and penalised familiarity
of solutions. Denote the set of penalty weights considered when penalising infeasible load, du-
ration, and time-warp in the penalised cost of solutions by !D

cost, !
Q
cost, and !

TW
cost , respectively.

Furthermore, denote the set of penalty weights considered when penalising the aforementioned
infeasibilities in the penalised familiarity of solutions by !

D
fam, !Q

fam, and !
TW
fam, respectively.

These two sets of penalty weights are changed dynamically during execution of the approximate
solution approach, yet independently of one another. When updating the penalty parameters
each one hundred iterations, only the set of penalty parameters associated with the objective
function which was optimised during the education and repair procedures is updated. This en-
sures that the target portion of naturally feasible individuals can be achieved when optimising
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either the cost objective function or the familiarity objective function during the education and
repair procedures.

5.5.4 The non-dominating sorting of solutions

In order to direct the search towards approximately Pareto-optimal solutions, a combination of
the non-dominated sorting procedure, proposed by Srinivas and Deb [124] and discussed in §3.6,
and the CDD measure, proposed by Deb et al. [38] and also reviewed in §3.6, are employed. In
the event of a new solution being inserted into the population, a rank is assigned to each solution
(according to the non-dominated sorting procedure) and a CDD measure is calculated for each
solution (based on the non-dominated front in which the solution resides). These measures are
based on the union of both the feasible and infeasible subpopulations and are therefore based on
the penalised cost and penalised familiarity of solutions, discussed in §5.5.3. When, for example,
comparing two solutions, the solution residing within the better ranked non-dominated front is
preferred. If both solutions reside in the same non-dominated front, the solution achieving the
larger CDD value is preferred.

This combination of the non-dominated sorting procedure and the CDD measure is employed
during the parent selection, survivor selection, diversification, and decomposition procedures.
During the decomposition procedure, the solution selected to determine which customers are to
be included in each subproblem is selected as the feasible solution corresponding to the best non-
dominated front and subsequent CDD measure. In the case of the feasible subpopulation being
empty, the infeasible solution corresponding to the best non-dominated front and subsequent
CDD measure is selected. Furthermore, when reconstituting the solutions returned for each
subproblem, the feasible solutions in each subproblem corresponding to the best non-dominated
front and the best objective function value (for the objective function being optimised at the
time) within this front are selected to reconstitute solutions to be inserted into the population.

5.5.5 Initialising the master routes as an additional solution

When initialising the population of solutions at the start of the approximate solution approach,
the master routes computed during the strategic phase of the FVRP are configured into a
solution and inserted into the population. This solution is expected to achieve a relatively
large familiarity objective function value at an acceptable cost and therefore directs the search
towards the approximate Pareto front from the start of the execution of the approximate solution
approach. First, routes forming part of the set of master routes are assigned in a random order
to decision periods in such a manner that no customer is visited more once during any decision
period. It may not be possible to assign a route to a decision period not containing any of the
customers being visited along the route, in which case the route is not included in the solution.
Once all routes have been considered, the number of visits received by each customer throughout
the planning horizon is determined after which each customer is considered in random order.
If a customer considered is visited more often than required, the cost savings associated with
removing the customer from each of the decision periods in which it is visited is determined, and
the removals associated with the largest cost saving are performed until the customer receives
the correct number of visits throughout the planning horizon. If, on the other hand, a customer
under consideration receives fewer visits than required, the cost of the best possible insertion
of that customer into any period during which the customer is not yet visited is determined,
and the insertions associated with the lowest cost are performed until the customer is visited
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the required number of times. The solution thus constructed is then inserted as an additional
solution in the appropriate subpopulation.

5.5.6 Heterogeneous fleet attribute

Whereas the original HGSADC algorithm is capable of solving VRP instances containing mul-
tiple depots, delivery routes are computed for a single depot and its assigned customers in the
model (5.1)–(5.17) of the operational phase of the FVRP. This model, however, makes provi-
sion for having a heterogeneous fleet of delivery vehicles stationed at the depot — an attribute
not included in the original HGSADC algorithm. This di↵erence in capability required by the
model (5.1)–(5.17) is accommodated in the same manner as for the approximate solution ap-
proach pertaining to the model for the strategic phase described in §4.5.3, by replacing the depot
chromosome according to which individuals are represented with a vehicle type chromosome.

Once again, instead of assigning each customer to a depot, customers are assigned to multiple
vehicle types, and a giant tour is generated for each decision period and vehicle type combination
(p, `). This giant tour is then partitioned into multiple routes, each performed by a delivery
vehicle of type ` during decision period p. When evaluating a route, the fixed cost associated
with the delivery vehicle to which the route is assigned, is added to the penalised cost. Moreover,
the distance measure incorporated into the penalised cost of a route is adapted to take into
account the di↵erent costs associated with travelling between vertices by the di↵erent vehicle
types.

When initialising the population, individuals are generated by randomly assigning each customer
to a feasible visiting pattern, and then randomly adding the customer to the giant tour of any
type of delivery vehicle within each of the decision periods associated with the assigned pattern.
Furthermore, during any stage of the algorithm, a customer may only be assigned to a giant
tour of a vehicle type and period combination (p, `) if the customer is, in fact, allowed to be
visited by a vehicle of type `, thereby ensuring feasible vehicle-customer assignments.

5.5.7 The service start times at customers

The same approach adopted towards determining the service start times at customers for the
approximate solution approach for the strategic phase of the FRP, described in §4.5.6, is also
adopted in the approximate solution approach for the operational phase of the FVRP. This
approach entails having each delivery vehicle depart from its current location and arrives at
its next location as early as possible. Although this approach may result in large amounts of
vehicle waiting time, it results in the minimum amount of time-warp. At termination of the
approximate solution approach for the model (5.1)–(5.17) pertaining to the operational phase of
the FVRP, before returning the set of non-dominated solutions found during the entire search,
each non-dominated solution is provided as a warm start to CPLEX and is returned as soon as
CPLEX recognises the warm start as a feasible solution. The optimal service start times for each
non-dominated solution may then be deduced from the solutions returned by CPLEX, which are
returned as the service start times for the set of non-dominated solutions by the approximate
solution approach.
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5.5.8 Parameters of the algorithm

Since the parameter values of the HGSADC algorithm do not depend on the type of VRP
being solved, all parameters included in both the proposed approximate solution approach and
those that were in the original HGSADC algorithm are set to recommended values based on the
parameter calibration performed by Vidal et al. [139, 140] and described in §3.5.4. The only
parameter value which would seem to depend on the type of VRP being solved is the generation
size �, which is fixed at the value proposed for the MDPVRP, since its structure is most similar
to that of the FVRP.

5.5.9 Classes created during the implementation

The proposed approximate solution approach was implemented in the Python programming
language, adopting an object oriented approach. The following classes were created during the
implementation:

The Globals class stores global variables which should be accessible to all objects and func-
tions in the implementation.

The ProblemInstance class stores the input parameters required in an instance of the model
(5.1)–(5.17) for the operational phase of the FVRP.

The Settings class stores all the configuration parameters of the approximate solution ap-
proach.

The Fleet class stores information associated with the available fleet of delivery vehicles sta-
tioned at the depot.

The Individual class stores an individual (solution) in the population as well as all informa-
tion associated with the individual.

The Population class stores the current population of individuals.

The PhaseII class stores the main function responsible for executing the approximate solution
approach.

Variables stored in the Globals class include an object of the ProblemInstance class, an object
of the Settings class, and an object of the Population class. This allows all functions and classes
access to these variables without the need to pass information regularly between functions. The
input parameters stored in the ProblemInstance class may either be provided manually or may
else be generated by invoking the problem instance generator described in §5.3. Furthermore,
an object of the Fleet class also forms part of the ProblemInstance class. An object of the
ProblemInstance class cannot be created without specifying all input parameters required for
an instance of the model (5.1)–(5.17), therefore serving the purpose of input data validation.
When an object of the ProblemInstance class is created, the pre-processing of input parameters
is also performed. Finally, the Globals class stores a list containing the set of non-dominated
solutions found throughout the execution of the approximate solution approach.

The Individual class calculates and stores all information associated with an individual, such
as the chromosomes and fitness values associated with the individual. This information is also
continually updated throughout the execution of the approximate solution approach in order to
store new fitness values after having updated penalty parameters or after operations, such as
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Education, have been performed on the individual. An object of the Population class stores the
current feasible and infeasible subpopulations which, in turn, each consists of potentially many
objects of the Individual class.

Finally, the PhaseII class stores the main function which executes the approximate solution
approach by accessing and changing the variables stored in an object of the Globals class.

5.5.10 Functions created during the implementation

The main functions used during the execution of the approximate solution approach are as
follows:

The Initialise function is a stand-alone function which generates random solutions as objects
of the Individual class and stores them in an object of the Population class. This function
also generates the solution based on the master routes as an object of the Individual class,
which is also stored in the object of the Population class.

The ParentSelection function forms part of the Population class and returns two parents
selected from the population, each an object of the Individual class, to participate in the
crossover procedure.

The Crossover function is a stand-alone function which takes two individuals, each an object
of the Individual class, as input to perform the PIX crossover, and returns the o↵spring
thus generated as an object of the Individual class.

The Evaluate function forms part of the Individual class and is responsible for evaluating all
fitness measures of an individual based on the three chromosomes representing it.

The EvaluatePopulation function forms part of the Population class and facilitates the
calculation of all fitness measures for individuals in the population, as well as the non-
dominated sorting procedure and assignment of CDD measures.

The Educate function forms part of the Individual class and is responsible for performing the
local search procedure after which the updated chromosomes representing an individual
are stored and the individual is re-evaluated.

The Diversify function forms part of the Population class and its purpose is to carry out the
population diversification component of the approximate solution approach.

The SurvivorSelection function forms part of the Population class and carries out the sur-
vivor selection component of the approximate solution approach.

The AdjustPPs function is a stand-alone function which adjusts the penalty parameters
based on the number of feasible o↵spring generated.

The Decompose function is a stand-alone function which is responsible for carrying out the
decomposition component of the metaheuristic.

The Solve function forms part of the Phase 1 class and executes the metaheuristic.

While many smaller functions not mentioned above also appear in the Python implementation
of the approximate solution approach, the above-mentioned functions are the main functions
utilised to execute the approximate solution approach.
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When the Solve function is called, the approximate solution approach is executed to solve an
instance of the model (5.1)–(5.17) represented by the objects stored in the Globals class. The
population of individuals, also stored in the Globals class, is continually updated and is accessible
to all functions.

In the Decomposition function, the problem instance is decomposed into smaller subproblem
instances and each subproblem instance is solved approximately by the proposed approximate
solution approach. This is achieved by temporarily replacing the objects in the Globals class
with objects representing the problem instance only containing those customers associated with
the decomposed problem instance. Once each subproblem instance has been solved, the variables
in the Globals class are replaced with the objects representing the original problem instance.

5.6 Systematic approximate solution approach verification

A verification of the approximate solution approach proposed for the operational phase of the
FVRP discussed in §5.5 was performed in order to ensure its capability of returning high-quality
feasible solutions. The thirty problem instances solved during the systematic model verification
performed in §5.3 were once again solved, this time approximately. The non-dominated solutions
returned by CPLEX for these thirty instances were taken as reference points to verify the imple-
mentation of the approximate solution approach. The run times and objective function values
of the sets of non-dominated solutions found were recorded for each instance. Furthermore,
a maximum run time of eight hours and a stopping criterion of five thousand non-improving
iterations were specified for each instance.

The HV quality indicator discussed in §3.6 was employed to evaluate the quality of the sets
of non-dominated solutions returned by the approximate solution approach relative to those
returned by CPLEX. The reference point used to calculate the HV was chosen as 1.1 times
the nadir point of each instance. Furthermore, normalisation was performed with respect to
the minimum and maximum objective function values returned by any of the two solution
approaches, in order for each objective to exhibit equal importance during the optimisation
process. The average di↵erences in HV values of the sets of non-dominated solutions returned
by the exact solution approach and those returned by the approximate solution approach are
summarised in Table 5.3. Furthermore, the average number of non-dominated solutions returned
for each instance by CPLEX and by the approximate solution approach is also shown.

Table 5.3: Mean percentage di↵erences in HV measures, denoted by � HV, between the non-dominated
solutions returned by the exact solution approach and those returned by the approximate solution ap-
proach for the model (5.1)–(5.17) of the operational phase of the FVRP. The average numbers of non-
dominated solutions returned by CPLEX and the approximate solution approach are denoted by Nexact

and Napproximate, respectively.

Number of
customers, n

� HV Nexact Napproximate

6 2.67% 3.6 5.6
7 �4.93% 4.2 7.6
8 9.08% 4.4 9.8
9 �8.29% 4.2 9
10 8.08% 3.4 11
11 �5.78% 3.75 10.6
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Although five solutions were returned by CPLEX for each instance, not all of the solutions
were distinct, resulting in an average of fewer than five solutions returned for the instances.
For instances containing 7, 9, and 11 customers, the average HVs of the sets of non-dominated
solutions returned by the approximate solution were worse (i.e. smaller) than those returned by
CPLEX. For instances containing 6, 8, and 10 customers, on the other hand, the average HVs
of the sets of non-dominated solutions returned by the approximate solution were better (i.e.
larger) than those returned by CPLEX. Although CPLEX returned Pareto-optimal solutions
to some of the instances, a larger HV could be obtained by the approximate solution for these
instances, since the Pareto-optimal solutions as well as additional non-dominated solutions could
be returned. Furthermore, the average number of non-dominated solutions returned by the
approximate solution approach was more than the average number of distinct solutions returned
by CPLEX for each number of customers in the instances. Upon visual inspection of the objective
space of the non-dominated solutions returned by both solution approaches for each instance, it
was clear that the approximate solution approach regularly returned the same solutions as those
returned by CPLEX, as well as additional non-dominated solutions. The approximate solution
approach is therefore considered to have been verified successfully.

A comparison between the run times recorded when solving the aforementioned thirty problem
instances according to the exact solution approach (the total time required for returning five
solutions to each instance) and those required by the approximate solution approach is presented
graphically on a logarithmic scale in Figure 5.7. The run times returned by the exact solution
approach are indicated in green, whereas those returned by the approximate solution approach
are indicated in blue. Furthermore, the average run times returned by each solution approach for
each number of customers is indicated by the orange lines. It is evident that the slope of increase
of the average run times required by the approximate solution approach is much smaller than

Figure 5.7: The run times recorded when generating non-dominated solutions to synthetic instances
of the model (5.1)–(5.17), involving di↵erent numbers of customers, during the operational phase of the
FVRP exactly and approximately. The mean trend of the run times is indicated by means of dotted
lines.
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that of the exact solution approach. The run times of the exact solution approach also fluctuated
to a much larger extent than those of the approximate solution approach. It is important to
note that the average run times of the exact solution approach for instances containing eleven
customers were a↵ected by the run time limit of eight hours imposed for each solution in the
instance, whereas the approximate solution approach never met this stopping criterion. A further
set of problem instances (containing twelve to sixteen customers) was also solved according to
the approximate solution approach and a similar slope of increase was observed as for the smaller
sized problem instances. The solution time incurred by the approximate solution approach is
considered to be acceptable.

5.7 Chapter summary

In this chapter, a mathematical model was proposed for the operational phase of the FVRP.
The model was derived in §5.1 after which an exact solution approach was proposed in §5.2 and
implemented for the model in the CPLEX optimisation environment, using its Python interface.
This was followed by a systematic model verification in §5.3 in which a random problem instance
generator was described and used to generate thirty problem instances for model verification
purposes. The time complexity of the exact solution approach was discussed in §5.4 and it
was found that the exact solution approach is not scalable to the size of real-world problem
instances. An approximate solution approach was therefore proposed in §5.5, based on the
HGSADC algorithm of Vidal et al. [140] and solution evaluation techniques proposed by Deb et
al. [38]. A systematic verification of the approximate solution approach followed in §5.6 during
which it was found that the approximate solution approach is acceptable and that it is capable
of returning high-quality sets of non-dominated solutions.
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CHAPTER 6

Case study background and data

Contents
6.1 The industry partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

In an attempt to demonstrate the practical applicability of the FVRP proposed in this thesis, a
case study is performed based on real-world input data to the two mathematical models proposed
in Chapters 4 and 5, provided by the industry partner attached to this thesis. The models are
solved approximately. The aim in this chapter is to provide background information about the
industry partner and to present the input data related to the case study. The industry partner
and its current logistical operations are discussed briefly in §6.1. This is followed in §6.2 by a
discussion on the real-world input data related to the case study. The chapter is brought to a
close with a brief summary of its contents in §6.3.

6.1 The industry partner

The industry partner attached to this thesis is a clothing retailer with one of the largest retail
store footprints in Southern Africa. It owns 5 470 stores distributed across ten African countries,
sells predominantly clothing, footwear, and textiles, and boasts an annual revenue of R77.3
billion. A large part of its supply chain competitiveness relies on an ability to distribute 24
million boxes of retail goods annually from its depots to its stores.

The current logistical operations of the industry partner in South Africa involve stock arriving at
ports, from where it is distributed to DCs by road. From the DCs, stock is distributed further by
road to 23 depots located across South Africa. At these depots, di↵erent stock items are merged
into pallets which are distributed by road to 3 500 stores, with each store only being serviced
by a single depot. During the demand planning process at the industry partner, the volume of
stock to be delivered to each store during a specific week is determined well in advance. The
products that make up the assigned volume of stock are only determined at a later stage, and
may change throughout the planning process. Stock is procured and delivered to the relevant
depots before the start of the week during which it should be delivered to stores. The demand
exhibited by each store may then be satisfied on any day, or on multiple days, throughout the
week. Stores are therefore not assigned any specific day in advance on which delivery will occur,
but rather a specific week during which the delivery of certain stock items will take place.
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Figure 6.1: Locations of the EPH depot and its stores. Stores are represented by blue flags, whereas
the depot is represented by a red flag.



6.2. Input data 111

The volume of stock delivered to a single store during any day may, however, not exceed a
specified threshold. This ensures that the storage capacity of a store is not exceeded and allows
sta↵ to unpack stock delivered to the store at convenient o↵-peak times throughout the day.
Furthermore, deliveries at stores are only allowed to take place during the period 09:00–17:00
on weekdays, and depots operate during the period 08:00–20:00. The industry partner does
not own a dedicated fleet of delivery vehicles, but hires delivery vehicles from a third party.
The company therefore essentially has an unlimited fleet of delivery vehicles available to service
customers. Two types of delivery vehicles, small or large delivery vehicles, may be rented, and
di↵erent fixed and variable costs are associated with renting these delivery vehicles.

As mentioned in §1.2, the industry partner often experiences practical outbound logistics chal-
lenges when attempting to implement the recommendations stemming from solving VRP in-
stances by means of standard commercial software. This reportedly occurs frequently because
there is little similarity between the day-to-day routes assigned to delivery vehicle drivers, and
the industry partner therefore has expressed the need to increase driver-route familiarity. Al-
though increasing driver-route familiarity may result in an increased transportation cost of
planned delivery routes, the final cost of implementing these solutions and the total cost across
all supply chain activities are nevertheless expected to decrease if the implementation of planned
delivery routes can be improved.

6.2 Input data

A medium-sized depot of the industry partner, servicing 93 stores, is its Empangeni hub (EPH)
situated near Richards Bay in the Kwazulu-Natal Province of South Africa. The historical
demand data associated with the EPH depot for the period 13/09/2021–26/12/2021, spanning
16 weeks, serves as input data to the case study reported in this chapter and the next. The
locations of the EPH depot and its assigned stores are provided in Table 6.1 and illustrated
graphically on a road map in Figure 6.1. Further information associated with each store is also
summarised in Table 6.1, while information pertaining to the types of delivery vehicles available
for renting is provided in Table 6.2. In particular, the locations, time-window start and end
times, and the storage capacity of each store are provided in Table 6.1, which also contains an
indication of the average weekly demand volume over the first 13 of the aforementioned 16 weeks
(for the weeks 13/09/2021–05/12/2021), as well as the demand volume for three subsequent
weeks (for the weeks 06/12/2021–26/12/2021) associated with each store.

Some di↵erences exist between the real-world data employed in this case study and the test data
sets employed in Chapters 4 and 5. In the test data sets, the depot was always placed relatively
in the centre of the transportation network (although a change of the parameters to the data set
generators allowed for varying depot locations slightly), whereas the EPH depot is placed near a
port at the outskirts of the transportation network. Furthermore, the locations of customers in
the test data sets were uniformly distributed, whereas the stores serviced by the EPH depot are
semi-clustered. The Google Maps application programming interface was invoked to determine
the travel distances and expected travel times between all pairs of coordinates of locations in
Table 6.1. The results indicated that stores are located at a travel distance of up to four hundred
kilometres, involving a travel time of up to 287 minutes, away from the depot — much further
than the maximum travel distance of 70km and travel time of 70 minutes assumed in the test
data sets. Finally, the volumes of demand associated with customers in relation to the capacities
of delivery vehicles are much larger in the current case study than that in the test data sets. Due
to the larger demand volumes and stores being further located from the depot, delivery vehicles
are not able to service as many customers as in the solutions to the test data set instances.
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Table 6.1: The input data associated with stores. The longitude and latitude coordinates of each store
i are given. The time-window start and end times, measured in minutes from 08:00 and denoted by ai

and bi, respectively, as well as the maximum storage capacities of stores, measured in cubic meters and
denoted by ei, are also given. The average demand volumes associated with stores over the period of 13
weeks 13/09/2021–05/12/2021 and the demand volume exhibited by these stores during three subsequent
weeks 06/12/2021–26/12/2021 are denoted by q

avg
i , q1i , q

2
i , and q

3
i , respectively, and are measured in cubic

meters.

Store, i Longitude Latitude ai bi q
avg
i q

1
i q

2
i q

3
i ei

1 –28.4141 32.1875 60 540 57.35 63.34 37.84 24.75 25
2 –28.7523 32.0507 60 540 87.33 113.70 66.72 37.92 25
3 –27.0055 30.8020 60 540 63.11 63.02 39.07 24.43 25
4 –27.3792 31.6110 60 540 72.87 85.76 41.54 23.93 25
5 –28.7523 32.0507 60 540 16.81 32.76 16.09 15.39 25
6 –28.7523 32.0507 60 540 14.68 9.79 21.65 5.83 25
7 –27.4328 32.1005 60 540 42.25 46.98 35.30 21.52 25
8 –28.7504 32.0477 60 540 38.53 41.04 28.00 15.93 25
9 –26.9919 30.7987 60 540 37.66 26.21 21.09 12.93 25

10 –28.6198 31.0914 60 540 49.36 55.65 25.74 20.32 25
11 –28.7429 31.8879 60 540 60.30 73.05 42.71 17.36 25
12 –27.7650 30.8006 60 540 63.96 65.84 34.17 26.42 25
13 –27.9115 31.6474 60 540 59.04 67.40 40.25 22.46 25
14 –28.7418 31.8904 60 540 78.77 47.24 26.72 29.64 25
15 –28.7590 32.0440 60 540 55.59 58.02 35.67 29.72 25
16 –27.4245 30.8200 60 540 54.98 55.10 27.79 20.08 25
17 –27.0105 30.8063 60 540 55.83 51.71 31.04 20.44 25
18 –27.6174 32.0330 60 540 33.85 37.79 22.29 12.74 25
19 –28.4113 32.1865 60 540 41.99 47.03 31.12 20.75 25
20 –28.0183 32.2681 60 540 39.09 43.54 24.60 13.28 25
21 –28.3001 31.4220 60 540 52.94 67.46 38.35 24.45 25
22 –28.8892 31.4720 60 540 41.20 41.03 29.95 20.22 25
23 –27.7659 30.7998 60 540 12.17 24.44 19.26 5.61 25
24 –27.4241 30.8190 60 540 24.37 49.19 37.29 9.67 25
25 –28.7431 31.8915 60 540 15.72 26.20 24.91 8.22 25
26 –27.0094 30.8023 60 540 20.03 35.17 30.00 7.24 25
27 –27.3779 31.6151 60 540 15.70 28.38 26.29 7.20 25
28 –28.7517 32.0488 60 540 38.22 68.78 59.61 13.59 25
29 –28.5910 31.3985 60 540 16.36 31.61 30.63 6.41 25
30 –28.4141 32.1873 60 540 17.18 34.17 31.06 6.41 25
31 –28.4114 32.1865 60 540 16.21 33.21 29.71 6.32 25
32 –29.0306 31.5815 60 540 18.33 35.35 29.55 7.01 25
33 –27.9113 31.6473 60 540 22.11 44.11 37.09 8.23 25
34 –28.2984 31.4225 60 540 30.50 55.41 47.18 9.18 25
35 –27.7646 30.7955 60 540 16.22 31.84 18.77 6.88 25
36 –28.4136 32.1854 60 540 25.46 43.11 38.74 9.72 25
37 –27.7643 30.8006 60 540 22.80 42.16 26.51 11.39 25
38 –27.0054 30.8033 60 540 13.06 23.85 19.42 4.59 25
39 –27.7670 30.7967 60 540 15.41 31.19 22.79 6.27 25
40 –28.7492 32.0473 60 540 19.97 44.63 22.65 7.01 25
Continued on next page
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Store, i Longitude Latitude ai bi q
avg
i q

1
i q

2
i q

3
i ei

41 –28.7448 31.8891 60 540 24.64 44.83 32.90 9.64 25
42 –26.9905 32.7551 60 540 20.56 38.08 29.22 7.68 25
43 –27.7694 30.7919 60 540 16.19 32.82 20.91 7.48 25
44 –27.9168 31.6465 60 540 11.20 22.75 16.71 3.77 25
45 –28.7523 32.0507 60 540 23.44 49.69 30.60 9.84 25
46 –26.9260 32.2519 60 540 15.37 31.70 20.77 5.68 25
47 –28.3022 31.4217 60 540 19.53 45.28 28.27 8.85 25
48 –27.4300 32.0691 60 540 18.51 35.74 26.59 6.73 25
49 –28.8987 31.4640 60 540 19.81 34.07 29.87 5.86 25
50 –28.0190 32.2689 60 540 28.75 52.15 35.09 11.33 25
51 –28.7442 31.8862 60 540 10.56 15.12 25.14 3.69 25
52 –28.8963 31.4664 60 540 29.65 55.71 37.56 11.75 25
53 –28.7733 31.9035 60 540 18.49 30.36 24.24 8.13 25
54 –26.6239 30.6615 60 540 12.65 24.84 17.82 5.54 25
55 –28.7499 32.0474 60 540 18.26 35.51 24.64 9.78 25
56 –27.9085 31.6469 60 540 30.04 52.71 37.95 10.24 25
57 –27.3788 31.6111 60 540 24.66 43.34 31.78 9.26 25
58 –27.6171 32.0336 60 540 18.72 38.47 26.63 6.21 25
59 –26.9885 32.7561 60 540 16.83 31.36 24.37 6.82 25
60 –28.6213 31.0913 60 540 28.96 50.87 37.12 10.19 25
61 –27.4277 32.0706 60 540 19.16 31.04 28.20 8.44 25
62 –27.4815 32.5827 60 540 31.11 55.71 37.04 11.79 25
63 –27.0066 30.8037 60 540 12.97 23.11 19.35 5.09 25
64 –27.1334 32.0040 60 540 17.55 31.26 25.36 6.45 25
65 –28.7418 31.8894 60 540 29.45 56.06 40.48 11.48 25
66 –28.7431 31.8880 60 540 25.68 44.55 31.88 11.00 25
67 –28.4153 32.1807 60 540 8.85 26.36 9.40 4.76 25
68 –27.0990 32.1598 60 540 16.62 29.27 18.86 7.25 25
69 –27.9120 31.6471 60 540 15.55 31.60 21.43 7.61 25
70 –27.4328 32.1005 60 540 15.01 25.69 22.14 4.50 25
71 –28.7418 31.8900 60 540 20.32 35.37 28.69 6.75 25
72 –28.2982 31.4221 60 540 12.82 24.62 19.49 4.18 25
73 –28.2982 31.4221 60 540 7.70 19.64 10.65 4.02 25
74 –28.4156 32.1806 60 540 15.27 32.59 22.80 5.63 25
75 –28.7435 31.8877 60 540 8.25 18.66 9.52 4.10 25
76 –28.7494 32.0468 60 540 16.68 31.76 25.50 7.28 25
77 –28.6213 31.0913 60 540 10.35 23.89 10.90 3.79 25
78 –28.7460 32.0509 60 540 18.02 40.96 20.49 8.03 25
79 –26.4032 30.7754 60 540 17.70 34.61 19.42 8.25 25
80 –27.7670 30.7931 60 540 11.48 31.81 13.04 4.91 25
81 –28.4144 32.1858 60 540 12.04 20.76 17.80 5.39 25
82 –27.0407 32.2721 60 540 15.83 29.36 23.87 6.97 25
83 –27.3762 31.6128 60 540 14.28 25.67 19.12 6.42 25
84 –26.9862 32.7540 60 540 16.99 33.42 25.96 7.48 25
85 –26.9886 32.7542 60 540 21.51 37.62 25.03 9.30 25
86 –27.4245 30.8200 60 540 14.50 25.33 20.79 5.50 25
87 –27.3781 31.6093 60 540 10.24 28.53 12.01 6.48 25
88 –27.6893 32.4486 60 540 12.18 26.33 16.23 5.51 25
Continued on next page
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Store, i Longitude Latitude ai bi q
avg
i q

1
i q

2
i q

3
i ei

89 –28.7412 31.8899 60 540 13.07 7.67 15.62 5.55 25
90 –28.7417 31.8903 60 540 71.10 35.62 23.73 16.93 25
91 –26.9919 30.7988 60 540 9.58 16.95 8.99 2.05 25
92 –26.9917 30.7987 60 540 11.29 18.51 15.71 4.18 25
93 –28.4147 32.1805 60 540 18.09 22.53 7.88 2.65 25

Table 6.2: Input data related to delivery vehicle types available for renting. The fixed cost associated
with each delivery vehicle (in Rand) is denoted by Cz, whereas the maximum cargo capacity in cubic
metres of each delivery vehicle is denoted by Qz. The variable cost (in Rand per kilometre travelled) of
each delivery vehicle is denoted by hz. A speed factor, denoted by vz, is associated with each type of
delivery vehicle. Finally, each type of delivery vehicle is associated with a cost coe�cient, denoted by �z
Rand per minute, with which the duration of each route is penalised in the objective function.

Vehicle type, z Size Cz Qz hz vz �z

1 Small 2 600 25 14 0.9 0.1
2 Large 3 600 50 20 1 0.1

Since demand planning at the industry partner is performed for individual weeks and deliveries
may take place on weekdays, a planning horizon in the FVRP is taken as a week in this case study,
consisting of five decision periods, each representing a weekday. The historical demand for 13
consecutive planning horizons (weeks) were used to determine the average weekly demand volume
associated with stores. The master routes computed during the strategic phase are based on these
average demand volumes, which are given in the qavg-column in Table 6.1. During the operational
phase of the FVRP, actual delivery routes are computed for three subsequent planning horizons
(weeks) for which the demand volumes associated with stores are given in the q

1-, q2-, and q
3-

columns in Table 6.1. The average demand volume associated with customers, when computing
the master routes, is 26.40m3. Moreover, the average demand volumes associated with customers
when computing the actual delivery routes are 10.53m3, 26.83m3, and 38.91m3 for the first,
second, and third planning horizon, respectively. The distribution of these demand volumes is
illustrated graphically in Figure 6.2. The demand volumes of the three planning horizons for
which actual delivery routes are to be computed are low, medium, and high demand volume
planning horizons compared to those used to compute the master routes, and are therefore
expected to provide insight into the e↵ect of varying demand volumes on the e↵ectiveness of the
FVRP.

The deviations of the demand volumes associated with stores from their average demand volumes
during each of the planning horizons are illustrated graphically in Figure 6.3. Recall from
Chapter 5 that in the randomly generated test data sets used for verification purposes, the actual
demand volumes associated with customers were distributed randomly according to a normal
distribution with the average demand volumes associated with customers as mean. Upon visual
inspection of Figure 6.3 it would seem that the deviation of demand volumes associated with
stores of the EPH depot are also approximately normally distributed, but with means distinct
from the average demand volumes of stores used to compute the master routes.

The variation in demand volumes associated with stores results in varying visitation frequencies
required by these stores during future planning horizons. The visitation frequencies of stores
calculated for master route generation are illustrated graphically in Figure 6.4. Stores of the
EPH depot require a total of 139 visits by the master routes, whereas 97, 146, and 193 visits
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Figure 6.2: The distribution of demand volumes exhibited by stores when computing the master routes
and actual delivery over for di↵erent planning horizons.

Figure 6.3: The distribution of demand volume deviations exhibited by stores when computing actual
delivery routes over three di↵erent planning horizons.

are required in total during the first, second, and third planning horizon, respectively. The
total number of visits required by customers is expected to have a significant e↵ect on the run
time required by the approximate solution approach described in Chapter 5, since a larger total
number of visits would require invoking the split algorithm more often to determine the best
insertions of customers into giant tours.
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Figure 6.4: The number of visits required by stores when computing the master routes and actual
delivery routes, over di↵erent planning horizons.

6.3 Chapter Summary

The purpose of this chapter was to provide background information on the industry partner
attached to this thesis, and to present the input data related to the case study performed in
the following chapter. The industry partner and its current logistical operations were discussed
briefly in §6.1. This was followed in §6.2 by a discussion on the real-world input data related to
the case study performed.
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This chapter is devoted to a presentation of the numerical results obtained during the case
study carried out based on the real-world data described in Chapter 6. The two mathematical
models proposed in Chapters 4 and 5 are solved approximately for these data. The master
routes computed for the EPH depot of the industry partner during the strategic phase of the
FVRP are described in §7.1. This is followed in §7.2 by a discussion on the corresponding
solutions obtained during the operational phase of the FVRP for three planning horizons. A
brief discussion of the results obtained during the case study is presented in §7.3, and this is
followed in §7.4 by an expert validation of the results by an employee of the industry partner.
This chapter is brought to a close in §7.5 with a summary of its contents.

7.1 The strategic phase

During the strategic phase of the FVRP, master routes were computed for the EPH depot
and its assigned stores by providing the data described in Table 6.1 as input to the model for
the strategic phase of the FVRP, and solving the model by invoking the approximate solution
approach proposed in §4.5. As additional input to the model for the strategic phase of the FVRP,
the allowable threshold in terms of arc overlaps tolerated without penalty amongst the master
routes was set to ↵1 = 0. Furthermore, the cost coe�cient associated with penalising the number
of arc overlaps amongst the master routes over and above the maximally tolerated (not penalised)
number was taken as ⇢ = 400. This cost coe�cient was set to a larger value than that for the
test data instances in order to compensate for the larger variable cost per kilometre associated
with delivery vehicles available in the case study. The approximate solution approach for the
strategic phase was then invoked for a maximum of ten thousand non-improving iterations and
a maximum run time duration of seven days. Furthermore, ten dummy periods were initialised
in order to allow for stores to receive multiple visits, as described in §4.5.4. All other parameters
of the approximate solution approach were set to their default values described in §4.5.7.
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After seven days of run time on a computer with an Intel Core i7 CPU operating at 2.90GHz
with 16GB of memory, the approximate solution approach was terminated and the best feasible
solution uncovered throughout the search was returned. The approximate solution approach
was able to perform more than twenty thousand iterations during this period and uncovered the
first feasible solution within the first day of run time, after which many improving solutions were
uncovered. The best solution returned corresponds to an objective function value of R614 731.08,
comprising a fixed cost component of R215 800, a variable cost component of R389 135.28, a
duration penalty cost of R2 595.80, and an overlap penalty cost of R7 200. There were 18
overlapping arcs amongst the master routes. Of the 8 742 arcs in the 94 vertex transportation
network, 174 master route arcs were returned in total as part of the master routes.

A total of 63 master routes were computed, comprising routes for 52 large delivery vehicles and
11 small delivery vehicles. Information about the route for each delivery vehicle is summarised
in Table 7.1. The average utilisation of the vehicle capacities was 85.18%. The volume of
commodities delivered to stores was much larger than that in the test data instances, which
resulted in fewer stores being visited by each delivery vehicle. An average of 2.44 stores were
assigned to large delivery vehicles, whereas an average of 1.09 stores were assigned to small
delivery vehicles. Since the capacity of a small delivery vehicle is equal to the storage capacities
of stores, a few master routes consist merely of a small delivery vehicle departing from the depot
and returning back directly to the depot after having visited only a single customer. More large
delivery vehicles were therefore utilised since they are able to service at least two customers
(their capacities are twice as large as the maximum storage capacity of customers).

Table 7.1: Master routes returned for the case study. Routes are given by listing the stores assigned to
a vehicle in the order in which they are visited. Arrival times are given in minutes after 08:00. Vehicle
utilisation is given as a fraction between 0 and 1, and vehicle distances travelled are specified in kilometres.

Vehicle
type

Delivery
route

Arrival times
Vehicle

utilisation
Distance
travelled

Large (36, 74, 2) (0, 153.92, 286.35, 594.92) 0.9966 120.69
Large (76, 18, 31) (0, 155.18, 387.71) 0.9963 370.23
Large (44, 13, 58) (0, 102.38, 265.55) 0.9920 369.71
Large (56, 87, 4) (0, 120.44, 298.46) 0.9911 438.93
Large (17, 92, 20) (0, 108.64, 267.09) 0.9888 632.14
Large (50, 9, 35) (0, 102.2, 184.98, 357.65) 0.9885 632.76
Large (56, 27, 17) (0, 60, 150.78, 227.86) 0.9865 626.71
Large (83, 82, 61) (0, 60, 159.33) 0.9855 578.31
Large (60, 52, 14) (0, 140.0, 364.24) 0.9799 271.91
Large (57, 4) (0, 107.68, 284.06) 0.9789 432.16
Large (69, 34, 73, 77) (0, 155.18, 235.51, 449.87) 0.9771 240.98
Large (71, 62, 36) (0, 107.68, 242.64, 466.94) 0.9720 428.69
Large (18, 20, 81) (0, 222.53, 363.56, 496.48, 640.41) 0.9702 316.97
Large (14, 67, 49) (0, 93.77, 254.77) 0.9670 152.46
Large (86, 65, 1) (0, 227.6, 294.61, 583.85) 0.9669 120.06
Large (66, 6, 42) (0, 140.86, 340.55) 0.9617 526.24
Large (38, 17, 43) (0, 148.98, 231.66, 439.49) 0.9572 610.92
Large (60, 26, 72) (0, 133.92, 343.41) 0.9468 705.53
Large (75, 22, 32) (0, 60, 145.19) 0.9436 152.72
Large (24, 37) (0, 168.42, 403.63) 0.9434 507.00

Continued on next page
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Vehicle
type

Delivery
route

Arrival times
Vehicle

utilisation
Distance
travelled

Large (28, 52, 89) (0, 169.33, 403.97, 616.99) 0.9402 179.46
Large (80, 16, 68) (0, 147.9, 274.49, 395.85, 603.67) 0.9284 694.33
Large (45, 2) (0, 79.38, 184.57, 293.03, 351.61) 0.9054 36.78
Large (10, 11) (0, 103.38, 200.12, 325.57) 0.8956 250.40
Large (46, 84, 88) (0, 222.03, 358.45, 587.3) 0.8909 575.26
Large (3, 85) (0, 60, 184.47) 0.8509 611.29
Large (12, 7) (0, 184.65, 425.13) 0.8489 564.02
Large (21, 90) (0, 103.15, 172.04, 354.17) 0.8270 239.39
Large (8, 2) (0, 139.8, 337.57) 0.8219 36.89
Large (33, 48) (0, 130.67, 327.04) 0.8123 426.31
Large (15, 2) (0, 60, 146.36) 0.8072 36.40
Large (79, 91, 63) (0, 60, 177.3) 0.8051 785.65
Large (29, 90) (0, 60, 157.53) 0.8012 148.88
Large (11, 14) (0, 173.76, 404.53) 0.7959 11.32
Large (11, 14) (0, 60, 182.94, 269.09) 0.7959 11.32
Large (12, 16) (0, 136.47, 350.12) 0.7930 506.58
Large (41, 65) (0, 178.77, 415.78) 0.7873 11.37
Large (16, 3) (0, 184.65, 425.13) 0.7872 610.76
Large (90, 70) (0, 136.52, 348.46) 0.7743 148.88
Large (13, 21) (0, 60, 176.2, 296.84) 0.7466 326.32
Large (13, 64) (0, 153.78, 365.65) 0.7445 546.70
Large (47, 21) (0, 137.37, 356.77) 0.7435 238.72
Large (28, 78) (0, 102.38, 265.55) 0.7427 37.59
Large (15, 55) (0, 60.73, 189.92, 283.06) 0.7358 37.13
Large (12, 39) (0, 60, 143.58, 252.17) 0.7347 404.97
Large (7, 62) (0, 60, 151.71) 0.7336 426.47
Large (1, 5) (0, 261.23, 585.3) 0.7185 120.02
Large (9, 59) (0, 132.32, 329.33) 0.7132 843.71
Large (25, 53) (0, 60, 138.19, 262.1) 0.6842 10.40
Large (66, 22) (0, 103.23, 182.86, 345.55) 0.6688 150.71
Large (50, 30) (0, 61.48, 114.24, 181.44, 302.59) 0.6310 217.10
Large (51, 8) (0, 60, 152.18) 0.5966 42.87
Small (54, 23) (0, 71.77, 221.82) 0.9925 706.67
Small (10) (0, 101.97, 269.93) 0.9871 249.87
Small (4) (0, 60, 186.8) 0.9716 432.16
Small (3) (0, 60, 264.4, 378.03, 587.47) 0.8414 610.93
Small (19) (0, 60, 157.53) 0.8398 113.52
Small (19) (0, 60, 163.16, 271.36) 0.8398 113.52
Small (40) (0, 203.86, 482.08) 0.7988 37.13
Small (1) (0, 60, 144.29, 202.41) 0.7646 112.55
Small (15) (0, 60, 176.14, 256.51) 0.7412 35.54
Small (93) (0, 103.23, 232.96, 457.1) 0.7236 111.41
Small (34) (0, 61.03, 180.3) 0.6100 239.09
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7.2 The operational phase

During the operational phase, actual delivery routes were computed for three planning horizons
(weeks) by providing the data described in Table 6.1 and the master routes computed in §7.1 as
input to the model for the operational phase of the FVRP. The model was solved approximately
by invoking the approximate solution approach proposed in §5.5 for each planning horizon. The
demand volumes exhibited by stores for these three planning horizons correspond to the q1-, q2-,
and q

3-columns in Table 6.1. All parameters of the algorithm were set to their default values as
described in §5.5.8. The approximate solution approach of the model for the operational phase
was invoked for a maximum of ten thousand non-improving iterations or a maximum run time
duration of seven days on a computer with the same specifications as those listed in the previous
section, whichever occurred first.

After one day of run time, no feasible solutions had been uncovered yet for the third planning
horizon (corresponding to high demand volumes). This occurred due to the split algorithm
extracting routes from giant tours in such a manner that the load associated with each route
was just less than double the capacity of the delivery vehicle utilised, as mentioned in §3.5.
Since relatively large demand quantities are associated with stores, the education procedure was
not able to reduce the loads associated with routes enough in order for solutions to be feasible.
The approximate solution approach was therefore adapted slightly, so that the split algorithm
could find optimal route delimiters in such a manner that the load of a route does not exceed
1.1 times (rather than twice) the capacity of the delivery vehicle utilised. After this adaption,
the algorithm was restarted and was able to find feasible solutions for all planning horizons
(including the third planning horizon) within the first day of run time.

The maximum number of non-improving iterations was never reached when computing actual
delivery routes for any of the three planning horizons. During each run, the approximate so-
lution approach terminated after the maximum run time duration of seven days, and a set of
non-dominated solutions was returned for each instance. Since stores required varying numbers
of visits during each planning horizon, the approximate solution approach also exhibited varying
performance in terms of speed. When solving for the first planning horizon which required the
smallest total number of visits, approximately 38 000 iterations were completed before termina-
tion of the algorithm. For the second and third planning horizons, requiring larger numbers of
total visits, approximately 18 000 and 7 000 iterations were completed before termination of the
algorithm, respectively.

The set of non-dominated solutions returned for each planning horizon is illustrated graphically
in objective function space in Figure 7.1. For each planning horizon, multiple non-dominated
solutions were returned, as may be seen in the figure. As was the case for the testing data
instances, a clear trade-o↵ is observable between the transportation cost and the degree of
familiarity associated with solutions. As expected, the transportation cost objective function
values are larger for solutions returned for planning horizons during which stores exhibit larger
demand volumes and require more visits. It is evident that more high-familiarity solutions
could be returned for the first and second planning horizons than for the third planning horizon.
This can be ascribed to the slower performance of the approximate solution approach when
computing actual delivery routes for planning horizons during which larger total numbers of
visits are required.

A final trade-o↵ solution was selected for each planning horizon (indicated by the black circles
in Figure 7.1). In the case of the first and second planning horizons, solutions on the elbow of
the set of non-dominated solutions were selected. For the third planning horizon, the solution
corresponding to the highest familiarity objective function value was selected, since the solution
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Figure 7.1: The non-dominated solutions returned for three planning horizons, plotted in objective
function space.

on the elbow of the set of non-dominated solutions corresponds to a relatively small familiarity
objective function value compared to the solution achieving the largest familiarity objective
function value. Information about the sets of non-dominated solutions returned and the solution
selected for each planning horizon is summarised in Table 7.2. Significantly more non-dominated
solutions were returned for the first and second planning horizons than for the third planning
horizon. Moreover, the range of the cost objective function value between the extremal solutions
of the non-dominated front returned was larger for planning horizons during which a larger total
number of visits were required. The range of the familiarity objective function values between
extremal solutions was, however, largest for the second planning horizon (which corresponds
with a total number of visits that is closest to that of the master routes). For each planning
horizon, the selected trade-o↵ solution was compared with the solution achieving the lowest
transportation cost objective function value. During the second planning horizon, the largest
increase in familiarity could be achieved for the smallest percentage increase in transportation
cost. For an increase of 0.1910 in familiarity, a cost increase of only 12.87% was observed.

Table 7.2: Information about the sets of non-dominated solutions returned for each planning horizon.
The number of non-dominated solutions returned for each planning horizon, as well as the range of the
cost (in Rand) and familiarity objective function values corresponding to the extremal solutions is given.
The percentage increase in cost and corresponding increase in familiarity of the selected trade-o↵ solutions
(indicated by circles in Figure 7.1) are compared with these solutions achieving the lowest cost objective
function value in each planning horizon.

Planning
horizon

No of
solutions

Cost
range

Familiarity
range

� Cost � Familiarity

1 21 73 231.38 0.1542 15.31% 0.1508
2 28 137 054.39 0.2231 12.87% 0.1910
3 10 161 993.85 0.1654 17.94% 0.1654



122 Chapter 7. Case study results

The selected trade-o↵ solution for each planning horizon was further inspected. Information on
these solutions are presented in Table 7.3. For each solution, it was verified that the capacity
of no delivery vehicle is exceeded. Furthermore, each delivery vehicle starts servicing stores
assigned to it within their specified time-windows and departs from and returns back to the
depot within the specified time-window of the depot. In each of the three selected solutions, an
average utilisation of more than 0.75 was obtained. More delivery vehicles were utilised during
those planning horizons corresponding to larger demand volumes.

Table 7.3: Information about the trade-o↵ solutions selected for each planning horizon (those indicated
by circles in Figure 7.1). For each solution, the cost objective function value (in Rand) and the familiarity
objective function value are given. Furthermore, the fixed cost, variable cost, and duration penalty of
each solution is given (in Rand), as well as the number of delivery vehicles utilised and their average
utilisation.

Panning
horizon

Cost
Famil-
iarity

Fixed
cost

Variable
cost

Duration
penalty

Number
of vehicles

Average
utilisation

1 279 347.47 0.9660 108 000 171 347.47 1 213.15 35 0.7576
2 718 175.66 0.9098 274 200 443 975.66 3 071.67 92 0.7638
3 1 065 165.92 0.8766 401 200 663 965.92 4 427.17 132 0.7663

Information about the routes of the selected trade-o↵ solutions for each decision period of each
planning horizon is presented in the remainder of this section. For each route, the type of
delivery vehicle utilised, the sequence of stores visited, the service start times at these stores
(measured in minutes after 08:00), the utilisation of the delivery vehicle, the distance of the route
(in kilometres), and the driver-route familiarity associated with the route are given. Information
about the routes associated with the first, second, and third planning horizons are summarised
in Tables 7.4–7.6, respectively.

During the first planning horizon, 17 large delivery vehicles and 18 small delivery vehicles are
utilised. The large and small delivery vehicles utilised are able to service more stores per route
(up to six stores for large delivery vehicles and up to four stores for small delivery vehicles) than
in the master routes, due to the lower demand volumes exhibited by stores. Furthermore, routes
that are associated with a low degree of driver-familiarity are generally shorter in distance,
whereas the routes having achieved a large degree of driver-familiarity are longer routes.

During the second planning horizon, 35 large delivery vehicles and 57 small delivery vehicles are
utilised. Generally, fewer customers are visited by each delivery vehicle than in the routes of the
first planning horizon. This is because the demand volumes exhibited by stores are generally
larger in the second planning horizon than in the first. Large delivery vehicles service up to
three stores per route while small delivery vehicles service up to two stores per route. Most of
the small delivery vehicles only service a single store.

As in the case of the second planning horizon, the routes of the third planning horizon are much
shorter than the master routes and the routes of the first planning horizon. During the third
planning horizon, 58 large delivery vehicles and 74 small delivery vehicles are utilised. The large
and small delivery vehicles only service up to three and two stores per route, respectively. Due
to the large demand volumes exhibited by stores, most large delivery vehicles only service two
customers per route while small delivery vehicles only service a single customer.
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Table 7.4: Delivery routes of the solution selected for the first planning horizon (06/12/2021–
12/12/2021), namely the first circled solution in Figure 7.1. The type of delivery vehicle utilised, the
sequence of stores visited, the service start times at these stores (measured in minutes after 08:00), the
utilisation of the delivery vehicle, the distance of the route (in kilometres), and the driver-route familiarity
associated with each route are given.

Vehicle
type

Route Arrival times
Vehicle

utilisation
Distance
travelled

Famil-
liarity

First decision period (the planning horizon 06/12/2021–12/12/2021)

Large
(51, 89, 78, 15,

45, 6)
(0, 60, 83.26, 136.23, 177.38,

235.48, 274.99, 323.71)
0.9558 49.70 0.1108

Large (61, 48, 7, 71)
(0, 132.48, 169.84, 207.05,

281.6, 450.79)
0.8686 372.53 0.9886

Small (1) (0, 60, 187.25) 0.9900 112.55 1.0000
Small (77, 2) (0, 60, 104.11, 190.29) 0.9100 44.08 0.5432
Small (13) (0, 134.02, 344.8) 0.8986 305.44 1.0000
Small (53, 86, 25) (0, 60, 102.68, 132.23, 174.87) 0.8740 11.90 0.5174
Small (62, 36) (0, 130.67, 271.22, 353.03) 0.8606 376.19 0.6465

Second decision period (the planning horizon 06/12/2021–12/12/2021)
Large (2, 5, 28) (0, 60, 126.89, 185.38, 257.19) 0.9587 37.08 0.9857

Large (8, 15, 40, 55)
(0, 60, 124.33, 182.77, 214.31,

277.77)
0.9516 41.02 0.8949

Large (80, 16, 12, 35)
(0, 153.92, 214.47, 322.89,

374.83, 561.6)
0.9016 507.62 0.7973

Large (14, 67, 22) (0, 60, 172.27, 196.55, 328.01) 0.7961 151.34 0.5731

Large (64, 46, 82, 68)
(0, 191.13, 269.34, 315.69,

360.51, 562.65)
0.5269 544.53 0.8519

Small (38, 26, 9)
(0, 203.27, 229.38, 267.37,

523.81)
0.9902 615.44 0.9955

Small (49, 52, 32) (0, 60, 89.08, 156.13, 225.2) 0.9847 165.32 0.8529
Small (50, 20) (0, 72.17, 119.14, 243.71) 0.9844 215.60 0.9955

Small (42, 84, 59)
(0, 183.85, 218.1, 252.91,

466.8)
0.8792 513.15 0.9978

Small (72, 92, 91, 63)
(0, 203.77, 231.01, 253.7,

275.29, 503.71)
0.6202 614.08 0.9942

Third decision period (the planning horizon 06/12/2021–12/12/2021)
Large (60, 10) (0, 112.62, 154.19, 337.7) 0.6101 250.24 0.9991

Large (34, 69, 73, 47)
(0, 103.15, 142.19, 178.4,

202.49, 343.23)
0.5931 240.63 0.9916

Large (17, 43) (0, 222.53, 364.81, 552.37) 0.5583 609.91 0.8317

Large (29, 70, 90)
(0, 67.13, 96.77, 120.84,

250.77)
0.5569 148.88 0.9978

Small (81, 31, 74, 30)
(0, 60, 87.99, 122.09, 153.3,

225.57)
0.9498 117.17 0.9688

Small (18, 58) (0, 97.89, 146.32, 274.84) 0.7583 306.50 0.9998
Small (65) (0, 60, 114.45) 0.4591 11.52 1.0000

Fourth decision period (the planning horizon 06/12/2021–12/12/2021)

Large (85, 3, 87, 57)
(0, 222.53, 264.24, 429.12,

460.63, 650.91)
0.9893 621.66 0.8381

Continued on next page
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Vehicle
type

Route Arrival times
Vehicle

utilisation
Distance
travelled

Famil-
liarity

Large (66, 41, 75, 11)
(0, 60, 104.38, 144.8, 168.57,

240.67)
0.8419 11.41 0.9329

Large (83, 27, 4)
(0, 150.78, 182.69, 217.2,

450.38)
0.7510 433.40 0.9976

Small (54, 79) (0, 234.85, 289.42, 586.33) 0.5518 786.08 0.9486
Small (24) (0, 168.82, 378.72) 0.3870 506.20 1.0000
Small (88) (0, 108.64, 244.11) 0.2203 310.71 1.0000

Fifth decision period (the planning horizon 06/12/2021–12/12/2021)

Large (23, 39, 12, 37)
(0, 154, 181.8, 213.01, 262.96,

462.73)
0.7295 405.30 0.9977

Large (56, 44, 33, 76)
(0, 145.68, 190.85, 215.05,

250.78, 429.88)
0.5905 307.29 0.9931

Large (21) (0, 103.23, 291.15) 0.4890 238.86 1.0000
Small (93, 19) (0, 60, 82.77, 198.96) 0.9362 114.62 0.9812
Small (14) (0, 60, 123.51) 0.5927 10.60 1.0000

Table 7.5: Delivery routes of the solution selected for the second planning horizon (13/12/2021–
19/12/2021), namely the second circled solution in Figure 7.1. The type of delivery vehicle utilised,
the sequence of stores visited, the service start times at these stores (measured in minutes after 08:00),
the utilisation of the delivery vehicle, the distance of the route (in kilometres), and the driver-route
familiarity associated with each route are given.

Vehicle
type

Route Arrival times
Vehicle

utilisation
Distance
travelled

Famil-
liarity

First decision period (the planning horizon 13/12/2021–19/12/2021)

Large (44, 87, 63)
(0, 148.98, 279.45, 405.11,

696.65)
0.9614 629.87 0.7285

Large (42, 84, 62)
(0, 202.23, 257.4, 366.63,

575.92)
0.9222 512.98 0.8634

Large (86, 25) (0, 60, 135.75, 229.27) 0.9141 11.39 0.9151

Large (80, 23, 37)
(0, 153.92, 205.47, 275.2,

480.57)
0.9112 406.21 0.9965

Large (55, 36) (0, 60, 187.01, 302.02) 0.8802 120.49 0.6200
Large (1, 74) (0, 60, 131.35, 255.8) 0.8344 113.46 0.4962

Large (26, 91, 7)
(0, 222.03, 283.87, 468.4,

670.28)
0.8329 671.32 0.2768

Large (57, 4) (0, 150.12, 207.82, 431.52) 0.7332 432.16 1.0000
Large (2, 8) (0, 60, 139.59, 213.16) 0.7248 37.52 0.9779
Large (51, 11) (0, 60, 108.66, 192.76) 0.6785 11.23 0.9780
Small (59) (0, 184.65, 451.19) 0.9747 512.24 1.0000
Small (34) (0, 93.77, 270.13) 0.9436 239.09 1.0000
Small (70) (0, 61.39, 200.06) 0.8856 148.51 1.0000
Small (9) (0, 206.95, 487.89) 0.8437 614.85 1.0000
Small (43) (0, 139.71, 353.48) 0.8366 404.74 1.0000
Small (13) (0, 134.02, 337.79) 0.8050 305.44 1.0000

Continued on next page
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Vehicle
type

Route Arrival times
Vehicle

utilisation
Distance
travelled

Famil-
liarity

Small (28) (0, 60, 148.75) 0.7948 35.93 1.0000
Small (3) (0, 203.86, 477.67) 0.7814 610.93 1.0000
Small (21) (0, 93.85, 256.44) 0.7670 238.86 1.0000
Small (68) (0, 153.94, 375.43) 0.7544 442.37 1.0000
Small (60) (0, 102.38, 270.37) 0.7424 250.14 1.0000
Small (88) (0, 108.64, 276.28) 0.6491 310.71 1.0000
Small (29) (0, 61.03, 178.82) 0.6126 148.24 1.0000
Small (22) (0, 60, 170.19) 0.5991 163.41 1.0000
Small (61) (0, 120.44, 294.22) 0.5641 364.96 1.0000

Second decision period (the planning horizon 13/12/2021–19/12/2021)
Large (41, 15, 45) (0, 60, 139.47, 206.51, 283.64) 0.9917 42.25 0.5463
Large (66, 56, 42) (0, 60, 265.34, 535.45, 790.3) 0.9906 609.97 0.4278

Large (18, 84, 58)
(0, 107.68, 314.31, 492.48,

652.28)
0.9718 580.56 0.5279

Large (40, 28) (0, 60, 143.27, 233.93) 0.8505 37.22 0.9751
Large (20, 50) (0, 78.95, 163.16, 307.58) 0.8429 214.52 0.9995
Large (72, 85) (0, 224.15, 295.89, 566.26) 0.6400 611.44 0.9981
Large (71, 7) (0, 137.37, 190.4, 392.29) 0.6399 371.60 1.0000
Small (90) (0, 61.91, 205.95) 0.9493 148.88 1.0000
Small (21) (0, 93.85, 256.44) 0.7670 238.86 1.0000
Small (24) (0, 168.82, 405.63) 0.7458 506.20 1.0000
Small (12) (0, 141.08, 344.78) 0.6835 404.67 1.0000
Small (57) (0, 136.47, 332.78) 0.6356 432.19 1.0000
Small (31) (0, 60, 158.55) 0.5942 113.29 1.0000
Small (16) (0, 168.42, 390.22) 0.5558 505.69 1.0000
Small (64) (0, 173.76, 395.68) 0.5072 485.35 1.0000

Third decision period (the planning horizon 13/12/2021–19/12/2021)

Large (49, 52, 22)
(0, 60.73, 117.2, 186.56,

302.27)
0.9739 164.47 0.9914

Large (15, 19, 31) (0, 60, 167.26, 224.79, 327.73) 0.9650 120.80 0.6087
Large (36, 27, 17) (0, 60, 239.36, 368.35, 647.73) 0.9607 623.19 0.5794
Large (93, 30, 6) (0, 60, 98.67, 198.09, 294.28) 0.9012 121.10 0.4603
Large (2, 28) (0, 60, 139.06, 229.72) 0.8422 37.08 0.9857
Large (41, 66) (0, 60, 120.85, 188.47) 0.6478 10.40 0.9784
Large (10, 60) (0, 112.17, 161.9, 340.11) 0.6286 250.24 0.9991
Small (39) (0, 139.8, 359.16) 0.9116 404.03 1.0000
Small (69) (0, 93.98, 263.99) 0.8573 239.35 1.0000
Small (46) (0, 178.77, 430.53) 0.8307 495.40 1.0000
Small (13) (0, 134.02, 337.79) 0.8050 305.44 1.0000
Small (3) (0, 203.86, 477.67) 0.7814 610.93 1.0000
Small (56) (0, 132.44, 331.29) 0.7590 304.76 1.0000
Small (35) (0, 140.86, 349.11) 0.7509 404.55 1.0000
Small (62) (0, 130.67, 326.89) 0.7407 373.97 1.0000
Small (81) (0, 60, 165.69) 0.7120 113.36 1.0000
Small (45) (0, 60, 135.2) 0.6120 36.78 1.0000
Small (32) (0, 60, 152.36) 0.5909 119.34 1.0000

Continued on next page



126 Chapter 7. Case study results

Vehicle
type

Route Arrival times
Vehicle

utilisation
Distance
travelled

Famil-
liarity

Small (47) (0, 92.91, 240.04) 0.5653 238.12 1.0000
Small (48) (0, 120.29, 291.45) 0.5319 364.99 1.0000

Fourth decision period (the planning horizon 13/12/2021–19/12/2021)

Large (85, 92, 38)
(0, 222.53, 275.98, 338.72,

630.95)
0.9529 614.60 0.9928

Large (83, 27, 71)
(0, 150.78, 220.78, 335.0,

526.97)
0.9321 479.40 0.8388

Large (32, 77, 65) (0, 60, 159.54, 202.47, 284.2) 0.9182 126.79 0.5172

Large (76, 33, 47)
(0, 147.9, 197.59, 314.87,

471.47)
0.9086 326.83 0.8315

Large (78) (0, 60, 153.55) 0.4098 37.96 1.0000
Small (29, 67) (0, 61.03, 156.93, 250.39) 0.9887 204.22 0.3633
Small (79) (0, 261.23, 591.64) 0.7768 785.30 1.0000
Small (1) (0, 60, 169.77) 0.7569 112.55 1.0000
Small (54) (0, 234.85, 533.94) 0.7129 706.11 1.0000
Small (14) (0, 60, 119.14) 0.5344 10.60 1.0000
Small (48) (0, 120.29, 291.45) 0.5319 364.99 1.0000
Small (10) (0, 101.97, 252.9) 0.5148 249.87 1.0000
Small (64) (0, 173.76, 395.68) 0.5072 485.35 1.0000

Fifth decision period (the planning horizon 13/12/2021–19/12/2021)

Large (12, 26, 17)
(0, 155.18, 291.89, 349.75,

629.12)
0.9522 611.14 0.8299

Large (14, 52, 49) (0, 60, 169.38, 237.21, 352.07) 0.9416 152.21 0.5674

Large (76, 73, 34)
(0, 147.9, 246.69, 290.21,

476.13)
0.9398 326.74 0.8332

Large (75, 51, 65) (0, 60, 99.37, 149.28, 231.01) 0.8466 11.64 0.9253
Large (82, 61) (0, 183.35, 315.67, 501.59) 0.7595 470.51 0.3878
Large (8, 2) (0, 60, 114.95, 212.91) 0.7248 36.89 0.9808
Small (53) (0, 60, 145.48) 0.9696 2.06 1.0000
Small (11) (0, 60, 143.19) 0.8542 11.00 1.0000
Small (4) (0, 136.52, 346.45) 0.8309 432.16 1.0000
Small (24) (0, 168.82, 405.63) 0.7458 506.20 1.0000
Small (33) (0, 133.92, 332.88) 0.7418 305.40 1.0000
Small (50) (0, 72.17, 209.15) 0.7018 214.52 1.0000
Small (5) (0, 60, 137.56) 0.6434 36.78 1.0000
Small (89) (0, 60, 126.92) 0.6249 11.51 1.0000
Small (19) (0, 60, 160.6) 0.6224 113.52 1.0000
Small (30) (0, 60, 159.62) 0.6212 112.53 1.0000
Small (16) (0, 168.42, 390.22) 0.5558 505.69 1.0000
Small (58) (0, 98.09, 247.91) 0.5325 306.50 1.0000
Small (37) (0, 140.52, 331.74) 0.5302 404.65 1.0000



7.2. The operational phase 127

Table 7.6: Delivery routes of the solution selected for the third planning horizon (20/12/2021–
26/12/2021), namely the third circled solution in Figure 7.1. The type of delivery vehicle utilised, the
sequence of stores visited, the service start times at these stores (measured in minutes after 08:00), the
utilisation of the delivery vehicle, the distance of the route (in kilometres), and the driver-route familiarity
associated with each route are given.

Vehicle
type

Route Arrival times
Vehicle

utilisation
Distance
travelled

Famil-
liarity

First decision period (the planning horizon 20/12/2021–26/12/2021)
Large (21, 13) (0, 103.23, 232.96, 457.1) 0.8991 326.51 0.8338
Large (1, 93) (0, 60, 138.19, 262.1) 0.8728 113.66 0.9852
Large (2, 78) (0, 60, 142.26, 235.77) 0.8644 38.36 0.9688
Large (47, 73) (0, 102.2, 184.98, 357.65) 0.8456 239.54 0.4971
Large (28, 52) (0, 60, 206.88, 332.89) 0.8299 189.87 0.0955
Large (7, 71) (0, 137.37, 217.83, 419.82) 0.8234 371.60 1.0000
Large (66, 75) (0, 60, 136.82, 212.61) 0.8187 10.30 1.0000
Large (24, 35) (0, 185.7, 307.23, 521.11) 0.8103 506.52 0.8986
Large (91, 85) (0, 227.6, 294.61, 583.85) 0.7153 614.92 0.4959
Large (12) (0, 155.18, 387.71) 0.4389 404.67 1.0000
Small (4) (0, 136.52, 348.46) 0.8576 432.16 1.0000
Small (3) (0, 203.86, 482.08) 0.8402 610.93 1.0000
Small (22) (0, 60, 186.8) 0.8206 163.41 1.0000
Small (55) (0, 60, 145.19) 0.7102 37.13 1.0000
Small (60) (0, 102.38, 265.55) 0.6783 250.14 1.0000
Small (64) (0, 173.76, 404.53) 0.6253 485.35 1.0000
Small (39) (0, 139.8, 337.57) 0.6238 404.03 1.0000

Second decision period (the planning horizon 20/12/2021–26/12/2021)
Large (31, 82, 62) (0, 60, 264.4, 378.03, 587.47) 0.9971 500.92 0.4867

Large (17, 27, 50)
(0, 222.53, 363.56, 496.48,

640.41)
0.9762 627.45 0.6573

Large (19, 30) (0, 60, 143.58, 252.17) 0.8120 113.62 0.9948
Large (44, 56) (0, 148.98, 231.66, 439.49) 0.8064 307.30 0.9964
Large (4, 84) (0, 150.17, 382.52, 645.56) 0.7630 651.54 0.3317
Large (51, 28) (0, 60, 140.51, 240.34) 0.7609 42.71 0.5458
Large (49, 8) (0, 60.73, 189.92, 283.06) 0.7511 189.95 0.5243
Large (55, 65) (0, 60, 150.78, 227.86) 0.7288 44.54 0.5426
Large (18, 68) (0, 107.68, 242.64, 466.94) 0.6706 444.71 0.8418
Large (74, 76) (0, 60, 229.32, 434.22) 0.6436 308.53 0.4954
Large (7) (0, 137.37, 356.77) 0.4698 371.60 1.0000
Large (40) (0, 60, 161.57) 0.4463 37.13 1.0000
Large (67) (0, 61.48, 171.81) 0.2636 163.41 0.0000
Small (45) (0, 60, 163.84) 0.9938 36.78 1.0000
Small (24) (0, 168.82, 423.48) 0.9837 506.20 1.0000
Small (77) (0, 60, 151.71) 0.9557 11.51 1.0000
Small (63) (0, 202.83, 485.33) 0.9244 610.20 1.0000
Small (2) (0, 60, 157.53) 0.9096 36.78 1.0000
Small (33) (0, 133.92, 343.41) 0.8822 305.40 1.0000
Small (57) (0, 136.47, 350.12) 0.8669 432.19 1.0000
Small (34) (0, 93.77, 254.77) 0.7388 239.09 1.0000

Continued on next page
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Vehicle
type

Route Arrival times
Vehicle

utilisation
Distance
travelled

Famil-
liarity

Small (16) (0, 168.42, 403.63) 0.7346 505.69 1.0000
Small (79) (0, 261.23, 585.3) 0.6923 785.30 1.0000
Small (35) (0, 140.86, 340.55) 0.6368 404.55 1.0000
Small (29) (0, 61.03, 180.3) 0.6322 148.24 1.0000
Small (61) (0, 120.44, 298.46) 0.6207 364.96 1.0000
Small (83) (0, 137.08, 324.5) 0.5133 432.61 1.0000

Third decision period (the planning horizon 20/12/2021–26/12/2021)
Large (25, 82, 42) (0, 60, 293.45, 393.56, 661.7) 0.9365 549.18 0.4751
Large (38, 3) (0, 223.6, 306.44, 605.17) 0.8970 611.05 0.9996
Large (33, 21) (0, 147.32, 274.73, 456.76) 0.8908 326.32 0.8336

Large (27, 87, 83)
(0, 149.55, 205.7, 261.91,

463.23)
0.8258 433.66 0.4988

Large (14, 86) (0, 60, 144.29, 202.41) 0.7257 11.60 0.9204
Large (10, 32) (0, 112.17, 283.1, 387.97) 0.7245 284.13 0.6487
Large (28, 6) (0, 60, 141.94, 202.54) 0.6542 36.69 0.4940
Large (68, 80) (0, 169.33, 403.97, 616.99) 0.6108 635.25 0.6669
Large (18) (0, 107.68, 284.06) 0.3779 306.40 1.0000
Large (48) (0, 132.32, 329.33) 0.3574 364.99 1.0000
Small (11) (0, 60, 152.18) 0.9741 11.00 1.0000
Small (2) (0, 60, 157.53) 0.9096 36.78 1.0000
Small (13) (0, 134.02, 344.81) 0.8987 305.44 1.0000
Small (16) (0, 168.42, 403.63) 0.7346 505.69 1.0000
Small (60) (0, 102.38, 265.55) 0.6783 250.14 1.0000
Small (5) (0, 60, 138.44) 0.6552 36.78 1.0000
Small (46) (0, 178.77, 415.78) 0.6341 495.40 1.0000
Small (88) (0, 108.64, 267.09) 0.5267 310.71 1.0000
Small (70) (0, 61.39, 172.17) 0.5137 148.51 1.0000

Fourth decision period (the planning horizon 20/12/2021–26/12/2021)

Large (50, 30, 53)
(0, 79.38, 184.57, 293.03,

351.61)
0.9930 217.31 0.4968

Large (67, 52, 49)
(0, 61.48, 114.24, 181.44,

302.59)
0.9757 164.53 0.4925

Large (76, 87, 56)
(0, 147.9, 274.49, 395.85,

603.67)
0.9544 446.30 0.6838

Large (2, 15) (0, 60, 144.42, 232.62) 0.8416 40.12 0.9262
Large (34, 47) (0, 103.15, 172.04, 354.17) 0.8222 239.15 0.9977
Large (80, 72) (0, 153.92, 286.35, 594.92) 0.8106 611.24 0.8309
Large (56, 13) (0, 145.68, 210.11, 434.24) 0.8007 305.44 0.9989
Large (12, 43) (0, 155.18, 235.51, 449.87) 0.7671 406.05 0.9965
Large (1, 5) (0, 60, 176.14, 256.51) 0.7499 120.02 0.6194
Large (34, 90) (0, 103.15, 207.34, 339.9) 0.7256 239.62 0.8093
Large (61, 58) (0, 132.48, 219.66, 397.22) 0.6950 367.37 0.9139
Large (26, 84) (0, 222.03, 520.64, 783.68) 0.6859 839.28 0.0000
Large (9, 85) (0, 227.65, 283.18, 572.42) 0.6382 614.95 0.9958
Large (69, 29) (0, 103.38, 200.12, 325.57) 0.6321 239.67 0.8084
Large (39) (0, 153.78, 365.65) 0.3119 404.03 1.0000

Continued on next page
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Vehicle
type

Route Arrival times
Vehicle

utilisation
Distance
travelled

Famil-
liarity

Small (11) (0, 60, 152.18) 0.9741 11.00 1.0000
Small (19) (0, 60, 184.47) 0.9406 113.52 1.0000
Small (41) (0, 60, 145.34) 0.8966 10.06 1.0000
Small (40) (0, 60, 159.33) 0.8925 37.13 1.0000
Small (66) (0, 60, 145.73) 0.8909 10.30 1.0000
Small (20) (0, 71.77, 221.82) 0.8709 214.52 1.0000
Small (57) (0, 136.47, 350.12) 0.8669 432.19 1.0000
Small (36) (0, 60, 177.3) 0.8621 112.32 1.0000
Small (4) (0, 136.52, 348.46) 0.8576 432.16 1.0000
Small (37) (0, 140.52, 355.22) 0.8433 404.65 1.0000
Small (3) (0, 203.86, 482.08) 0.8402 610.93 1.0000
Small (81) (0, 60, 174.57) 0.8304 113.36 1.0000
Small (22) (0, 60, 186.8) 0.8206 163.41 1.0000
Small (15) (0, 60, 146.36) 0.7735 35.54 1.0000
Small (58) (0, 98.09, 265.67) 0.7693 306.50 1.0000
Small (42) (0, 183.85, 433.71) 0.7616 511.81 1.0000
Small (65) (0, 60, 136.08) 0.7475 11.52 1.0000
Small (10) (0, 101.97, 269.93) 0.7420 249.87 1.0000
Small (16) (0, 168.42, 403.63) 0.7346 505.69 1.0000
Small (32) (0, 60, 161.07) 0.7070 119.34 1.0000
Small (60) (0, 102.38, 265.55) 0.6783 250.14 1.0000
Small (43) (0, 139.71, 339.97) 0.6564 404.74 1.0000
Small (59) (0, 184.65, 425.13) 0.6272 512.24 1.0000

Fifth decision period (the planning horizon 20/12/2021–26/12/2021)

Large (70, 90, 15)
(0, 67.53, 116.63, 260.39,

348.59)
0.9998 180.22 0.5146

Large (17, 92, 9)
(0, 222.53, 290.15, 355.77,

633.5)
0.9771 614.98 0.9957

Large (36, 41) (0, 60, 182.94, 269.09) 0.8794 118.25 0.5175
Large (8, 2) (0, 60, 134.52, 233.97) 0.8653 36.89 0.9808
Large (52, 14) (0, 61.47, 186.28, 277.11) 0.8438 152.58 0.0346
Large (65, 1) (0, 60, 176.2, 296.84) 0.7960 119.83 0.5188
Large (26, 37) (0, 222.03, 358.45, 587.3) 0.7733 610.69 0.3313
Large (21, 69) (0, 103.23, 182.86, 345.55) 0.7658 239.57 0.9981
Large (53, 31) (0, 60, 163.16, 271.36) 0.6357 113.80 0.5052
Large (88, 62) (0, 119.5, 194.87, 404.31) 0.6347 374.18 0.9149
Small (45) (0, 60, 163.84) 0.9938 36.78 1.0000
Small (54) (0, 234.85, 554.98) 0.9935 706.11 1.0000
Small (23) (0, 140.0, 364.24) 0.9776 404.09 1.0000
Small (11) (0, 60, 152.18) 0.9741 11.00 1.0000
Small (12) (0, 141.08, 359.36) 0.8779 404.67 1.0000
Small (20) (0, 71.77, 221.82) 0.8709 214.52 1.0000
Small (4) (0, 136.52, 348.46) 0.8576 432.16 1.0000
Small (78) (0, 60, 151.51) 0.8191 37.96 1.0000
Small (86, 89) (0, 60, 110.35, 153.4) 0.8135 11.74 0.9331
Small (62) (0, 130.67, 327.04) 0.7428 373.97 1.0000

Continued on next page
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Vehicle
type

Route Arrival times
Vehicle

utilisation
Distance
travelled

Famil-
liarity

Small (10) (0, 101.97, 269.93) 0.7420 249.87 1.0000
Small (48) (0, 120.29, 305.17) 0.7148 364.99 1.0000
Small (71) (0, 124.88, 314.23) 0.7073 371.60 1.0000
Small (50) (0, 72.17, 208.67) 0.6954 214.52 1.0000
Small (79) (0, 261.23, 585.3) 0.6923 785.30 1.0000
Small (17) (0, 202.3, 466.58) 0.6895 609.83 1.0000
Small (74) (0, 60, 160.76) 0.6519 111.22 0.0000
Small (46) (0, 178.77, 415.78) 0.6341 495.40 1.0000
Small (59) (0, 184.65, 425.13) 0.6272 512.24 1.0000
Small (64) (0, 173.76, 404.53) 0.6253 485.35 1.0000
Small (25) (0, 60, 117.28) 0.5240 10.19 1.0000

7.3 Discussion

From the results obtained during the case study for the EPH depot of the industry partner, it
is concluded that the FVRP and its approximate solution approaches proposed in this thesis
are able to return high-quality solutions to a real-world problem instance within an acceptable
time-frame. For each of the planning horizons, multiple non-dominated solutions were returned,
including solutions corresponding to relatively high degrees of driver-route familiarity.

Upon consideration of all three planning horizons and their varying demand, driver-route famil-
iarity could best be achieved for the second planning horizon during which the demand volumes
exhibited by stores were most similar to the average demand volumes. For the second planning
horizon, the largest increase in familiarity could be obtained for the smallest percentage increase
in transportation cost. For the first and third planning horizons during which stores exhibited
larger demand variations, good driver-route familiarity could also be achieved, although for a
higher increase in transportation cost.

The total number of visits required by stores during a planning horizon had a significant e↵ect on
the performance of the approximate solution approach for the operational phase of the FVRP.
Fewer iterations could be completed for planning horizons during which a larger total number
of visits were required. Since demand planning at the industry partner is performed well in
advance of the start of a week, it is recommended that delivery routes be computed more than
a week in advance for weeks requiring large total numbers of visits. This will allow for a longer
run time of the approximate solution approach for the operational phase of the FVRP, resulting
in a larger number of algorithmic iterations and more solutions of high quality.

It is finally worth mentioning that an e�cient implementation of the proposed approximate
solution approaches in a di↵erent programming language and by a professional programmer
may be able to perform better within the same time-frame than the author’s implementation in
Python. Furthermore, the use of specialised and higher-capability computers will also improve
the performance of the approximate solution approaches within the same time-frame.

7.4 Expert validation

The results obtained during the case study were presented to a subject matter expert (SME)
employed by the industry partner attached to this thesis, Dr Jonas Stray [126], in pursuit of
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expert validation as well as recommendations as to possible improvements on the modelling
process followed and the results obtained. As part of the presentation, the current logistical
operations at the industry partner were presented in order to receive confirmation of the process
described in §6.1. The SME confirmed that the current logistical operations described in §6.1
are correct and that the input parameters to the FVRP models (such as the number of delivery
vehicles available and the number of decision periods within a planning horizon) based thereon
were also correct.

The FVRP proposed in this thesis was explained to the SME and the results for the strategic
and operational phases of the case study were presented to him. As first reaction to the results
represented, the SME was impressed by the quality of the results and the ability of the FVRP
proposed in this thesis and its accompanying approximate solution approaches in terms of rec-
ommending alternatives which incorporate driver-route familiarity into delivery routes, based on
real-world data. The familiarity objective function values achieved in each set of non-dominated
solutions were deemed satisfactory. Upon further investigation of the routes of each selected
trade-o↵ solution, the SME stated that these routes would seem appropriate for implementation
at the industry partner’s EPH depot and that the utilisations of delivery vehicles in the solutions
in Tables 7.4–7.6 are similar to those of their current implementations. The SME also reiterated
the significance of the problems that occur currently when implementing delivery routes based
on the minimisation of cost only. These problems include service level requirements of stores
often not being met and additional delivery vehicles having to be utilised when planned delivery
routes are not performed as planned. Furthermore, smaller stores often struggle to unpack large
deliveries if maximum volume thresholds for deliveries per day are exceeded. As final remarks
on the results, the SME stated that the proposed FVRP and approximate solution approaches
are expected to be a valuable tool to have and that the multi-objective approach adopted is
preferred, since the cost of familiarity can easily be quantified.

The SME stated that the computational time of the solution approaches employed are not
problematic and that a more e�cient implementation thereof can easily be achieved through
parallelisation of the solution approaches as well as by the use of e�cient packages in the
programming language Python, such as NumPy, for performing operations on arrays. The
run time duration was not as important to the SME as the implementation of the concept of
creating driver-route familiarity.

As a final remark, the SME mentioned an additional problem that often arises during the
implementation of planned delivery routes, namely that drivers are not only often unfamiliar
with the routes along which they travel, but also sometimes with the stores that they visit. This
often leads to drivers not knowing the exact drop-o↵ locations or delivery processes followed at
specific stores. It also sometimes leads to ine�cient communication if the sta↵ at stores are not
familiar with the drivers carrying out their deliveries.

7.5 Chapter Summary

This chapter was devoted to a presentation and analysis of the results obtained during a case
study based on real-world data. The master routes computed during the strategic phase of the
FVRP for the EPH depot of the industry partner attached to this thesis, were presented in
§7.1. This was followed in §7.2 by a discussion on the corresponding solutions obtained during
the operational phase of the FVRP for three planning horizons. A discussion on the results
obtained during the case study was presented in §7.3, and this was followed in §7.4 by an expert
validation of the results by an employee of the industry partner.
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This chapter serves as a conclusion to the work reported in this thesis. Each chapter of this
thesis is summarised in §8.1 after which an appraisal of the contributions made in this thesis is
provided in §8.2.

8.1 Thesis summary

Apart from the stand-alone Chapter 1 and the current Part IV, the other six chapters of thesis
were partitioned into three parts, titled Literature review (Chapters 2 and 3), Mathematical
models (Chapters 4 and 5), and Validation case study (Chapters 6 and 7).

Chapter 1 served as an introduction to the VRP and the problems that arise when implementing
solutions that stem from solving VRP instances. The chapter opened in §1.1 with a discussion
on the supply chain of retail organisations and highlighted the importance of the VRP within
these supply chains. This was followed by an introduction to the basic VRP and some of its most
common variants applicable to the problem considered in this thesis, after which the di�culty
of solving VRP instances was highlighted. In §1.2, the industry partner attached to this thesis
was introduced, and this was followed by a discussion on the practical problems experienced
by the industry partner when implementing solutions that stem from solving VRP instances by
means of standard commercial software. This discussion served as a motivational argument for
the informal problem description of this thesis, presented in §1.3, namely to propose a novel
VRP for improved delivery routing which addresses the practical limitations derived from a
lack of driver-route familiarity prevalent in standard VRP formulations. After having presented
the problem statement, the eight research objectives pursued in this thesis were outlined in
§1.4. This was followed by a delimitation of the scope of the research carried out in this thesis,
pertaining to the model solution methods adopted, the input data and input parameters to the
proposed mathematical models, and the computer implementations of the solution approaches.
The chapter closed in §1.5 and §1.6 with a description of the manner in which the research would
be carried out and would be reported in this thesis.

Part I comprised of two chapters, Chapters 2 and 3, and was devoted to a review of the literature
relevant to the research carried out in this thesis, in fulfilment of Objective I of §1.4. Chapter 2
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was devoted to a discussion on various VRP variants, in fulfilment of Objective I(a), based
on a taxonomy proposed by Toth and Vigo [137]. A brief history of the VRP, as well as an
overview of the aforementioned taxonomy, was given in §2.1. VRP variants arising from di↵erent
network structures, transportation requests, intra-route constraints, inter-route constraints, fleet
characteristics, and types of objectives were discussed in §2.2–§2.7, respectively.

Chapter 3 was devoted to a discussion on three algorithmic solution methodologies for solving
VRPs, namely exact, heuristic, and metaheuristic solution approaches, in fulfilment of Objectives
I(b) and I(c). The chapter opened in §3.1 with a prerequisite discussion on the simplex algo-
rithm for solving linear programming problems, upon which all three exact solution approaches
discussed thereafter are based. This was followed by a discussion on the branch-and-bound
method, the cutting plane method, and the branch-and-cut method for solving IP problem in-
stances. Classifications of heuristic and metaheuristic solution methods typically used to solve
VRP instances were discussed in §3.2 and §3.3, respectively, and this was followed in §3.4 by
a comparison of metaheuristics in the context of solving VRPs. The working of the HGSADC
algorithm, a state-of-the-art solution methodology employed in this thesis, was described in §3.5,
after which a discussion followed in §3.6 on approaches that have been adopted in the literature
for solving multi-objective optimisation problems approximately.

Part II of this thesis comprised two further chapters, Chapters 4 and 5, and was devoted to
the proposal of two novel mathematical models which form the working basis of the proposed
FVRP, in fulfilment of Objectives II–V. In Chapter 4, a mathematical model was proposed for
the strategic phase of the FVRP, in fulfilment of Objective II(a). The model was derived in §4.1
after which an exact solution approach was proposed in §4.2 and implemented in the CPLEX
optimisation environment via its Python interface. This was followed by a systematic model
verification in §4.3, in partial fulfilment of Objective III. Upon an empirical analysis of the time
complexity of the model in §4.4, it was found that the exact solution approach is not scalable
to the size of real-world problem instances. An approximate solution approach was therefore
proposed in §4.5, based on the HGSADC algorithm of Vidal et al. [140], in partial fulfilment
of Objective IV. The proposed approximate solution approach was implemented in Python in
partial fulfilment of Objective V and a systematic verification of this model solution approach
followed in §4.6 during which it was found that it is acceptable and that it is capable of returning
high-quality solutions to randomly generated test instances.

In Chapter 5, a mathematical model was proposed for the operational phase of the FVRP, in
fulfilment of Objective II(b). The model was derived in §5.1 after which an exact model solution
approach was proposed in §5.2 and implemented in the CPLEX optimisation environment via
its Python interface. This was followed by a systematic model verification in §5.3, in final
fulfilment of Objective III. Upon an empirical analysis of the time complexity of the exact
solution approach for the model in §5.4, it was again found that the exact solution approach is
not scalable to the size of real-world problem instances. An approximate solution approach was
therefore proposed in §5.5, also based on the HGSADC algorithm of Vidal et al. [140] as well as
on solution evaluation techniques proposed by Deb et al. [38], in final fulfilment of Objective IV.
The proposed approximate solution approach was also implemented in Python, in final fulfilment
of Objective V. A systematic verification of the approximate solution approach followed in §5.6,
during which it was found that it is acceptable and that it is capable of returning high-quality
sets of non-dominated solutions within an acceptable time-frame.

Part III of the thesis also comprised two chapters, Chapters 6 and 7, which were collectively
dedicated to a real-world validation case study of the FVRP in the operational context of the
industry partner attached to this thesis, in fulfilment of Objectives VI and VII. The purpose
of Chapter 6 was to provide background information on the industry partner attached to this
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thesis, and to present the input data related to the case study performed in Chapter 7. The
industry partner and its current logistical operations were discussed briefly in §6.1, and this was
followed in §6.2 by a discussion on the real-world input data related to the case study performed.

Chapter 7 was devoted to a presentation and analysis of the results obtained during the case
study. The master routes computed during the strategic phase of the FVRP were presented in
§7.1 for one of the depots of the industry partner. This was followed in §7.2 by a discussion
on the corresponding solutions obtained during the operational phase of the FVRP for three
one-week planning horizons, as well as on trade-o↵ solutions selected for each planning horizon.
A discussion on the quality of results obtained during the case study was presented in §7.3, in
partial fulfilment of Objective VII. The process followed during the case study and the results
obtained were presented to an SME employed by the industry partner, in final fulfilment of VII.
As discussed in §7.4, the SME validated the results of the case study.

An appraisal of the thesis contributions are presented in the remainder of this chapter, whereas
suggestions for potential future follow-up work are proposed in the next chapter, in fulfilment
of Objective VIII.

8.2 Appraisal of thesis contributions

The contributions of this thesis are six-fold. Each of these contributions is stated and elucidated
in this section.

Contribution I A revised taxonomy of metaheuristics for solving VRPs

According to a taxonomic review of the VRP literature published between the beginning of 2009
and the middle of 2015, 70% of the articles reviewed employed metaheuristics as a proposed
solution approach [16]. New classes of metaheuristics are still being proposed today, resulting
in the introduction of new solution methods for solving VRP instances. The literature review of
§3.3 contains a revised classification scheme for metaheuristics in the context of solving VRPs.
This classification scheme is an amalgamation of multiple classification schemes found in the
literature and includes relatively new methods employed for solving VRPs.

More specifically, the literature reviewed in §3.3 opened with a definition of the notion of a
metaheuristic, as well as a brief discussion on the advantages associated with employing such a
method. The taxonomy started with an explanation of the di↵erences between trajectory-based
metaheuristics and population-based metaheuristics. This was followed by a brief explanation of
eight classes of trajectory-based metaheuristics. Population-based metaheuristics were further
classified into evolutionary and swarm intelligence metaheuristics. Ten evolutionary metaheuris-
tic classes and four swarm intelligence metaheuristic classes were discussed. For each of the
above-mentioned classes, a brief discussion as well as a reference to an important or successful
application of the metaheuristic was provided in the context of the VRP.

Contribution II The proposal of a new FVRP for creating driver-route familiarity

The FVRP proposed in Part II of this thesis, is aimed at improving the practical implementa-
tion of planned vehicle delivery routes in the retail sector by addressing the lack of driver-route
familiarity prevalent in standard VRP formulations. First, a mathematical model was proposed
in Chapter 4 for computing high-quality delivery routes, called master routes, with which de-
livery vehicle drivers may become familiar in the future. User inputs to this model, such as the
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number of overlapping master route arcs allowed without penalty and the penalty coe�cient
for penalising the number of overlapping arcs above this maximally allowed threshold, allows
the analyst to generate master routes based on the preferences and operations of the user or-
ganisation. By adjusting these parameters, the number of master route arcs generated may be
decreased (thereby yielding fewer arcs with which drivers should become familiar and therefore
allowing for better familiarity with these arcs) or it may be increased (allowing for more master
route arcs and therefore more freedom when computing actual delivery routes in the future,
resulting in a possibly lowered cost for increasing driver-route familiarity).

Secondly, a mathematical model was proposed in Chapter 5 for the operational phase of the
FVRP in the form of a bi-objective optimisation problem capable of returning possibly many
high-quality trade-o↵ solutions with increasing driver-route familiarity to choose from. The bi-
objective modelling approach furthermore allows the user organisation to quantify the trade-o↵
cost of increasing driver-route familiarity.

Finally, although the proposed FVRP only takes certain VRP attributes into consideration
(such as customer time-windows and multiple planning periods), the structure of the FVRP is
generic in nature and can easily be applied to VRPs exhibiting other attributes such as, for
example, multiple depots and/or multiple trips. This allows for any retail organisation to apply
the concept of the FVRP, regardless of their operational requirements.

Contribution III The proposal of a novel HGSADC implementation for solving realistically
sized instances of the model for the strategic phase of the FVRP

The state-of-the art HGSADC algorithm proposed, by Vidal et al. [140] for solving VRPs having
multiple periods, multiple depots, and customer time-windows, or any combination of these
attributes, was adapted and implemented for solving instances of the model for the strategic
phase of the FVRP. Substantial adaptions were made to the working of the original algorithm so
as to be able to accommodate instances of the model for the FVRP strategic phase, as discussed
in §4.5. These adaptions included penalising overlapping master route arcs in the objective
function values associated with solutions, changing the multiple depot attribute of the original
HGSADC algorithm into a heterogeneous fleet attribute, allowing customers to receive multiple
visits, and including an exact solution component (in other words creating a matheuristic). The
proposed approximate solution approach for the model of the FVRP strategic phase was able
to return high-quality solutions within an acceptable time-frame, as discussed in §4.6.

Contribution IV The proposal of a novel HGSADC implementation (in conjunction with a
non-dominated sorting procedure) for solving realistically sized instances of the model for
operational phase of the FVRP

The proposed approximate solution approach for the model of the FVRP operational phase is
also based on the HGSADC algorithm proposed by Vidal et al. [140], but includes the non-
dominated sorting procedure proposed by Deb et al. [38] for multi-objective optimisation prob-
lems. As in the case of the proposed approximate solution approach for the strategic phase
of the FVRP, many adaptions were made to the original HGSADC algorithm, as discussed in
§5.5. In order to accommodate bi-objective optimisation problem instances of the model for the
operational phase of the FVRP, the non-dominated sorting procedure and a CDD measure were
employed when evaluating solutions. This included additional penalty parameters for infeasibil-
ity required when evaluating solutions, as well as alternating between objectives during the local
search procedure performed when executing the HGSADC algorithm. Furthermore, a procedure
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for adapting the master routes obtained during the strategic phase, in order to be feasible for the
corresponding instance of the operational phase being solved, was proposed. This ensures that
a relatively good feasible starting solution is included in the initial population when employing
the approximate solution approach. The proposed approximate solution approach for the oper-
ational phase of the FVRP was aslo able to return high-quality solutions within an acceptable
time-frame, as discussed in §5.6.

Contribution V The proposal of a systematic mechanism for generating randomly generated
benchmark instances of the FVRP

Since the FVRP proposed in this thesis is a novel VRP, benchmark instances could not be found
in the literature for testing and validating the mathematical models proposed for the problem.
Two random problem instance generators were therefore created in order to generate instances
of the models for the strategic phase and the operational phase of the FVRP, described in §4.3
and §5.3, respectively. An arbitrary number of test instances may thus be generated for the
model for the strategic phase, after which the same instances, but with varying actual demand
volumes, may be generated for an arbitrary number of planning horizons during the operational
phase (representing future planning horizons). A set of input parameters to the problem instance
generators allows for customisation of these instances. Both problem instance generators are
available on the author’s Github repository so as to facilitate future research on the FVRP.

Contribution VI Application of the FVRP and proposed solution methodologies to a real-world
case study as a proof of concept

The practical applicability of the proposed FVRP, its constituent mathematical models, and
their corresponding approximate solution approaches were validated in Part III of this thesis, in
respect of a case study involving real-world data provided by the industry partner attached to
the thesis. First, background information on the industry partner and the input data related to
the case study were provided in Chapter 6. Di↵erences between the aforementioned randomly
generate problem instances and the input data to the case study were highlighted.

An analysis of the numerical results obtained during the case study followed in Chapter 7.
The master routes computed for the EPH depot of the industry partner, based on the average
demand volumes associated with stores over a 13-week period, were presented. These master
routes were then provided as input to the operational phase model of the FVRP during which
actual delivery routes were computed for three planning horizons, each representing a duration
of a week (containing five days on which deliveries could take place). Furthermore, each of
these three planning horizons was associated with di↵erent demand variations resulting in low,
medium, and high demand volume planning horizons. The results obtained for the operational
phase of the case study demonstrated that driver-route familiarity could be achieved for each of
these three planning horizons.

Finally, the results obtained during the case study were validated by an SME employed by the
industry partner. The case study therefore showcased the ability of the FVRP proposed in this
thesis to create driver-route familiarity based on real-world data, as well as the ability of the
proposed solution methods to be scalable to the size of real-world problem instances.
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Suggestions for future work related to the work reported in this thesis are presented in this
chapter, in fulfilment of Objective VIII of §1.4. These suggestions are partitioned into three
sections. Suggestions for future work related to the modelling approach adopted in this thesis
are presented in §9.1. This is followed in §9.2 by suggestions for future work related to the
approximate model solution approaches proposed in this thesis. Finally, a suggestion for future
work related to the case study performed in Chapters 6 and 7 is discussed in §9.3.

9.1 Suggestions related to the modelling approach

This section contains three suggestions for future work related to the mathematical models
employed in Chapters 4 and 5.

Proposal I Taking into account the distance along the physical road network shared between
arcs of the transportation graph

In the current modelling approach proposed for the FVRP, the distances along road segments
shared between arcs of the transportation graph are not taken into account when computing
actual delivery routes during the operational phase of the FVRP. An arc that does not form
part of the set of master route arcs may, for example, share a significant distance along the road
network with arcs that form part of the set of master route arcs. A driver might therefore travel
on a part of the road network that is also part of a master route arc, but this may not contribute
to the driver-route familiarity associated with the route of the driver according to the modelling
approach adopted in this thesis. The route driven by a vehicle might therefore, in reality, achieve
a larger familiarity objective function value than actually measured mathematically according
to the current modelling approach. By including the distance along the road network shared
between arcs of the transportation graph adopted in the modelling approach, more accurate
(and possibly larger) familiarity objective function values may be associated with solutions.

141
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Proposal II Including the familiarity of delivery vehicle drivers with customers

As mentioned by the SME employed by the industry partner attached to this thesis, an additional
problem that often arises during the implementation of planned delivery routes is that delivery
vehicle drivers are not familiar with the customers they visit along their routes. This leads
to drivers not being familiar with the exact drop-o↵ locations at customers or the delivery
processes followed by specific customers. Furthermore, it may lead to ine�cient communication
if the customer store is not familiar with the driver carrying out its deliveries. A useful addition
to the FVRP and its models proposed in this thesis may therefore be not only to increase driver-
route familiarity, but also to increase driver-customer familiarity. Once actual delivery routes
have been computed, the routes may be assigned to drivers in such a way that driver-customer
familiarity is prioritised instead of or in addition to maximising driver-route familiarity, subject
to operational constraints.

Proposal III Designing a generic framework for increased driver-route familiarity

Since the FVRP proposed in this thesis consists of two phases, with the output of the first
(the strategic phase) serving as input to the second (the operational phase), the problem lends
itself to incorporation into a framework which also incorporates the demand planning aspects
of the problem over future planning horizons. It may therefore be beneficial to propose a
generic, overarching, model- and data-driven framework for creating driver-route familiarity in
planned delivery routes. The generic nature of such a framework may aid any organisation in
creating driver-route familiarity in planned delivery routes, regardless of the specific operations
of the organisation. Any VRP attributes required by an organisation may be included in such
a framework. Furthermore, such a framework may allow for the relatively straight-forward
addition of new VRP features, such as the one discussed in Proposal II.

9.2 Suggestions related to the solution approaches

This section contains three further suggestions for future work, this time related to the solution
approaches proposed in Chapters 4 and 5.

Proposal IV The addition of a dynamic variable when invoking the split algorithm

Recall, from §7.2, that during the execution of the operational phase of the case study, when
actual delivery routes were computed for the third planning horizon (associated with high vol-
umes of demand), a feasible solution could not be uncovered during the first day of run time.
This was due to the split algorithm partitioning giant tour chromosomes into routes in such a
manner that the cumulative load associated with each route did not exceed twice the capacity
of the corresponding delivery vehicle. Only once this factor of 2 was changed so that routes
are partitioned in such a manner that the load does not exceed 1.1 times the capacity of the
associated delivery vehicle, could a feasible solution be uncovered. It is therefore proposed that
this factor be changed to a dynamic value, based on the portion of feasible solutions uncovered
during the search. This may direct the search towards feasible solutions at the start of execution
of the search algorithm, after which the value may gradually be increased, thereby diversifying
the search during later stages of execution of the algorithm.
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Proposal V Performing a parallelised implementation of the proposed solution approaches

The implementations of the approximate solution approaches proposed for the strategic and
operational phases of the FVRP were not parallelised during the research carried out towards
this thesis, instead only making use of a single central processing unit in the computer on which
it was executed. Most computers, however, have multiple central processing units and will
therefore have additional idle computational capacity available when executing the approximate
solution approaches. Furthermore, distributed computing, which includes the use of cloud com-
puting or high performance computing clusters, such as the elastic container service provided
by Amazon Web Services or the Rhasatsha cluster of Stellenbosch University, allows for the use
of multiple processing units. A parallel implementation of the proposed solution approaches
using any of these types of computing infrastructure is therefore expected to improve the run
time significantly. This parallelisation may be applied to specific operations of the approximate
solution approaches in such a way that multiple operations not requiring a specific sequence of
performance, are carried out in parallel. This may, for example, occur when initialising many
solutions or when decomposing the problem instance into smaller subproblem instances and then
solving each subproblem instance in a distributed fashion. Furthermore, additional significant
run-time improvement may be achieved by implementing the parallelised solution approaches
in a lower-level programming language, such as C, which do not require the interpretation of
programming code and are therefore generally known to result in better performance than when
working in programming languages such as Python, which require interpretation.

Proposal VI Including historical solutions in the initial population for the operational phase

Recall, from §5.5.5, that in the proposed approximate solution approach for the operational
phase of the FVRP, the master routes computed during the strategic phase of the FVRP were
adapted to be feasible for the particular corresponding instance of the operational phase and
inserted as a solution in the initial population before the start of the algorithm. This addi-
tion ensured that a relatively good solution is available among the initial population, which
directed the search towards good feasible solutions from the start of the algorithmic execution.
In the same manner, the solutions implemented for the same depot and its assigned customers
during previous planning horizons may be adapted and inserted into the initial population for
subsequent planning horizons. This will allow the approximate solution approach to start with
relatively good feasible solutions at its disposal and may save computational time by “recycling”
the actual delivery routes computed for previous planning horizons. This is expected to decrease
the run time as well as increase the quality of solutions returned by the approximate solution
approach for the operational phase of the FVRP. Such a feature may easily be included in the
generic framework discussed in Proposal III.

9.3 A suggestion related to the case study performed

This section contains a final suggestion for future work related to the case study performed in
Chapters 6 and 7.

Proposal VII Performing additional case studies to evaluate the e↵ect of di↵erent transporta-
tion network characteristics

The characteristics of a transportation network are expected to have a marked e↵ect on the
e↵ectiveness of the FVRP. Some characteristics of the transportation network of the case study
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carried out in this thesis, for example, were that the depot was not centred amongst the cus-
tomers and that customers were located relatively far away from the depot in some cases,
resulting in many delivery routes only visiting a single customer. By performing additional case
studies for transportation networks exhibiting di↵erent characteristics, insight might be gained
into the e↵ects of these characteristics on the e↵ectiveness of the FVRP. For example, case stud-
ies may be performed in urban and exurban contexts, and with di↵erent depot locations relative
to the customers. Furthermore, the e↵ect of di↵erent VRP attributes, such as the nature of
customer time-windows and site-dependencies, may be analysed.



References

[1] Abbass HA, 2001, Marriage in honey bees optimisation: A haplometrosis polygynous
swarming approach, Proceedings of the 2001 Congress on Evolutionary Computation,
Seoul, pp. 207–214.

[2] Applegate DL, Bixby RE, Chvátal V & Cook WJ, 2011, The traveling salesman
problem: A computational study , Princeton University Press, Princeton (NJ).

[3] Araque JR, 1989, Solution of a 48-city vehicle routing problem by branch-and-cut , Un-
published Manuscript, Department of Aplied Mathematics and Statistics, State Univer-
sity of New York at Stony Brook, Brookhaven (NY).

[4] Archetti C, Feillet D, Hertz A & Speranza MG, 2009, The capacitated team orien-
teering and profitable tour problems , Journal of the Operational Research Society, 60(6),
pp. 831–842.

[5] Archetti C, Hertz A & Speranza MG, 2007, Metaheuristics for the team orienteering
problem, Journal of Heuristics, 13(1), pp. 49–76.

[6] Archetti C, Savelsbergh MW & Speranza MG, 2006, Worst-case analysis for split
delivery vehicle routing problems, Transportation Science, 40(2), pp. 226–234.

[7] Archetti C & Speranza MG, 2012, Vehicle routing problems with split deliveries,
International Transactions in Operational Research, 19(1-2), pp. 3–22.

[8] Avella P, Boccia M & Sforza A, 2004, Resource constrained shortest path problems in
path planning for fleet management , Journal of Mathematical Modelling and Algorithms,
3(1), pp. 1–17.

[9] Baldacci R, Christofides N & Mingozzi A, 2008, An exact algorithm for the vehicle
routing problem based on the set partitioning formulation with additional cuts, Mathe-
matical Programming, 115(2), pp. 351–385.

[10] Bansal JC, Singh PK& PalNR, 2019, Evolutionary and swarm intelligence algorithms,
Springer, New York (NY).

[11] Baxter J, 1981, Local optima avoidance in depot location, Journal of the Operational
Research Society, 32(9), pp. 815–819.

[12] Beasley JE, 1983, Route first—cluster second methods for vehicle routing , International
Journal of Management Sciences, 11(4), pp. 403–408.

[13] Bertsimas DJ, 1992, A vehicle routing problem with stochastic demand , Operations
Research, 40(3), pp. 574–585.

[14] Bodin L, Maniezzo V & Mingozzi A, 2012, Street routing and scheduling problems,
pp. 413–450 in Hall RW (Ed), Handbook of transportation science, Kluwer Academic
Publishers, New York (NY).

145



146 REFERENCES
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[90] Lučić P & Teodorović D, 2003, Vehicle routing problem with uncertain demand at
nodes: The bee system and fuzzy logic approach, pp. 67–82 in Verdegay JL (Ed), Fuzzy
sets based heuristics for optimisation, Springer, New York (NY).

[91] Ma J, Zhang JP, Yang J & Cheng LL, 2008, Research on cultural algorithm for solv-
ing routing problem of mobile agent , The Journal of China Universities of Posts and
Telecommunications, 15(4), pp. 121–125.

[92] MacArthur RH & Wilson EO, 2016, The theory of island biogeography , Princeton
University Press, Princeton (NJ).

[93] Machado P, Tavares J, Pereira FB & Costa E, 2002, Vehicle routing problem: Doing
it the evolutionary way , Proceedings of the 2002 Genetic and Evolutionary Computation
Conference, New York (NY), pp. 690–696.

[94] Martin GE, 2001, The art of enumerative combinatorics, Springer, New York (NY).

[95] Mercer RE & Sampson J, 1978, Adaptive search using a reproductive meta-plan, Ky-
bernetes, 7(3), pp. 215–228.
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