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Abstract

Biological invasive species have proven to threaten biodiversities and economies worldwide, often
resulting in devastating environmental and socio-economic effects. As such, there is a growing
importance for humans to understand and effectively manage the complex interactions that arise
with biological invasions in order to accurately predict the expected behaviour of the species,
and in doing so, improve the effectiveness of the control strategies adopted by decision-makers
and invasive species management.

The objective of this project is to capture the response of the invasive tree species, Prosopis,
in the presence of a modelled control strategy. As such, the proposed model seeks to investi-
gate and predict the extent to which the species spreads when confronted with the strategic
implementation of an effective contol method. In particular, the paradigm of machine learning
is adopted for predicting the habitat suitability of Prosopis. By employing the aforementioned
habitat suitability distribution, a cellular automata approach within the realm of simulation
modelling is adopted across a hexagonally discretised study region, and is deeply-rooted in the
mathematical modelling of population growth.

The inputs of the machine learning model comprises topographical, bioclimatic, and species
observation data, while its output is the habitat suitability of Prosopis within the study region.
The cellular automata model’s inputs includes the habitat suitability scores from the output of
the machine learning model, a known density distribution range of Prosopis, a growth rate, a
dispersal rate, and a transition rule governing the change in states during the execution of the
model. As such, the model outputs the updated state of the discretised areas at each time step
for the duration of the observed study period.

The practicality of the developed cellular automata model is illustrated by the implementation
of the model in the form of a real-world case study in a municipality within the Northern Cape.
This municipality was identified as a region in which Prosopis is densely populated, and is the
region in which the cellular automata model is executed, in order to compare the spread of
Prosopis with, and without the implementation of a control strategy.
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CHAPTER 1

Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Problem objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Project scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Report organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Report timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Background

The profound effect of humans on the natural environment has sparked a debate over the age in
which humans exist, leading to many calling it the Anthropocene era. Biological invasive species
are examples of the profound and often devastating effects of this era caused by human interven-
tion. The need for humans to understand and effectively manage the complex interactions that
arise with biological invasive species is becoming increasingly important [100]. The development
of a species having been introduced into a non-indigenous environment is widely contentious in
literature pertaining to biological invasions. A brief elucidation of a closely related group of
terms is imperative towards understanding the nuances associated with species invasions. The
introduction of a species refers to the displacement of a native species (i.e. from its place of
origin), by humans, across a significant geographical border. Naturalisation occurs when factors
impeding the survival and reproduction of the species are overpowered. Finally, the condition
of defining a biological invasion is that the naturalised species reproductively produces offspring
at far distances from the initial location of introduction.

The classification of a species as invasive is also to reflect the severe environmental and socio-
economic effects that these species have within the region in which it has naturalised. Envi-
ronmental effects include reduced diversity and density of native fauna and flora species [92],
as a result of having to compete for the resources of the land. Furthermore, the degradation
of an ecosystem will likely result in a decline in soil quality and a disturbed water supply in
the region [80]. Socio-economic effects of invasions include consequences on human health, de-
creased profits of farmers due to lower crop yields, as well as increased costs for farmers and
locals as a result of having to repair damaged infrastructure [88]. An alternative interpretation
by Richardson et al. [74], places more emphasis on non-indigenous species surmounting many
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2 Chapter 1. Introduction

biological hindrances from the time it was introduced, such as survival and reproduction, until
it eventually becomes invasive.

Many species have often been displaced out of their natural habitat through human interven-
tion for aesthetic or agricultural reasons, however, few species become naturalised and even
invasive [71], spreading uncontrollably, and subsequently unsettling the biodiversity of the en-
vironment as well as the livelihood of locals [37, 68]. Invasive plant species have significantly
threatened global and local native biodiversities in recent decades by consuming the limited
resources available of a region, by effectively competing with indigenous species for these re-
sources [73]. As a result of both the invasions by non-indigenous species and the efforts im-
plemented to combat these invasions, many socio-economic factors in the invaded region are
often detrimentally affected. The destruction of local ecosystems, water supplies, livestock, crop
production, infrastructure, and human well-being are just some of the ravaging impacts docu-
mented by those affected by biological invasions. As a result, the financial implications of having
to restore damaged assets and systems are often straining, especially to developing countries [45].

The global distribution of recorded invasive alien species per country in 2016 is depicted in
Figure 1.1 and supports the notion that biological invasions are experienced globally and have
the potential to alter the biodiversity of the world as a whole [89]. In addition to this, the
phenomenon of climate change has a compounding effect on the spread of invasive species. This
is because climatic events (e.g. floods and cyclones) worldwide foster opportunities for the species
to be spread to new regions, allowing them to naturalise, and potentially become invasive and
destructive within these regions [35].

No data
1

4

10

27

74

200

523

Number of species

Figure 1.1: Global map illustrating the number of invasive alien species recorded per country as of 2016
in the CABI and GISD databases, adapted from [89].

South African lawmakers have classified known invasive species within South Africa into three
main categories, defined by the National Environmental Management: Biodiversity Act (NEM:BA)
based on their use and impact. Category 1a consists of identified species that should, by law, be
eradicated from the region. Category 1b stipulates that the identified species must be controlled
in order to avoid potential invasion. In addition, Category 1b invaders should also, as far as
possible, be eradicated from the region as their invasive potential is highly threatening [63].
Trade and further transmission of Category 1 species are strictly forbidden. Category 2 specifies
that the use of invasive or potentially invasive species, including commoditised species, requires
one to be in possession of a permit [18]. Category 3 rules that existing species that have already
been introduced to the land may be left as is, however, further transmission, use, and trade of
the species is strictly forbidden.

Over the last two centuries, South Africa and more than 100 other countries and islands world-
wide have been invaded by the plant genus, Prosopis (also known as Mesquite) [45], a group of
deciduous and leguminous tree species native to the Americas. In the latter part of the 19th
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century, farmers in the arid regions of South Africa were counselled to plant Prosopis on their
farms in an attempt to provide a source of fodder, shade, and firewood [81]. After many years of
extensive dispersal, Prosopis naturalised in South Africa and was eventually classified invasive
once the adverse effects were realised [53]. These adverse effects include a disturbed ecosys-
tem, water-supply contamination, ravaged underground pipes and boreholes, and a reduction in
grazing potential [46].

Fluctuating densities of the species can be located in 61 out of the 234 municipalities in the
arid and semi-arid inland regions of South Africa [81]. A 1998 survey conducted by Versfeld et
al. [96] discovered that approximately 1.8 million hectares of South Africa had been invaded by
Prosopis. By then, the Northern Cape was identified as the province of concern as it hosted
990 000 hectares (equal to 55% of the total Prosopis invasions across South Africa in 1998)
of the invader in this region. According to a remote sensing and GIS investigation, Van den
Berg et al. [91] uncovered that by 2007, the distribution of Prosopis had increased to 1.473
million hectares in the Northern Cape. Behind the invasive Australian Acacia species, Prosopis
has grown to be South Africa’s second most invasive tree species. Figure 1.2 illustrates a 2010
distribution of Prosopis in South Africa [103], where each dot represents the presence of Prosopis,
per quarter degree square [102].

Figure 1.2: The approximate distribution of Prosopis glandulosa var. torreyana, Prosopis velutina and
their hybrids in South Africa in 2010, adapted from [103].

As of 2004, Prosopis has been listed by the South African national government as a Category 1b
invasive species in the Eastern Cape, Free State, North-West and Western Cape. Throughout the
Northern Cape, however, Prosopis is listed as a Category 3 invasive species with the exception
of riparian areas, where they are listed as Category 1b invaders [18]. It is important to note
that the use of pods which grow on the Prosopis is what causes it to be a Category 3 invasive
species (instead of Category 1b) in non-riparian areas. This is primarily due to the fact that the
pods serve as a fodder for the livestock of private farmers. This exemption is certainly worth
revising, given the vast potential for the invader to spread via the excrement of animals that
have consumed the pods and under long distance travelling [81].

A 2001 study conducted by Pimentel et al. [69] estimated that global damages caused by invasive
species and subsequent effects to manage them, amounted to in excess of US$ 1.4 trillion in 1998,



4 Chapter 1. Introduction

which was equivalent to 5% of the global economy at the time. South Africa had reportedly
suffered a US$ 4.3 billion loss due to the destructive effects of invasive species on crops, pastures,
and forests. Despite the data in the 2001 study being more than two decades old, it is likely, given
the effects of globalisation and climate change, that the global cost of damages caused by invasive
species has also risen [29]. The South African government has spent exorbitant sums of money
in an attempt to combat the spread of Prosopis. As of 2019, the government spent an average
of approximately ZAR 2 billion annually in the fight against invasive tree species at large, and
this figure continues to grow precipitously [92]. In light of the aforementioned financial effects,
management strategies have been initiated in parts of the world that experience severe invasions.
These management programs are also referred to as investing in ecological infrastructure, or
natural resource management [81], and seek to eradicate the destructive species threatening a
region.

Current interventions for impeding further spread of invasive species and safeguarding resources
includes the use of, or a combination of mechanical, chemical, and biological methods [81].
Of course, each control method will have its strengths and weaknesses and thus evaluating
cost-benefit relationships are essential. Briefly, mechanical methods entail removing the invasive
species by hand or by using tools [59]. In the case of invasive tree species, this can be achieved by
cutting tree stumps or using heavy-duty machines such as bulldozers. Despite being beneficial for
areas identified for agricultural purposes, mechanical methods are damaging to the environment,
slow, and not ideal for large-scale invasions. Chemical methods entail spraying herbicide on the
invasive species, and is typically done by plane. This method is the fastest and most cost
effective, however, the environmental consequences of this method remain a grey area. Lastly,
biological methods entail the deployment of biological agents, a predator species that prey on
the invading species. The agents are released into the area with the aim to either hinder the
spread, or increase the mortality rate of the invading species. While this control method ensures
no human impact on the environment, the research costs associated with identifying the most
effective agent are initially high, and much uncertainty exists over a long duration with regard
to the success of the deployed agent and strategy [25].

South Africa has utilised seed-feeding beetles as agents against Prosopis in the past, however,
they were selected with the purpose to reduce the rate of spread and not contribute to the
demise of Prosopis, thereby allowing the invader to persist [103]. While this method has the
potential to be very potent, it requires in excess of ZAR 1 million to fund research since the
best agent to eradicate Prosopis is yet to be discovered. Stakeholders are, therefore, strongly
advised to make an informed decision on which control method (or combination thereof), should
be used [45], based on how long the method(s) take to remove the species, the time required,
job creation, efficiency of the deployed control method(s), and the subsequent financial impli-
cations. Great complexity arises when attempting to manage an introduced species as they are
often synchronously advantageous and disadvantageous. The trade-off between the positive and
negative contributions of the species often results in conflicts of interest with regards to the most
effective control strategy that should be deployed [81].

In spite of a wide range of control methods and resources at their disposal for managing invasive
species, many governments have failed to ensure that strategies of senior management are de-
fined and executed on a species-specific level [81]. South Africa is following case-study instances
for the invasive Australian Acacia and Parthenium hysterophorus species [88, 99] in the hope
of developing more species-specific responses to those invaders. In doing so, they attempt to
develop general management responses for similar species causing similar problems. However,
this generic ‘mould’ approach has proven futile since the inception of the state-supported pro-
gramme, Working for Water (WfW) in 1995, because every invasive species has different drivers
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and sets of information unique to it. Moreover, between 1997 and 2014, the programme has
been criticised for lacking an effective management strategy with regard to the control of invasive
species [94].

The two primary objectives of WfW is to: (1) Upskill disadvantaged communities, thereby
assisting in reducing unemployment and poverty rates, a long lasting scar of past Apartheid
policies in South Africa, and (2) restore the damaged environment, and enhance the livelihood
of locals through effective management of invasive species. The Department of Environmental
Affairs (DEA) manages the programme and contractually works with locals companies for 2–3
months at a time. The contractors are typically from previously disadvantaged communities
and work in teams of approximately ten semi-skilled labourers who remove invasive species from
identified locations. WfW is exceptionally well supported compared to many other ecosystem-
management schemes in South Africa, receiving ZAR 1.1 billion annually from the government
to manage biological invasions [81].

With respect to controlling Prosopis, not much success has been experienced largely due to
ineffective planning, a skewed focus towards job creation as opposed to ecological successes,
and feeble management practices [81]. When reviewing the control strategies attempted, it is
clear to see that biological methods in which biological agents are released into the environment
have been favoured since the 1980s. Despite this control method not proving to have long term
success with controlling Prosopis, improved biocontrol methods are believed by many to be the
best solution going forward [103].

Developing a model capable of accurately predicting the extent of biological invasions could
improve the quality of stakeholder decisions regarding the control strategies deployed. Growing
in popularity, spatial modelling paradigms, together with the Geographic Information System
(GIS) software and prevalent machine learning (ML) algorithms, are being employed to visualise
existing, as well as potential distributions of invasive species [97]. These investigative models are
commonly referred to as Species Distribution Models (SDMs). GIS is a tool used for visually ex-
ploring and analysing spatial data in order to better understand spatial patterns associated with
a population [4]. ML algorithms entail a computer automatically learning patterns between vari-
ables, given historical data. These powerful algorithms are capable of making predictions about
future instances, based on the input-output relationships found during the training process [38].

There are two SDM paradigms of interest when attempting to contain the spread of invasive
species, namely correlative models and expert-based models. Correlative models seek to explore
the relationship between environmental variables and the presence or absence of the invasive
species in that region. This is often accomplished by using many algorithms within the ML
paradigm. Since the invader is likely to spread in areas exhibiting similar environmental condi-
tions, the relationships uncovered are important as they are used to predict the extent of invasive
species distribution [97]. The expert-based approach, is especially useful in studies where em-
pirical models are unavailable [84]. Here, a model is constructed by seeking the opinions and
knowledge of domain experts. The evaluation and judgements of the experts are then used in
developing the model that is capable of providing context and insights with respect to a partic-
ular focus area. Due to the fact that expert-based models depend more on the subjectivity of
the experts than extensively collecting data, expert-based models prove to be effective as SDMs
for large-scale studies, in which no single species is focused upon [21]. When employed in a GIS
environment, expert models perform well in predicting the locations to which biological invaders
will spread [52].

Cellular automata (CA) models have thrived in the branch of correlative species distribution
modelling due to their ability of effectively capturing both the spatial and temporal dynamics of
a system [77]. Briefly described, CA models are composed of a uniformly discretised grid space
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in which all cells contain a discrete variable. The state of each cell is described by the value
of the discrete variable, which is determined by its previous state as well as the states of its
neighbouring cells. Each iteration pursued results in the updating of cells according to a defined
set of transition rules [16].

1.2 Problem Statement

Biological invasions have been found to have an adverse impact on biodiversity, human liveli-
hood, as well as the economy of the invaded region. With this in mind, a transdisciplinary
approach consisting of mathematics and science can be deployed in order to assist stakeholders
in effectively mitigating the adverse effects of invasive species by use of strategic approach to
implementing control methods.

The problem considered in this project is that of modelling control strategies for the invasive
tree species, Prosopis, in the Northern Cape region of South Africa. The models developed will
focus on capturing the species’ response to the implementation of a control strategy.

The fundamental techniques explored are based on mathematical modelling approaches, GIS,
ML as well as CA. GIS software will be employed to build an hexagonally discretised spatial
data set. Thereafter, an ML model will be developed in order to predict the habitat suitability
of Prosopis in the hexagonally discretised study region. The results of the ML model will then
be employed as input to the CA, along with the transition rules governing the growth, dispersal,
and eradication of Prosopis. By adopting a CA approach with an hexagonally discretised map,
the spatio-temporal spread and control of Prosopis will be captured. Finally, the model will be
verified by comparing its habitat suitability predictions with existing data, after which it will be
validated by being applied to a case study focusing on the Northern Cape province. Comparing
the simulated results of the study region with, and without a control strategy implemented may
yield valuable insights into the effect which an effective control strategy may have on the spread
of Prosopis.

1.3 Problem objectives

The following objectives will be pursued in this project:

I To conduct a thorough study of the literature with reference to:

(a) the impact and spread of the invasive tree species Prosopis,

(b) the factors driving the invasion of Prosopis,

(c) prevalent control strategies for the mitigation of invasive species spread,

(d) using GIS to conduct spatial analysis on the data,

(e) relevant algorithms within the ML paradigm capable of predicting the distribution of
Prosopis, and

(f) spatio-temporal modelling paradigms capable of modelling the spread and control of
Prosopis.

II To construct a spatial data set which is representative of the current distribution of
Prosopis and its environmental requirements, based on the analysis techniques in Ob-
jective I(d).
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III To design an appropriate prediction model capable of identifying and ranking, based on
importance, the environmental features identified in Objective II. The model should extract
the desirable habitat of Prosopis, using the algorithms identified in Objective I(e).

IV To implement the results from the predictive model designed in Objective III in a spatio-
temporal model, inspired by approaches identified in Objective I(f), to simulate the po-
tential spread and ecological impact of Prosopis.

V To verify and validate the model components outlined in Objectives II–IV, complying with
generally accepted modelling guidelines researched in fulfilment of Objective I(e) and (f).

VI To apply the verified and validated model of Objective V to a specific case study, focused
on the invasive spread of Prosopis in the Northern Cape.

VII To evaluate the ability of the model of Objective V to simulate the potential spread of
Prosopis in the Northern Cape.

VIII To reflect on the project and recommend possible improvements and follow-up work which
may be pursued in the future.

1.4 Project scope

Given the complexity and vast number of factors that influence the spread of invasive species,
the scope of this project is limited by the following assumptions:

The species of interest. The models developed will consider all species of Prosopis in general,
assuming similar environmental requirements and growth habits. Therefore, no distinction
between the variants of Prosopis will be made, so as to simplify the modelling of its
population growth against the use of different control strategies.

Selecion of control methods. Many methods exist for controlling invasive species, such as
mechanical, chemical, and biological methods, as well as concentrated, controlled fires.
Rather than employing a specific control method (or combination thereof) throughout the
execution of this project, the focus is more geared towards investigating the effect that an
effective control strategy may have on the spread of Prosopis over time.

The CA model considerations. The hexagonally discretised area considered in which con-
trol strategies are modelled is limited to a specific size, so as to ensure that the size of
individual hexagonal cells are not too big as this could adversely affect the performance
and accuracy of predicting the response of the specie to the control strategy. Furthermore,
the system is assumed to be closed, that is, factors external to the study area are not
considered.

1.5 Report organisation

As stated in §1.2, the primary objective of this project is to model the effect of control strategies
on the spread of the invasive tree species, Prosopis. This requires the development of a verified
and validated model that may be applied to a real-world case study in the Northern Cape.
The organisation of the report provides an overview of the structure of the report in pursuit of
fulfilling the objectives defined in §1.3.
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The report comprises of five additional chapters. Chapter 2 contains an in-depth review of the
literature which is of relevance to this project in fulfilment of Objective I.

Inspired by the literature reviewed in Chapter 2, Chapter 3 is devoted to deriving and developing
the modelling components relating to the spread and control of Prosopis in a spatio-temporal
context. These components include collection of the relevant data, and implementation of ML
and CA models in fulfilment of Objectives II, III, and IV.

Chapter 4 seeks to fulfil Objective V and entails the verification and validation of the ML and
CA models developed in Chapter 3.

In Chapter 5, the validated and verified model of Chapter 4 will be applied to a real-world case
study in the Northern Cape in fulfilment of Objective VI. Furthermore, Chapter 5 will also
contain an evaluation of the model applied to the Northern Cape case study in fulfilment of
Objective VII.

The report concludes in Chapter 6, fulfilling Objective VIII, with a brief summary and ap-
praisal of the entire project, reflections by the author in terms of what was learnt, as well as
recommendations for possible improvements and follow-up work which may be pursued in the
future.

1.6 Report timeline

The timeline of this project is provided in Gantt chart form in Appendix A.
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This chapter focuses on the literature pertaining to Prosopis, as well as the relevant modelling
components required to successfully model the problem considered. First, the characteristics of
Prosopis invasions are investigated in §2.1. Thereafter, the well-known control strategies which
are typically employed to inhibit the spread of the species is discussed in §2.2. This is followed
by an in-depth discussion on the relevant techniques used to model the problem at hand. In
particular, §2.3 deals with the spatial analysis component, §2.4 focusses on the spatio-temporal
component, and finally §2.5 details the considerations for the ML component. The chapter
concludes in §2.6 with a brief summary of the aforementioned sections.
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2.1 Characteristics of the invasive species Prosopis

Invasive plant species have severely threatened global biodiversities and human livelihoods in
recent decades [73]. This is certainly the case for the plant species under the name Prosopis,
where some of its species are considered to be among the world’s most destructive invasive
species [45]. Introductions of Prosopis across continents has transpired over many centuries.
The earliest report of Prosopis being introduced outside of its origin, the Americas, was in
1822 in Senegal. As of 2014, Prosopis has been observed in approximately 131 countries, with
widespread introductions occurring in Africa and Asia between the 1970s and 1990s [66]. The
full timeline of Prosopis introductions from the year 1822 to the year2000 is graphically displayed
in Figure 2.1.
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Figure 2.1: Timeline of all Prosopis introductions globally, adapted from [45].

The primary reason for the widespread introduction of Prosopis was to assist regions in refor-
estation programmes after experiencing severe droughts. As such, Prosopis was intended to
serve as a source of shade and fodder in the case of South Africa and Australia, dune stabilisa-
tion and fuel-wood in Sudan, and natural fencing in Malawi [45]. While many countries have
intentionally introduced Prosopis for reasons similar to the aforementioned, some inter-border
introductions have accidentally happened. Introductions in Botswana, Nigeria, and Yemen to
name but a few, were the result of livestock being traded with neighbouring countries [66]. This
comes as a result of the livestock feeding on Prosopis as fodder and carrying the seeds into these
neighbouring countries via their excrement.

2.1.1 Dynamics of invasive plant species

The dynamics of invasive species are vital to understand when attempting to minimise their
negative effects, while maximising their benefits. There is unfortunately a shortage in frame-
works connecting theory and management pertaining to biological invasions [45], and thus it is
necessary to fully grasp the dynamics of the species being studied in order to develop sustainable
management plans.
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Habitat and distribution

The 44 variants of the Prosopis species is native to hot arid and semi-arid environments of the
Americas, and have naturalised in the arid and semi-arid regions of the countries in which it has
been introduced. In the south-western region of of the United States, the growth of Prosopis
has been observed to be limited to altitudes below 1 676 m above sea level, with the preference
of most members of the population being below 1 371 m. Prosopis is well-known in withstanding
extreme climatic conditions such as high temperatures and low rainfall [66, 17]. When observed
in the desert, Prosopis prefers to grow along drainage passages where rainfall does not exceed
approximately 15 cm annually [17].

Prosopis is rarely limited by the condition of the soil, and so is able to thrive in alkaline, saline,
or infertile soils [66]. As such, many researchers omit describing the soil of Prosopis’ habitat
given that it is considered to have adapted to all soil types, irrespective of the moisture level of
the soil. Moreover, it is well known that Prosopis is able to grow in most environments regardless
of how rocky, broken, flat, or sandy the environment may be. While Prosopis has proven to
grow irrespective of its soil conditions, it does prefer regions with medium to fine textured soils
[17].

The native, naturalised and invasive, as well as potential (based on climatic suitability) distri-
butions of Prosopis species across 131 territories worldwide is provided in Figure 2.2. Figure
2.2(a) displays the regions in which Prosopis is naturally observed (i.e. its native regions). Fig-
ure 2.2(b) illustrates the distribution of introduced Prosopis species that have either naturalised
or have become invasive. Furthermore, Figure 2.2(c) represents the potential distribution for
Prosopis which was determined as a result of assessing climatically suitable regions for Prosopis
which currently have no records of the species being present [45].

Number of Prosopis species
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1-2 
3-4 
5-6 
>6 

(a) Native distribution (b) Naturalised and invasive distribution

(c) Potential distribution

Figure 2.2: The number of territories per country containing a native, naturalised, or invasive popula-
tion distribution of Prosopis, adapted from [45].
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The number of territories per country containing a native, naturalised, or invasive population
distribution of Prosopis is tabulated in Table 2.1. The most recent extensive global review
completed in 2001 revealed that Prosopis was present in 93 countries and islands [66]. While it
is unlikely that Prosopis has been introduced to many more territories since the review, the figure
of 131 countries and islands may be due to data availability increasing since then, or that the
species has unintentionally been spread due to cross-border livestock trading. Most importantly
perhaps is the fact that 79% of introductions recorded have resulted in naturalisation, of which
38% have become invasive [45].

Table 2.1: Global distribution of Prosopis by region, adapted from [45].

Region No. of territories containing Prosopis

Africa 40
Americas 19
Asia 26
Caribbean islands 18
Europe 4
Islands, and Australia 24

Spread and growth

Historical observations of Prosopis have estimated its annual rate of spread to range from 3.5–
18% in South Africa, implying that the invaded region could double every five to eight years.
The Prosopis tree typically grows to heights of between 12 and 20 metres, while some shrub-
like species of Prosopis, including laevigata and reptans, reach only three metres in height.
Regardless of the variants of Prosopis, its trunk is often short and crooked and grows to a
diameter of approximately 65 cm [92]. Apart from the aforementioned robustness of Prosopis
to grow in a wide range of conditions, the primary reasons for which Prosopis is a successful
invader lies in their ability to produce a large amount of seeds that stay viable for decades, fast
growth rates, early reproductive age, the ability to regrow after being cut, tap root systems
reaching depths of 50 metres and deeper in order to utilise both surface and ground water, and
allelopathic1 effects [45]. As previously stated, one of the main reasons for any ongoing spread of
Prosopis is due to unintentional spread through livestock. In particular, the seed pods that grow
on Prosopis contain approximately 25 seeds per pod [92], and so when grazed upon by animals,
the potential for germination via their excrement enhances the spread of the invader [81].

Impacts of invasive spread

Prosopis invasions have yielded both benefits and harms for local and global environments,
economies, and human livelihoods. As such, its positive and negative impacts have often been
contrasted, questioning whether or not the positive impact of the species can outweigh the
negative [45]. The benefits resulting from Prosopis introductions is that the pods which grow on
the tree serve as a source of fodder for livestock, the wood of the tree may be used as firewood,
turned into charcoal, or used as timber products such as poles or boards. Furthermore, the
small flowers on the tree serve as a source of forage for bees due to the large quantities of
pollen and nectar produced by them [92]. In addition, the physical tree itself provides sources

1A biological phenomenon in which a plant hinders the germination of seeds of other plants, thereby discour-
aging other plant species to grow near to it [67].
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of shade for animals during the warmer months [81]. Generally, the negative impacts caused by
Prosopis invasions include the disturbance of native ecosystems, a compromised water-supply to
the region, and damaged underground pipes and boreholes caused by their roots [46]. From a
natural resources point of view, many global studies on the adverse effects of Prosopis invasions
all found that Prosopis outcompetes native plant species for the available natural resources such
as water and sunlight, thereby reducing the density, richness, and diversity of native species [80].
Moreover, the allelochemicals contained within the leaves of Prosopis are known to kill certain
insects as well as inhibit the germination and growth of other trees [92]. The socio-economic
impact of large scale invasions may lead to consequences of human health due to compromised
ecosystem services, decreased profits for farmers resulting from lower crop yields, as well as
increased costs for farmers and locals due to repairing damaged infrastructure [88].

2.1.2 Prosopis in South Africa

In the late 1800s, Prosopis was introduced to South Africa from the Americas and was widely
distributed in the arid and semi-arid regions to be planted in order to serve as a source of shade
and fodder for livestock during drought periods. A 1998 study revealed that 1.8 million hectares
of South Africa is estimated to been invaded [80, 96]. As of 2004, Prosopis has been listed by
the South African national government as a Category 1b invasive species in the Eastern Cape,
Free State, North-West and Western Cape. Throughout the Northern Cape, however, Prosopis
is listed as a Category 3 invasive species with the exception of riparian areas, where they are
listed as Category 1b invaders [18].

The rate of spread, as previously stated, is estimated to be between 3.5 and 18% per annum.
Between 2002 and 2007, the area occupied by Prosopis in the Northern Cape alone had increased
by approximately one million hectares, which is equivalent to a spread rate of 27.5% per year.
Most recently, it was found that between 2000 and 2015, the public works eradication programme
had treated 203 000 hectares of area covered by Prosopis nationally and the cost of this project
amounted to ZAR 1.8 billion at the time [92].

The choice of management strategies surrounding the control of Prosopis has been been a con-
tentious issue for many years. Some advocate for control through utilisation (i.e. managing the
invader in a way that seeks to minimise the negative impacts caused by the invader, while simul-
taneously benefiting from its positive impacts), however, many believe this approach is ineffi-
cient [99] and calls for more conventional methods of control. As such, the government managed
WfW programme employs a combination of mechanical, chemical, and biological methods to
control Prosopis. Three seed-feeding beetles, namely Algarobius prosopis, Algarobius bottimeri,
and Neltumius arizonensis were employed as biological agents to inhibit the spread of Prosopis
while ensuring that Prosopis was not harmed. These approaches have, however, proved to be
unsuccessful in significantly affecting the spread of Prosopis due to the large-scale of the inva-
sion [103]. Despite biological methods being considered to be the most cost-effective method,
the return on investment for Prosopis in particular is low when compared with the strategy em-
ployed on other invasive species. The lack of success experienced thus far in controlling Prosopis
is likely due to the poor strategy employed by management as well as the prioritisation of
projects. As such, there is certainly a need for decision-makers to revise their management plan
and prioritisation of projects in order to effectively use the available resources for controlling
Prosopis more efficiently than it has been thus far [45].
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2.2 Control strategies

A wide range of control methods exist for Prosopis and each method has its own set of strengths
and weaknesses. As such, it is necessary to investigate the cost-benefit relationships for each
method before a method is implemented in a study. Current strategies in South Africa have
been considered to have failed and not reduce the extent of the invasion as a whole due to
labour intensive methods being favoured as opposed to identifying a best-suited approach or
combination of approaches [81].

2.2.1 Comparing control methods

In 2017, Shackleton et al. [81] developed a comprehensive national strategy for the control of
Prosopis and evaluated various control methods according to three criteria, the cost to clear
the species, the area cleared per day on average, and the number of people employed by each
method. The results are tabulated in Table 2.2.

Table 2.2: Control methods evaluation with respect to cost, time, and employment, adapted from [81].

Method Cost to clear (ZAR) ha cleared/day Employment

Mechanical ±5000–7000 0.33 11
Chemical ±1000 <1000 1–2
Biological Several millions - Researchers, lab assistants

Mechanical methods entail removing the invasive species by hand or by using tools [59]. This can
be achieved by cutting tree stumps or using heavy-duty machines such as bulldozers. Despite
this method being the slowest for clearing Prosopis, the WfW programme employs this method
as its standard approach in the case of South Africa as it fulfils the objectives of removing
the invader and employing as many workers as possible. While mechanical methods are ideal
for areas used for agricultural reasons, it is important to note that they are damaging to the
environment and not effective for large-scale invasions [81].

Chemical methods entail spraying herbicide on the invasive species, and is typically done by
plane. This method is the fastest and most cost effective, however, the environmental conse-
quences of this method remain a grey area. Moreover, although spraying herbicide will require
ground teams to be employed for following up, the employment required is very low [81], thus
making it an unpopular choice in regions with mandates for high employment.

Biological methods entail the deployment of biological agents to prey on the invading species.
The agents are released into the area with the aim to either hinder the spread, or increase the
mortality rate of the invading species. While this control method ensures no human impact
on the environment, the research costs associated with identifying the most effective agent are
initially high [81], and much uncertainty exists over a long duration with regard to the success
of the deployed agent and strategy [25].

2.3 Spatial analysis

Spatial analysis is an integrated analysis technique used to solve problems geographically [87].
The analysis enables the user to identify and understand complex spatial patterns and rela-
tionships that exist within the environment. This is typically achieved through visualisation,
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allowing users to make inferences about the system being studied [2]. Moreover, the data ob-
tained from the analysis may serve as an input for further applications such as building an ML
model. Many fields of research such as ecology, archaeology, geodesy and landscape architec-
ture share a strong interest in spatial analysis, and so spatial analysis techniques have been
applied in many studies within these fields [62]. Moreover, spatial analysis has become the
fastest growing field of analyses within the study of ecology. Ecologists have recognised the im-
portance of including spatial considerations into their ecological thought processes and decision
making. Furthermore, the ease of access to software capable of performing spatial analyses has
enabled users to build and maintain models that stay up to date with the rapid changes of the
environment [24].

The primary reason for performing a spatial analysis in an ecological modelling setting is to
study the biotic2 and abiotic3 relationships and influences [2] that exist within a region. A spatial
analysis is only justified if spatial dependence exists in the study. Spatial dependence, also known
as spatial autocorrelation, is the statistical perception that the space of a system is distributed
non-stochastically. Similar to the well-known correlation coefficient, Moran’s coefficient is a
metric bounded in the range of [−1, 1], and is employed to quantify the strength of spatial
autocorrelation, measuring how similar or dissimilar entities are to one another. High positive
coefficients indicate a strong spatial autocorrelation (clustering of similar values), a value of
zero indicates no autocorrelation (complete randomness), and high negative coefficients indicate
weak autocorrelation (patterns exist within a complex clustering) [98].

The spatial realm of the real world can be represented as either discrete or continuous data. A
discrete representation stores data about attributes at an exact location, such as the landcover
of an area. Continuous data are represented using grid-based systems in which each cell of the
grid assumes a continuous value [87]. Environmental attributes of a location such as elevation,
temperature, and precipitation are typically continuous data and are often represented as grid-
based systems.

Two fundamental data models arise in the approach to represent and simplify data models
when performing spatial analysis, namely the vector model and the raster model. Figure 2.3
illustrates the graphical comparison between the vector and raster model representations [79].
Raster data models represent the grid-based continuous components of the environment such as

(a) Vector data representation (b) Raster data representation

Figure 2.3: Graphical comparison between vector and raster model representations, adapted from [79].

precipitation, temperature, and humidity. The structure of a raster model is a matrix of rows
and columns containing cells. The length and width of each cell is defined in surface units of the
real world so that the square cells in Figure 2.3b may be defined as having sides of 100 metres

2Living components in an ecosystem such as animals, plants, and bacteria.
3Non-living components in an ecosystem such as water, soil, and atmosphere.
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in length [90]. Furthermore, each cell within the matrix contains data about an environmental
feature at that location [98].

Vector data models represent discrete geometric components of the environment such as trans-
port routes, locations of trees, and networks of rivers [70]. In order to depict these geometric
components, three elements are used individually or in combination with one another. These
vector data elements are known as point, line, and polygon data types and are illustrated in
Figure 2.4 [98]. Points are dimensionless and indicate the x, y coordinate location of a feature,
such as a building. The nine points plotted in Figure 2.4(a) denote an arbitrary location in
each province of South Africa. Lines connect points along a path and typically represent lin-
ear features and networks such as roads or rivers. Often, the line thickness of a road or river
is dependent on the type of road or river. Figure 2.4(b) displays an arbitrary route between
five provinces. Polygons, illustrated by a confined set of lines, represent defined areas and may
assume any shape. The polygons illustrated in Figure 2.4(c) denotes two arbitrarily selected
municipal regions in South Africa.

Choosing the appropriate data model depends largely on the operations required to be per-
formed, the form of the data, the effect of the data model on data quality, and the skill level of
the analyst [90]. Both conceptualisations have their own strengths and weaknesses. The raster
model is simpler to implement, and less data-intensive, whereas the vector model is more versa-
tile in its application and can represent discrete entities such as buildings more effectively [86].

(a) Points (b) Lines (c) Polygons

Figure 2.4: Illustration of the three types of geographical data elements.

2.3.1 Geographical Information Systems

The literature considers many quantitative tools and software packages focused on integrating
spatial analysis and data visualisation. The combination of the most popular analysis tools
into a single software toolbox has resulted in the development of the spatial analysis software
environment known as a GIS. A GIS aids spatial analysts in processing new information, handling
and storing data, as well as generating useful visualisations [62].

The GIS software environment facilitates the visual exploration, manipulation, and analysis of
spatial data in order to better understand the spatial patterns that exist between the spatial
data [4]. GIS automates the procedures required for performing a spatial analysis, thus making
it a highly effective tool. However, if spatial dependence is not present within the system, then
GIS would prove to be an irrelevant tool for that particular application [98]. GIS software
typically employs the principal of layering in order to combine different sets of data in order
to access these layers simultaneously and perform analyses. The concept of layering can be
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understood as vertically ‘stacking’ spatial data set layers that represent geographical attributes
of the Earth’s surface [49] and is illustrated schematically in Figure 2.5 [87].

Municipal districts

Road networks

Urban structures

Land use

Elevation

Combined data sets

Figure 2.5: Conceptual model of layering geographical attributes of the Earth’s surface, adapted
from [87].

Map generation and map comparison are two widely used applications in GIS. Once the data
have been obtained and added into the GIS software, many individual maps may be generated
depending on which layers of data are selected to be included. A typical use of GIS involves
mapping attributes of the natural environment with species activity and investigating any re-
lationships that may exist [54]. Map comparison in GIS is often employed to determine the
degree of similarity between maps and to study the change in natural phenomena over time,
such as the growing and shrinking of glaciers in polar regions. Furthermore, map comparison is a
fundamental consideration in the validation of many models. Most commonly, comparisons are
carried out by considering either the composition (content) or the configuration (arrangement)
of the attributes depicted on the maps. However, given the multifaceted nature of comparing
maps, it is often unlikely that one single approach will perfectly represent the similarity between
two or more maps [23].

2.3.2 Cellular automata

Von Neumann [61] formally introduced the paradigm of CA modelling in 1966 after studying the
behaviour of highly complex systems. Inspired by self-reproduction and evolution, CA models
were conceptualised by Von Neumann as a result of considering the possibility of setting up a
machine shop in which each machine is capable of replicating itself, given sufficient raw materials
and time. In particular, if the design of a machine is defined by a pattern and a set of rules
detailing the duplication of the pattern, then the machine can effectively deploy the set of rules
to create a copy of itself.

CA models exploit discrete, uniform grid structures, similar to that of raster-based models de-
scribed in §2.3, and consist of four fundamental concepts, namely a cell, state, neighbourhood,
and transition rule [16]. The spatial domain, or cellular space of the model is an n-dimensional
lattice structure, and is discretised by the cells of the model which are typically square-shaped.
Each cell in the discretised space contains a variable which specifies the state of the cell. Fur-
thermore, the time-varying state of each cell depends on the state of itself, as well as the states
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of all adjacent cells in the neighbourhood of that specific cell at time step t. Moreover, the
states of each cell may be updated in discrete time steps or iterations according to a set of basic
transition rules. CA models are capable of exhibiting highly complex, dynamic behaviours, even
though the transition rules are simple in construction.

The neighbourhoods of individual cells may differ in geometric structure and size depending
on the required application of the model. The two most common neighbourhood structures for
square lattices are the Von Neumann and Moore neighbourhood configurations, visualised in
Figure 2.6(a) and 2.6(b) respectively, where the shaded cell denotes the central cell. When
an hexagonal lattice structure is employed by the CA model, the neighbourhood structure
configuration visualised in Figure 2.6(c) is assigned to each cell in the grid [104]. The notable
difference between the square and hexagonal neighbourhoods is that each square cell shares a
common boundary with only four of the other cells in the two square neighbourhood structures,
as opposed to six cells for the hexagonal neighbourhood structure. Furthermore, the centre-to-
centre distances between all of the neighbours within a hexagonal structure is the same, unlike
the square lattice structures.

(a) Von Neumann neighbour-
hood

(b) Moore neighbourhood

(c) Hexagonal neighbourhood

Figure 2.6: Common neighbourhood structures employed in CA models.

Considering the Moore neighbourhood structure comprising eight neighbours around the focal
cell, the set of neighbours to cell c in row i, column j, denoted as C(i,j) can be written as

Ω(i,j) = C(i,j−1), C(i,j+1), C(i−1,j), C(i+1,j), C(i−1,j−1), C(i−1,j+1), C(i+1,j−1), C(i+1,j+1). (2.1)

In 1997, Karafyllidis and Thanailakis [39] formulated a CA model for predicting the spread of
fire in forests. By discretising the forest into a lattice of identical square cells and employing



2.3. Spatial analysis 19

the Moore neighbourhood structure, the state of each cell St(i,j) at discrete time intervals t
represented the ratio of the burned area of the cell, AB, to the total area of the cell, AT ,
expressed mathematically as

St(i,j) =
AB
AT

. (2.2)

As a result, unburned cells will assume a state value of 0 and burning cells will assume a state
value in the interval between 0 and 1, until a cell is fully burned out, in which case it will assume
a value of 1. The transition rule defining the changing of a cell from its state at time step t
to time step t + 1 was given as a function f of the state of cell Ci,j , as well as the state of its
neighbouring cells, as per (2.1), at time step t. Mathematically, the transition rule may be fully
expressed as

St+1
(i,j) = f(St(i,j), S

t
(i,j−1), S

t
(i,j+1), S

t
(i−1,j), S

t
(i+1,j), S

t
(i−1,j−1), S

t
(i−1,j+1), S

t
(i+1,j−1), S

t
(i+1,j+1)),

(2.3)
and by employing the notation of (2.1), the transition rule in (2.3) may be re-written as

St+1
(i,j) = f(St(i,j), S

t
Ω(i,j)

). (2.4)

CA models have become a popular technique in the field of ecology, and biological invasions
in particular, and have shown to be capable of handling complex biological processes in spite
of its simplicity [34]. Invasive species exhibit similar spread patterns when compared to other
disturbance agents, like the aforementioned spread of fire [101]. As such, the presence or absence
of a species at a specific location can be represented by discrete cell states that can change over
time as a result of competition with native species, availability of resources, and employed control
methods.

In 2016, Yoshimoto et al. [101] employed a CA model as part of an optimisation framework that
captured the spatial dynamics of invasive species and returned the optimal control strategy that
should be employed. Two states were considered for each cell within the CA model, namely
colonised or uncolonised. A binary variable, z(i,j)(t) ∈ {0, 1}, may be introduced to formally
define the aforementioned states at time t for the cell C(i,j). Consequently, if a cell is colonised, it
assumes a state value of z(i,j)(t) = 1, and if uncolonised, it assumes a state value of z(i,j)(t) = 0.
Once a cell is colonised, the invader will attempt to spread to uncolonised neighbouring cells, with
a colonisation probability P{z(i,j)(t) = 1}. By deriving a probability rule for the colonisation
of a cell, the CA model is linearised, allowing for a (0, 1) integer programming problem to
be evaluated, thereby assisting decision makers to either ‘not implement any treatment’ or
‘implement a treatment.’ The colonisation probability can be expressed as

P{z(i,j)(t) = 1} = 1− γS(i,j)(t), (2.5)

where γ ∈ (0, 1) is a species-specific parameter, and S(i,j)(t) is the sum of invaders coming from
colonised cells to cell C(i,j) at time t. Furthermore, colonisation of a cell only occurs when
S(i,j)(t) exceeds a threshold value p when P{z(i,j)(t) = 1} ≥ p.

GIS integrated with CA

Over the last two decades, the integration of GIS within the realm of CA modelling has been
to the benefit of the CA modelling paradigm, making it a suitable choice for qualitative predic-
tions [34]. By combining the data management and visualisation capabilities of GIS technology
with the spatio-temporal capabilities of CA, the result is a powerful tool for data rich modelling.
Furthermore, GIS is often employed commercially to display and manipulate the behaviours
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exhibited by complex systems resulting from CA models. Studies concerned with modelling
the spread of invasive species typically employ GIS as well as some dynamic modelling tech-
nique. However, these studies have focused more on a system that displays the results of a
predetermined model than the development of the model itself. In the past, ecological mod-
els were mathematically-rooted and iteratively derived from approximate data that estimated
or averaged values of unmeasurable parameters. The high degree of complexity and expensive
computational cost hindered the development and exploration of spatio-temporal models in the
context of species modelling for a long time [16]. In this regard, CA models became an ideal
technique due to the ability of representing complex, spatially distributed, dynamic models using
a relatively simple set of transition rules. Despite the fact that CA models can exhibit similar
dynamics to partial differential equations, they use cell states, transition rules, and parameters
to describe the model as opposed to non-spatial methods that employ approximate data. As a
result, CA is a suitable dynamic modelling technique for GIS to be accompanied with due to its
‘bottom-up’ approach and conservation of data relating to individual components.

2.4 Mathematical modelling of population growth

Across all subdisciplines of ecology, population biology could be the most mathematically driven,
and problems relating to population dynamics has long piqued the curiosity of scholars [72]. In-
terest into the study of population growth was formally introduced as early as 1798 by Thomas
R. Malthus in a study titled An essay on the principle of population [50] which discussed popu-
lation dynamics and the role it plays in affecting the betterment of society. Throughout history,
a great concern has been that of the ability to sustain a growing population within existing
environments and systems. Mathematical models serve as a suitable tool that may be employed
to address the questions that arise from complex behaviours of populations [10] and functions
as a guide for sustainable decision making by future generations.

It is well known that some form of stochastic behaviour is inherent in all biological popula-
tions [64]. Consequently, it is imperative that environmental noise (e.g. climate or natural
disasters) is reflected in dynamic population growth models. Generally, dynamic population
growth models consist of deterministic and stochastic components that work simultaneously.
The deterministic component is responsible for ensuring that the target variable is predictable
for a given set of initial conditions, while the stochastic component is mainly responsible for
mirroring demographic dynamics (e.g. factors affecting reproduction or mortality) as well as the
aforementioned environmental noise.

Historical approaches towards modelling population growth were rooted in the assumption that
under positive population growth rates, a population increases exponentially in what is known
as a population explosion. Moreover, the degree of the explosion is determined by the resource
limitations of the environment. The validity of such models are, however, naturally limited due
to the fact that the exhibits a carrying capacity4. As such, population growth models cannot
be developed over a temporal dimension, but instead as a function of both spatial and temporal
dimensions [10]. Various equations have been derived to describe population dynamics and the
choice thereof depends on the species being studied, as well as the aim of the study [26].

4The maximum population size that a specific environment can support given the available natural resources
in that environment [10].
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2.4.1 Modelling population growth over time

Much of the literature pertaining to modelling population growth focusses on the population
growth of a species over time, disregarding the movement of species populations in the spatial
dimension. It is important to note, however, that simple models do not consider the stochastic
elements discussed in §2.4. Despite this limiting the usefulness of these models, they still deliver
fundamental insights to aid our understanding of complex processes and serve as a natural point
of departure in the study of growth models for biological populations [10].

Malthusian growth model

The exponential growth model, commonly referred to as the Malthusian growth model, was
developed by Malthus between 1798 and 1826 and is widely accepted as one of the most influential
works on population dynamics. Malthus theorised his model on the groundings of the disparity
between a biological population and resource production, stating that population members would
increase at an exponential rate, while production of resources increases arithmetically [50]. For
a population size of N(t) at time t, growing at a constant rate r, the Malthusian population
growth model may be expressed mathematically by the initial value problem

dN
dt (t) = rN(t), t > 0

N(0) = α.

}
(2.6)

The solution to the differential equation in (2.6) may be determined by employing the separation
of variables technique and evaluating the integral∫ N

α

dN ′

N ′
= r

∫ t

0
dt′,

at the initial condition N(0) = α at time t = 0, which yields

log

∣∣∣∣Nα
∣∣∣∣ = rt,

and can be expressed more succinctly for t ≥ 0 as

N(t) = αert. (2.7)

The assumption of a constant population growth rate which is proportional to its size leads to
the model in (2.7) and predicts population explosion if r > 0 as illustrated by Figure 2.7(a),
extinction if r < 0 as illustrated by Figure 2.7(b), and an unchanged population α if r = 0 [10].
Furthermore, if α = 0, the system will exhibit a steady state solution of N(t) = 0 for all t > 0.
The modern interpretation of the model described in (2.6) is that it is only viable for small
populations over a short period of time in an idealised environment containing infinite resources
and the absence of competing species [33].

Logistic growth model

If the growth rate of a population is proportional to its size, as is the case with the Malthusian
model, then the population size would expand exponentially, without being bounded to some
limit. In reality, as the population size increases, the demand for resources in the environment
will naturally increase as well. The logistic growth model accommodates this adjustment from the
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0

(a) r > 0

0

(b) r < 0

Figure 2.7: The Malthusian model illustrated for a population explosion and a population extinction.

Malthusian model by incorporating an asymptotic self-regulating mechanism (i.e. the carrying
capacity), which is induced when a population grows too large, thereby taking into account
the phenomenon of population overcrowding [64]. As such, the model represents the population
growth rate, previously r, as a function of the species birth rate b and its death rate d resulting
from overcrowding. The logistic growth model may be expressed mathematically as

dN
dt (t) = N(t)(b− dN(t)), t > 0

N(0) = α.

}
(2.8)

The solution to the differential equation in (2.8) may be determined by following a similar
approach to solving (2.6), by evaluating∫ N

α

dN

N(b− dN)
=

∫ t

0
dt,

which requires the left-hand side integral to be expanded by applying the method of partial
fraction decomposition. This yields the integral equation

1

b

∫ N

α

dN

N
− 1

b

∫ N

α

−d dN

b− dN
=

∫ t

0
dt. (2.9)

Solving for the equation in (2.9) at the initial condition of (2.8) yields the solution

log
N(b− dα)

α(b− dN)
= bt,

which after exponentiating and making N(t) the subject gives

N(t) =
αb

αd+ (b− dα)e−bt
.

The relationship between the species birth and death rate can be expressed as the ratio K = b
d ,

otherwise known as the carrying capacity of the species. By incorporating the carrying capacity
K into (2.9), the population size at time t for t ≥ 0 resulting from the logistic growth model
may be expressed as

N(t) =
Kα

α+ (K − α) e−bt
. (2.10)
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The expression in (2.10) necessitates the elucidation of four possible behaviours [64] that may
arise:

1) for 0 < α < K, the population size increases asymptotically to K according to the logistic
function, and dN

dt (t) > 0,

2) for α > K, the population size decreases asymptotically to K, and dN
dt (t) < 0,

3) for α = K, the population remains constant at a size of N(t) = K for t ≥ 0, and dN
dt (t) = 0,

and

4) for α = 0, the population remains constant at a size of N(t) = 0 for t ≥ 0, and dN
dt (t) = 0.

The solution in 2.10 is displayed in Figure 2.8 and illustrates behaviours (i) and (ii). From
Figure 2.8, it is evident that an initial population size significantly less than K, yet greater
than zero (i.e. α1), may exhibit exponential growth in the beginning due to the abundance of
resources. As the population size asymptotically approaches its carrying capacity K, however,
the growth rate begins to decrease as of the point of inflection. The growth rate continues to
decrease as a result of resource scarcity until it has reached a value of zero. In the theoretical
case of a population size exceeding K (i.e. α2), the population experiences a strictly negative
growth rate due to overcrowding and competition for resources, thereby resulting in a decline
of the population size until the carrying capacity K is reached [64]. The logistic growth model,
unlike the Malthusian model, may exhibit two steady states and occurs in the cases where the
initial population size is either α = 0 or α = K. Trivially, the first steady state remains in a
population size of N(t) ≡ 0, whereas the second maintains a population size of N(t) ≡ b

d .

0

Figure 2.8: Logistic growth model displaying initial populations α1 and α2 as well as their corresponding
behaviours, (1) and (2) respectively.

2.4.2 Modelling population growth over space and time

The mean-field approximation [60] is an idealised assumption employed by a host of population
growth models and it assumes that the landscape of an environment, as well as the population
density of the individuals contained within that environment, is homogeneous. It follows that



24 Chapter 2. Literature Review

the probability of interaction between a randomly selected individual and any other individual
belonging to the same, or a different species population, is independent of the individual selected.
As a result, individuals have an equal probability of interaction, irrespective of the distance
separating them. When spatial models are developed under this assumption, they are said
to predict the dynamics — with respect to the size of the population — of the global model
by upscaling the local interactions between individuals to the scale of the entire environment.
In doing so, these mathematical representations unrealistically ignore the terms governing the
dispersal of a population, resulting in comparatively poor model results. Consequently, models
should ensure that they accurately represent population growth by allowing for spatially varying
population densities.

The earliest mathematical representations attempting to model reaction-diffusion equations for
biological populations were pursued in 1951 by John G. Skellam [83]. The model proposed by
Skellam was based on the spread of muskrat populations in Europe according to Malthusian
growth over time, but stating that an area occupied by an invading species will linearly also
increase in size over time. This model has since been adopted to successfully model the spread
of other biological species, such as the grey squirrel and the Californian sea otter [32].

The diffusion component of a reaction-diffusion model is derived from Fick’s first law, which
describes the flux of a substance’s diffusing particles [13]. In 1855 Fick published an article
titled On liquid diffusion [22] in which this approach of diffusion was mathematically formulated,
analogous to the diffusion of heat through a conducting medium. In the case of a one-dimensional
medium, Fick stated that the diffusion of particles occurs in the direction from a high density to
a lower density. As such, the movement of particles between two spatial points per unit of time is
directly proportional to the spatial derivative of the particle density, and inversely proportional
to the distance between the two spatial points [22]. The flux of a population N at position x
and at time t ≥ 0, F (N, x, t), can thus be given by

F (N, x, t) = D
∂N

∂x
(x, t), (2.11)

where D is the rate of diffusion experienced by the population. In order to combine the logistic
growth function and the diffusion of species population members into a single reaction-diffusion
system, however, the population diffusion represented by the flux in (2.11) should be presented
as the spatial change in the population density over time. This is achieved by finding the partial
derivative of (2.11) over time as

∂F

∂t
(N, x, t) = D

∂2N

∂x2
(x, t). (2.12)

The diffusion in a single spatial dimension of x may be exemplified by considering the arbitrary
interval I ∈ [v, w] defining the opposite boundaries of a spatial region on x, where w > v. The
change in population density on x then equates to the difference in flux of the populations at
the opposite boundary points v and w, expressed mathematically as

F (N,w, t)− F (N, v, t) = D

∫ w

v

∂2N

∂x2
(x, t)dx. (2.13)

The final reaction-diffusion model aims to find the change in population size over the temporal
and spatial dimension by combining the logistic growth model and the partial derivative in (2.12)
into a single expression, yielding

∂N

∂t
(x, t) = N(x, t)(b− dN(x, t)) +D

∂2N

∂x2
, (2.14)
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which may be solved over a given time period and for the interval I, provided some initial
population size N(x, 0) = f(x) at time t = 0, where x ∈ [v, w].

In the context of discrete modelling of population growth, the finite difference method [85] is
often employed in order to approximate derivative values over a discretised spatial domain. As
such, the finite difference method requires a discretisation procedure for the spatio-temporal
domain [v, w]× [0, T ] where T > 0 is a constant, on a set of equidistant grid points

xi = i∆x, i = 0, . . . ,
(w − v)

∆x

and

tm = m∆t, m = 0, . . . ,
T

∆t

for the selected spatial and temporal step lengths ∆x and ∆t, respectively. In the discretised
spatial and temporal domains, the finite difference method may be employed to discretise the
second-order derivative of the reaction-diffusion equation in (2.14) at the grid point (xi, tm) [82]
as

N(xi, tm+1)−N(xi, tm)

∆t
= D

N(xi+1, tm)− 2N(xi, tm) +N(xi−1, tm)

∆x2
. (2.15)

As such, solving for N(xi, tm+1) yields

N(xi, tm+1) = N(xi, tm) + Z (N(xi+1, tm)− 2N(xi, tm) +N(xi−1, tm)) , (2.16)

where Z is a dimensionless parameter representing the species diffusion rate D from equation
(2.15), as well as the step lengths ∆x and ∆t, into a single parameter. As such, the properties
of the finite difference method depends greatly on the parameter Z.

2.5 Machine learning

ML models seek to extract knowledge from data [56], allowing for the prediction of new data. ML
paradigms are burgeoning in the field of conservation planning and, in particular, the modelling
and prediction of static species distributions [19]. This can be attributed to the fact that ML
models exhibit high accuracy and are not as constrained as many traditional, parametric species
distribution modelling techniques, employing mathematical functions to predict distributions [6].

The use of prediction models is twofold: First, these models may be employed in imputing
or interpolating areas for which species data has not yet been recorded, or does not exist.
This is achieved by evaluating regions for which species data exists, and predicting theoretical
species distributions in areas exhibiting similar environmental conditions over the same time
period. Second, these models may be utilised by predictive models in order to forecast species
distributions for future time periods by employing past and current distribution data [55]. Both
aforementioned applications are achieved by extracting the species-environment relationships of
variables in historical species and environmental data [38].

The mechanism of extracting knowledge, and as a result predicting outputs [6] is illustrated
graphically in Figure 2.9. The process begins by obtaining a relevant pre-existing data set, or
building one’s own data set, using the tools reviewed in §2.3.1. The data is then cleaned and
pre-processed so as to obtain a transformed data set from the original data set. Thereafter, the
ML algorithm accepts the transformed data as input. Feature relationships and patterns are
extracted during the training stage of the ML implementation and predictions are made based
on the extracted patterns. Finally, once the output of the ML model is interpreted and validated
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Figure 2.9: Steps involved in the ML process, adapted from [6].

by a human expert, it may be employed as a predictive tool for obtaining knowledge and insight
for stakeholders, thereby aiding the decision-making process.

It is important to note that no single ML algorithm is universally better than another in the
prediction of species distribution [55], and the success (or failure) of a model is highly dependent
on the particular application of the study. As a result, the behaviour of the ML algorithm selected
should be thoroughly understood prior to implementation. Moreover, the powerful paradigm of
ML is not intended to replace humans as the domain expert, but rather to act as a tool to aid in
the prediction, explanation, and interpretation of species distribution and other environmental
phenomena [6].

There are four dominant paradigms of ML, namely supervised, unsupervised, semi-supervised,
and reinforcement learning. Supervised learning works on the principle of extracting the under-
lying relationships between descriptive features and a target variable in order to make accurate
predictions on unseen data [12]. The algorithm compares the output of the model with the
actual or expected results in order to improve the model, thereby reducing the prediction er-
ror [78]. Conversely, data sets employed in unsupervised learning instances contain unlabelled
instances and these models seek to extract the hidden structure of the underlying patterns in
the data [1]. Data sets employed in semi-supervised learning instances contain both labelled
and unlabelled instances, however, the data set typically consists of more unlabelled instances.
The aim of this learning method is the same as supervised learning and the inclusion of the few
labelled instances is to assist the unlabelled instances in training. Finally, reinforcement learning
assesses the actions of agents in an environment and offers different rewards for different actions.
The method aims to learn a policy, that is, a function that accepts a feature vector as input and
outputs the optimal action for that instance. An action is termed optimal if it maximises the
expected reward.

2.5.1 The supervised learning paradigm

Suppose an input variable x and a corresponding output variable y exists, then a supervised
ML algorithm will attempt to learn a functional mapping, f(x), from input x to output y. Two
classes of supervised ML algorithms exist, namely regression and classification. Regression algo-
rithms map the input variable x to a continuous, real-valued output variable y. An example of a
regression problem is predicting the price of a house, given input variables, such as the ‘number
of rooms,’ ‘size,’ and ‘neighbourhood safety.’ Classification algorithms, however, map the input
variable x to a categorical output variable y. An example of a classification problem is predicting
whether or not a client will default on their loan, since the client can be classified as belonging
to one of the two classes: Default or Non-default. Supervised learning focused on classifying the
occurrence of a species is typically employed in species distribution modelling [27]. The algo-
rithm is trained using environmental data of a study region as input (e.g. Mean Temperature,
Annual precipitation, and Distance to water), together with a binary encoded target variable
indicating whether a species is Present (1) or Absent (0), as exemplified in Table 2.3.
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Table 2.3: Binary encoding of the target variable for classification in species distribution modelling.

ID Mean temp Annual prec. Dist to water · · · Presence

1 23 49 3 300 · · · 1
2 24 51 3 000 · · · 1
3 19 46 800 · · · 0
4 21 48 2 100 · · · 1
...

...
...

...
. . .

...

2.5.2 Preprocessing

The representation and quality of the data presented to an ML algorithm is an indispensable
consideration that needs to be made as it directly affects the performance and accuracy of the
model’s predictions [43]. If the data presented to the ML algorithm exhibits quality issues, then
the model is likely to struggle with knowledge discovery during the training phase of the ML
process. As such, the step of preprocessing data seeks to clean and manipulate the data so that
it is in the best state for the selected ML algorithm. Data quality issues may arise either due
to invalid, or erroneously recorded instances within the data, or they may arise due to valid
data which is incorrectly formatted that will cause an ML algorithm to struggle [41]. Some of
the common data quality issues include missing values of features, imbalanced target classes,
varying scales within the data, outliers, and irregular cardinality. For the sake of brevity, only
the data quality issues relevant to the data for this project and the treatment thereof will be
considered further.

Missing values

Incomplete data sets are inevitable in real world problems, and result from information being
unavailable for an instance of one or more features. Due to the unique nature of each data set,
the treatment of missing values should be carefully considered by evaluating the causes of missing
information, which may be summarised as follows: (1) An entry is missing due to human error in
capturing the data, (2) the value of a specific feature is missing because there is no information
for that instance, or (3) for a specific instance, the value of a feature is not of concern or relevancy
to the expert and is conveniently marked as missing [43]. Kelleher [41] proposes that features
containing missing values in excess of 60% should be omitted from the data. Another approach
of handling instances containing missing values is to select a suitable imputation method capable
of replacing missing values with appropriate estimated values. Common imputation techniques
include substituting the missing values with the mean or median of the available instances for
continuous features, and the modal class for categorical features. Suitable feature values may
also be calculated by considering the values associated with other features describing the entries
in the data set.

Imbalanced data

An imbalanced data set consists of significantly more instances of one target class, than any
other, leading to misrepresentation of the classes for the ML model to learn from [41]. As a
result, the imbalance will cause some ML algorithms to be biased towards one of the classes.
Contributing to this bias is a defect known as overfitting, which occurs when the algorithm
induces a model that is too complex, thereby fitting the data too closely due to the presence of
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under-represented classes exhibiting noisy patterns. Consequently, the model performs well on
the training data, but poorly on unseen data [43].

While several techniques exist as solutions for treating imbalanced data, the most common
approaches include the methods of oversampling, undersampling, and synthetic minority over-
sampling technique (SMOTE). Oversampling entails resampling or duplicating instances from
the under-represented class in order to increase its significance in the data set. Conversely, un-
dersampling involves randomly removing instances from the over-represented class in order to
reduce its dominance in the data set. However, since data instances are removed in this tech-
nique, it may result in the model underfitting, that is, the algorithm induces a model that is too
simple to learn the complex mappings between the descriptive and target variable [41]. Finally,
SMOTE balances the data by synthesising new instances of the under-represented class, in addi-
tion to the existing instances. Suppose a set A contains all instances of the minority class, then
for each instance xi ∈ A, k similar data entries are evaluated and stored in the subset set Sk. A
new instance, xnew is then synthesised from the subset Sk according to: xnew = xi +λ(xk−xi),
where xk is a randomly sampled instance from the subset, and λ is a random number in the
interval [0, 1] [12].

2.5.3 Supervised ML algorithms

Many ML algorithms employed in the the field of ecological modelling fall within the paradigm
of supervised ML. This is largely due to the fact that most data sets comprising ecological data
contain some variable representing the presence or population size of a biological species and
is often employed as a target variable alongside numerous environmental descriptive features.
With this in mind, the remainder of this section provides an in-depth review of four supervised
ML algorithms which are often employed within the field of ecological modelling, namely the
decision tree, random forest, k–nearest neighbours (KNN), and logistic regression algorithms.

Decision trees algorithm

Tree-inspired models have been fondly utilised by researchers in many fields as a means of
expressing knowledge and guiding decision making. In the 1980s, decision tree algorithms,
commonly referred to as Classification and Regression Trees (CART), became popularised for
the first time in the field of ML [95]. CART models are widely employed in solving both
classification and regression problems due to their ease of interpretability, robustness to noisy
data patterns, and relatively low computational cost [57]. Decision trees follow a hierarchical
structure, consisting of internal nodes, branches, and leaves or terminal nodes. Following the
logic of ‘if-else-then’ conditions, the tree starts at the top-most internal node, known as the
root node, and branches out to one or more internal node(s). Each internal node represents a
condition associated with evaluating a feature variable in the data set so as to split the data
into its different target classes. The branches stemming from the internal nodes represent the
different outcomes resulting from the internal node’s conditional test and follows a path to the
leaf node which represents the corresponding predicted classification label [5].

The workings of a decision tree algorithm is illustrated by considering a classification problem
using the Hitters data set5. The problem is concerned with predicting a baseball player’s salary,
given some information about the number of years he has played in the major leagues, as well as
the number of hits he made in the previous year [36]. Historical data is plotted in Figure 2.10(a),
where the two feature variables, Years and Hits, are denoted as x1 and x2, respectively.

5A data set containing records and salaries for baseball players, available in the ISLR library, adapted from [36].



2.5. Machine learning 29

R3

R2

R1

238

117.5

1

244.51 Years

H
it
s

(a) Two dimensional feature space parti-
tioned into three regions

Years<4.5

Hits<117.5Low salary

Medium
salary

High
salary

Yes No

NoYes

Root node
Branch

Leaf node

Internal 
node

(b) Classification tree induced from the data set

Figure 2.10: Relating the salary of baseball players’ to their years played and hits made. The parti-
tioning of the feature space is shown in (a), and the resulting classification tree is shown in (b), adapted
from [36].

The decision tree algorithm partitions all of the observations in the training data set into sev-
eral regions, using decision boundaries that are strictly parallel to the axes in a process known
as recursive binary splitting. The process entails starting at the root node (Years) and suc-
cessively splitting the feature space, indicated by two new branches on the tree, illustrated in
Figure 2.10(b). The partitioned regions formed on the plotted data as a result of splitting the
feature space can be denoted by Ri, where represents the number of leaf nodes on the tree. R1

represents the region in which instances are predicted to have the class label Low salary, R2

represents players predicted to earn a Medium salary, and R3 represents players predicted to
earn a High salary. In the case of classification trees, the algorithm predicts that a test instance
belongs to the modal class of the region within which the test instance is partitioned. For re-
gression trees, a test instance is predicted as being the mean value of all the training instances
belonging to the same region as the test instance [36]. The overall structure of the example in
Figure 2.10 can thus be understood as: R1 = {Low salary | Years < 4.5}, R2 = {Medium salary
| Years ≥ 4.5, Hits ≤ 117.5}, and R3 = {High salary | Years ≥ 4.5, Hits ≥ 117.5}.

A fundamental consideration for the analyst lies in deciding how the nodes of a decision tree
are split. This is achieved by evaluating the entropy, a measure of homogeneity, uncertainty
or randomness, with respect to each stratified region of the data [76]. If all instances within a
region of the data set share the same class label, the entropy of the data in that region is 0,
indicating no randomness in the data of that specific region. Conversely, if an equal frequency of
different class labels exist within a region of the data set, the entropy of the data in that region
is 1, indicating the highest degree of randomness possible in the data of that specific region [36].
The concept of entropy can be visually understood by Figure 2.11. Each container exhibits a
different degree of entropy due to the composition of two classes denoted by circles and squares
in each container being different. The first container contains a low entropy because only one
class exists in the container, resulting in no uncertainty of what the contents of the container
is. The last container exhibits the highest possible entropy, which is equal to 1 due to the equal
frequency of the present classes in the container [58].
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Low Medium High

Figure 2.11: Visual interpretation of entropy, adapted from [58].

The entropy of a data set D may be expressed as

H(D) = −
I∑
i=1

p(yi) log2 p(yi), (2.17)

where I denotes the number of classes present in D, and p(yi) denotes the proportion of instances
withinD that class i occurs. The algorithm will seek to split on the variable whose subsets exhibit
the lowest possible entropy. This is because subsets exhibiting lower entropy values contribute
more information about the variable, making them more desirable for the algorithm. As such,
a statistical theory known as information gain is evaluated as the minimisation of the average
entropy in 2.17 across all partitioned regions R [42]. Information gain can be expressed as

Gain(D,R) = H(D)−
∑
o∈R

|Do|
|D|

H(Do), (2.18)

where Do denotes the subset of instances corresponding to outcome o, after the split has been
induced on a variable. Finally, after comparing all possible splits at a particular node, the
split resulting in a maximised information gain is selected in order to grow the decision tree
further [93].

Random forest

Ensemble learning methods have gained much interest due to their considerable improvement
in classification accuracy [11]. This comes as result of combining a host of separately developed
prediction models and aggregating their resulting predictions. Two celebrated ensemble learning
methods relevant to tree-based models are boosting and bagging. Boosting methods assign
additional weight to successive trees exhibiting a poor prediction accuracy. By combining the
poor predictions made by the trees, a weighted vote or average is calculated across all of the
trees and is used for prediction [48]. Bagging methods also entail combining trees, but ensures
that successive trees are independent of earlier trees. Furthermore, the trees are constructed
through a process of randomly sampling from the training data set with replacement, commonly
known as bootstrap sampling. Once all of the trees are developed, a standard majority vote is
used as a prediction [93].

Breiman [11] introduced the random forest algorithm to improve upon the method of bagging.
The algorithm grows an ensemble of tree-based prediction models in such a way that each tree
in the forest is subject to independent random sampling and is identically sized by sampling
the data set with replacement. In the aforementioned stand-alone decision trees, nodes of the
tree were greedily split, meaning that the split yielding the best information gain across all
variables was selected. This technique, however, often results in a poor prediction accuracy of
the model due to the high predictive variance that exists when the model is tested using other
data sets, making it a potentially unreliable model [93]. Random forests, on the other hand,
splits each node using the best split among a subset of variables which are randomly selected
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at each node [48]. In doing so, the ensemble of trees improves upon the standard tree model by
decorrelating it, thereby reducing the average variance of the results yielded by the trees and
producing a more reliable predictive model [36].

k–Nearest neighbours

The KNN algorithm is a similarity-based learning technique which is considered to be simple
and effective for classifying test instances [28]. The aim of the algorithm is to correctly predict
the class of a test instance q by evaluating the distance between q and its k-nearest neighbours,
where k is a specified non-zero integer value [14]. In the case of regression problems, the algo-
rithm will classify the test instance with the average values of all training instances within the
neighbourhood specified by k. However, for classification problems, the algorithm will classify
the test instance with the modal class of the k neighbours [30].

Let a represent a new test instance and b represent a neighbouring training instance in a data
set defined by n features. The simplest similarity measure between two data instances a and b
is to evaluate the distances between the instances within the n-dimensional feature space. For
continuous values, the Euclidean distance is perhaps the most popular measure and is given by

d(a, b) =

√√√√ n∑
i=1

(ai − bi)2. (2.19)

For discrete values, however, the Hamming distance is commonly employed, which is expressed
mathematically as

dHamming (a, b) =

{
0, if a = b

1, otherwise.
(2.20)

The workings of the KNN algorithm can be easily understood through a simple example, il-
lustrated in Figure 2.12. The algorithm is required to estimate the class of a new observation
denoted by the star, given historical data containing two distinct classes denoted by circles
(Class 1) and triangles (Class 2). As such, for a set of k = 4 nearest neighbours, the dominant
class in the set is Class 1, and the class of the new instance is, therefore, classified as being
Class 1. In the case where a set of k = 15 nearest neighbours are employed, the dominant class
in the set is Class 2, and the class of the new instance is now classified as being Class 2.

15

Class 1
Class 2

4

Figure 2.12: Illustration of the KNN algorithm.

One of the criticisms regarding the KNN algorithm is the selection of an optimal value for k, as
this decision strongly affects the quality of the model’s predictions. In particular, if the value
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of k is selected as being too low, the algorithm becomes sensitive to noisy patterns in the data,
and consequently susceptible to overfitting. Conversely, if the value of k is selected as being too
high, the algorithm becomes susceptible to underfitting [41]. A simple technique to overcome
the adverse effects of inductive biases, such as overfitting and underfitting, is to select an optimal
value for k by iteratively running the algorithm, employing a different value for k each time.
Upon inspecting the results of each iteration, the value for k should be selected based on the
model exhibiting the best performance [28].

Logistic regression

Logistic regression is a classical learning approach deeply rooted in statistics and predicts the
likelihood of a categorical variable belonging to one of two classes [36]. As such, this method
is often employed in classification problems by passing the output of a basic linear regression
model through the sigmoid function given by

σ(z) =
1

1 + e−z
, (2.21)

where σ(z) is the binary response prediction in the interval {0, 1}, and z is a scalar score which
is representative of the characteristic traits present within the data set and can be expressed
mathematically as

z = w0 +

n∑
i=1

wixi. (2.22)

Furthermore, w1, w2, ..., wn denotes the numerical weights assigned to each of n descriptive fea-
tures of the data set x1, x2, ..., xn, and w0 denotes a bias term utilised by the algorithm. The
sigmoid function employs a threshold on the input instance, thereby producing the aforemen-
tioned binary response. Consider a problem in which the status of a generator is required to
be classified as being either faulty (0) or good (1), given a set of descriptive features, x [41]. If
the sigmoid function in (2.21) evaluates to σ(z) < 0.5, the binary response will be predicted as
0. Conversely, if the sigmoid function evaluates to σ(z) ≥ 0.5, then the binary response will be
predicted as 1.

Moreover, an advantage of the output of a logistic regression model may be interpreted as the
probability associated with each target level occurring when the model is presented with a test
instance t to classify. Mathematically, this can be expressed as,

P (t = faulty | x) = σ(z) (2.23)

and

P (t = good | x) = 1− σ(z). (2.24)

Logistic regression models can be visualised by their decision surfaces which maps all of the
possible values that the decision variables may assume, and their response according to (2.21).
An example of a decision surface containing two arbitrary descriptive features, which have been
normalised in the range [−1, 1], and a binary target variable is displayed in Figure 2.13. The
decision boundary of the model is determined by the weights w1, w2, ..., wn, described earlier.

This discussion leads on to a fundamental component in the training of logistic regression models
which seeks to determine the optimal decision boundary of the model, facilitated by an algorithm
commonly known as gradient descent. The algorithm seeks to minimise the sum of squared errors
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Figure 2.13: Logistic decision surface, adapted from [41].

of the training set by adjusting the weights of each descriptive variable in the model, wi, also
referred to as the model parameters. The update rule is given by

wi ← wi + η ×
m∑
j=1

(yj − σ(z))× σ(z)× (1− σ(z))× xi,j , (2.25)

where η is a specified learning rate, m is the number of instances in the data set, and yj is the
binary target value of the data set instance j.

Thus far, regression models containing only linear relationships between descriptive features
and a binary target feature has been considered. In some cases, however, the data exhibits
non-linear relationships that are required to be captured by the model. As such, the approach
to capture the underlying non-linear relationships in the data is to transform the input data,
rather than the entire model itself by implementing a set of basis functions in the model. The
sigmoid function described in (2.21) is therefore adjusted to

σ(z) =
n∑
i=0

(wi × φi(d)), (2.26)

where φ0 to φn is a set of n basis functions that transforms each feature to the sigmoid function.
The process of deploying basis functions can be visualised according to Figure 2.14 in which the
feature space of a two-dimensional data set is transformed to a higher dimensional space where
linear relationships can be captured.

A common application of basis functions is to capture the underlying polynomial behaviour
that exists between descriptive features in the training set. Consider a simple example of a
model having a single numeric descriptive feature, Rain, and seeks to predict the value of the
target variable Grass growth. The relationship between the two features may be captured by
the well-known second order polynomial of the form a = bx2 + cx, according to the following
model

Grass growth = w[0]× φ0(Rain) + w[1]× φ1(Rain) + w[3]× φ3(Rain) (2.27)
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Figure 2.14: Visualisation of employing basis functions.

where the basis functions, φ0 to φ3 can be given as

φ0(Rain) = 1

φ1(Rain) = Rain

φ2(Rain) = Rain2.

Finally, it is important to note that it is acceptable and common for there to be more basis
functions than there are descriptive features, as illustrated in the aforementioned model [41].

2.5.4 Validation of the ML models

One of the main considerations in the construction of ML models involves selecting the best
model for a specific application [36]. As such, data sets are typically divided into three subsets,
namely training, validation, and test sets and are strategically employed to address the afore-
mentioned issue. The training set alluded to throughout this section is typically the largest of
the three subsets and is employed to build the model. The remaining two subsets are approxi-
mately equally sized, smaller than the training set, and do not contain instances of the training
set. The model built from the aforementioned training set that performs most optimally on the
validation set is selected as the model for the application. Thus, the validation set facilitates
the selection of the best algorithm, as well as the best parameters for that algorithm with which
the model is built [12]. The reason for all three sets is to ensure that the model does not only
perform well on seen data as this would render a trivial model that has memorised the instances
in the training set, and thereafter uses its memory to make ‘predictions’ with no mistakes.

This discussion leads to the notion of inductive bias, as well as the briefly described concepts
of underfitting and overfitting in §2.5.2, which can be be avoided by applying model validation
techniques [41]. A model that predicts poorly on the training set is said to have a high bias or
underfits the data as a result of the model being too simple to capture the complex relationships
within the data. An underfitting model exhibits a low variance, that is, the model is insensitive
to large fluctuations in the training set and thus resampling the training set would result in a
very similar model. Conversely, a model that predicts very well on the training set is said to
have a low bias or overfits the data as a result of the model being too complex, thereby learning
the noisy patterns present in the data. An overfitting model exhibits a high variance, that is, the
model is sensitive to small fluctuations in the training set and thus resampling the training set
would result in a very different model [12]. An illustration of an underfit, good fit, and overfit
model is displayed in Figure 2.15.
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(a) Underfitting (b) Good fit (c) Overfitting

Figure 2.15: The three fittings of predictive models to data, adapted from [12].

Holdout validation

Holdout validation is one of the simplest methods for training and validating predictive models.
The data set is split into two sets by randomly sampling instances to form the training set and
the validation set. A rule of thumb for the proportion of the split is 70% for training, and 30% for
testing [12], before further splitting the training data subset into a smaller training data subset
and validation data subset. The training set is used to train the model, while the remaining set
is exclusively used to test the model to evaluate its performance on unseen data, as illustrated
in Figure 2.16. Holdout validation is most useful when dealing with large data sets as it ensures
that the size of the training and test sets are large enough to accurately train and evaluate the
model [41].

Training set Validation set

ML 
algorithm

Prediction 
model

Performance
measures

Test set

Figure 2.16: Building and evaluating a predictive model using hold-out validation with the data set
split into training and test sets, adapted from [41].

k-fold cross-validation

Cross-validation is the process of repeatedly using the same data, split differently for each iter-
ation during validation [41]. In the k-fold cross-validation method, the data set is partitioned
into k equally-sized subsets or folds. During each of the k iterations, one of the subsets are kept
out and used as the validation set, whilst the remaining k− 1 subsets are combined to form the
training set. As such, this method may be understood as simply repeating the aforementioned
holdout validation method k times. After k experiments are performed, the performance mea-
sures across all folds are aggregated to serve as a single performance measure for the model.
The value of k may be set to any value, however, 10-fold cross-validation is the most widely
used variant [41]. As the value for k increases, the proportion of training instances increases,
resulting in more robust estimators, however, the size of the validation set decreases [1]. The
workings of this validation method may be explained via a simple example. Consider a data set
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containing 1 000 data observations. If the performance of the model is to be evaluated using
5-fold cross-validation, then each fold will contain 200 data observations. The splitting of the
data set into the training and validation sets for each fold is illustrated graphically in Figure
2.17.

Dataset

Training set Test set

Fold 1

Fold 4

Fold 5

Fold 3

Fold 2

Figure 2.17: 5-fold cross validation displaying a data set split into training sets (white cells) and
validation sets (grey cells).

Hyperparameter tuning

Hyperparameters are the parameters of the model which are defined by the user prior to training
and validation of the model such, as the value of k for the KNN algorithm, or η for the gradient
descent algorithm. The purpose of this step is to obtain the optimal combination of values
for the hyperparameters, such that a predefined loss function is minimised, thereby yielding a
better performing model. The Gridsearch tuning technique is an approach that is widely utilised
and involves testing every possible combination of hyperparameters, which are required to be
tuned on a model, and evaluating the performance of the models until an optimal combination
of parameters have been found that maximises the model performance. Thereafter, the best
performing model is selected to be assessed using the test data set [12]. The total number of
combinations assessed during a Gridsearch is the combinatoric product of each parameter of the
model. As such, a model comprising 2 combinations for each of three parameters and employing
10-fold cross-validation would assess a total of 2 × 3 × 10 = 60 combinations before reporting
the best performing model.

2.5.5 Feature selection

The addition of more descriptive features to a data set counter-intuitively does not lead to
more accurate models. At some point in the process of adding more descriptive features to
the data set, the predictive power of the model begins to decrease. This comes as a result of
many descriptive features being either redundant or irrelevant features and adversely contributes
to the model predicting a target value [41]. Four types of descriptive features are important
to define prior to considering the process of feature selection: (1) Predictive features provide
beneficial information to the model in order to accurately predict the value of a target feature,
(2) interacting features alone are uninformative about the value of the target feature, however,
when used in combination with one or more features, they can be informative, (3) redundant
features are strongly correlated with other descriptive features and therefore do not provide any
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new or additional information to the model that may assist in accurately predicting the target
variable, and finally (4) irrelevant features do not provide any information to the model that
may assist in accurately predicting the target variable.

As a result, feature selection is the process of identifying and removing as many redundant
and irrelevant features from the data set so that the data set mainly contains predictive and
interacting features [41]. The general structure of the feature selection process is displayed in
Figure 2.18. Feature selection methods typically comprise of two components: (1) A selection
or generation algorithm responsible for determining the optimal subset of features, and (2) an
algorithm that evaluates the subset of features from (1) and returns some measure of the subset
quality. A stopping criterion is declared to ensure that the feature selection process is not
computationally exhausted and can either be when the addition or removal of a feature to a
subset does not produce a higher quality subset, or if an optimal subset condition is met that
was predefined according to a measure of subset quality [43].

Generation Evaluation Validation

Stopping
criterion

No Yes

Original 
feature set

Subset 
of features

Subset 
quality

Figure 2.18: General structure of the feature selection process.

The rank and prune method is perhaps the simplest and most widely used approach to conduct
feature selection. In this method, features are evaluated according to some measure of predic-
tiveness and ranked accordingly. Thereafter, features that fall outside of a threshold predictive
score are pruned from the data set. The measures of predictiveness, commonly known as filters
that filter out uninformative features, are heuristics that evaluate the extent to which a feature
is predictive. Moreover, these heuristics are independent of the selected model and makes use
of the intrinsic characteristics within the data. An example of a filter is information gain, as
discussed in §2.5.3. A disadvantage of the rank and prune approach is that interacting features
may be excluded, whilst redundant features may be included in the final data set due to each
feature being evaluated independently from each other [41].

2.5.6 Model evaluation

After training and validating an ML model, the test set is utilised to evaluate how well the
model performs on unseen data. A model is said to generalise well if it accurately predicts the
class labels of the data in the test set. Many formal metrics have been developed to quantify the
performance of a classification model such as the area under the ROC 6 curve (AUC). The ROC
represents a summary of the classification performance by combining the proportion of instances
correctly predicted from the positive class (true-positive labels) and the proportion of instances
incorrectly predicted from the negative class (false-negative) into a single rate curve. Moreover,
the AUC score is the preferred performance metric for ML models comprising imbalanced data
sets [41]. Since this metric may only be employed to assess classifiers that make predictions

6Receiver operating characteristic curve (ROC) [12].
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with an associated degree of confidence, the logistic regression, decision tree, and random forest
algorithms discussed in §2.5.3 are suited to adopting this performance measure [12]

2.6 Chapter summary

This chapter reviewed the relevant literature for the concepts required to understand the topic of
this project. The chapter opened in §2.1 and discussed the introduction and dynamics relating
to Prosopis invasions, as well as the state of Prosopis invasions in South Africa. In §2.2, the
conventional control strategies, namely mechanical, chemical, and biological were briefly defined
and evaluated for Prosopis in South Africa. The GIS and CA components of this project were
explored and explained in §2.3. Thereafter, §2.4 considered the mathematical modelling of
population growth over time, as well as over space and time. Finally, §2.5 extensively reviewed
the necessary concepts and models surrounding the paradigms of ML.
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This chapter is devoted to describing and implementing each of the three modelling components
of this project. The chapter is opened in §3.1.1 with a focus on the spatial analysis component
in which the importance of visualising and exploring spatial data, discretising the study area, as
well as the application of GIS software in the analysis is explored. The implementation of the
ML component is detailed in §3.1.2, explaining each phase of the model construction as well as
the expectations regarding the output of the model. An in-depth description of the CA model
is provided in §3.1.3, defining the hexagonal neighbourhood structure, the cell states of the
model, as well as the transition rule required to update the state of the cells in the study area.
Finally, the chapter concludes in §3.2 with a summary of the work covered in the aforementioned
sections.

3.1 Model description and implementation

The symbols displayed in Figure 3.1 are employed to graphically illustrate the workflow of the
modelling components implemented in this project in the form of a data flow diagram (DFD).
A DFD represents the inputs, processes, and outputs of a system, and the symbols in the figure
represent a process, a data store, and a data flow. The model developed for this project is

#

Process
Data flowData storeD#

Figure 3.1: Symbols employed in DFDs.

illustrated by a high-level DFD in Figure 3.2 comprises three primary modelling components:
(1) A spatial analysis component facilitating the construction of the spatial data set, (2) an ML

39
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component responsible for extracting species-environment relationships in order to predict the
suitable habitats of the invasive species, and (3) a CA component which facilitates the spatio-
temporal modelling of the species population growth in a region. As per the high-level DFD in
Figure 3.2, the spatial analysis component is facilitated by a GIS software in order to identify
the underlying spatial patterns as well as build a data set containing the relevant environmental
variables. Thereafter, the data set is employed by the ML component in order to build an
ML model capable of predicting the likelihood of species presence in a particular area, thereby
indicating the habitat suitability and preferences of the species. Finally, the CA component
employs the output data from the ML component in order to model the intrinsic growth and
dispersal of the species over space and time.
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Figure 3.2: A high-level DFD of the three modelling components.

3.1.1 The spatial analysis component

The purpose of the spatial analysis component, described by Modules 1.1 to 1.4 in Figure 3.2, is
to visualise and explore spatial data and to perform data manipulations in order to gain a better
understanding of the underlying spatial patterns that may exist between the environment and a
species population, before capturing all of the spatial data and relationships in a spatial data set
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to be utilised throughout the remaining components of the model. Fundamental to the analysis
is the discretisation of the study area into a spatial grid comprising smaller regions, as described
in §2.3.2. The spatial domain of the model is discretised into a hexagonal lattice structure, as
exemplified in Figure 3.3, with each hexagon cell specified to a side-to-opposite-side diameter of
1 km. The left-hand side of Figure 3.3 illustrates the initial display resulting from adding the
hexagonal lattice layer to the modelling canvas. Thereafter, the hexagons intersecting with the
extent of the study region is extracted to form the discretised study region, as illustrated on the
right-hand side of Figure 3.3.

Figure 3.3: A demonstration of the process of spatially discretising an area.

The hexagonal lattice is employed as opposed to the square lattice for two main reasons. Firstly,
hexagons are the roundest polygons that are able to tessellate uniformly over a grid. As such,
when considering a large study area, an hexagonal grid will minimise the distortion which results
from the Earth’s curvature. Secondly, the centre-to-centre distance between a focal cell and any
of its neighbours is the same, making it more convenient to obtain the neighbours of each cell.
As a result, hexagonal grids are better suited for applications consisting of movement paths such
as species dispersal [8]. The discretising process is achieved in the GIS software by employing
the Create grid tool and selecting an hexagonal grid to be fitted to the extent of a study region
according to the specified hexagon dimensions, as illustrated on the left-hand side of Figure 3.3.
Thereafter, the Extract by location tool is used to refine the grid structure, so that it extracts
only the hexagons that intersect with the study area and discards the hexagons that do not
intersect. The final result of the discretised area is visualised in Figure 3.3. The overarching
purpose of discretising the study area is to establish a convenient reference system that will be
used in the subsequent modelling components.

Moreover, the spatial analysis component is utilised in order to populate each hexagon in the
spatial grid with topographical and bioclimatic environmental descriptive features, and a target
variable representing presence or absence of a species. The GIS software combines various vector
and raster layers representing the geographical attributes of the Earth’s surface into each of the
hexagons comprising the spatial region in order to create a spatial data set that serves as input
for the ML component. Each observation in the spatial data set represents a unique cell in the
discretisation of the study region. The concept of data layering reviewed, in §2.3.1, is utilised
by the GIS software to combine the environmental feature values with the hexagonal grid by
employing the Join attributes by location tool. Since each environmental feature is represented
by a layer, the process of constructing a data set containing n variables therefore requires n− 1
iterations of applying the aforementioned tool.
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The target variable value is derived from a species density data layer joined with the spatial
data set. In particular, a cell containing a species density value greater than 0 indicates that the
species is present and that the cell’s target variable should be assigned a value of 1. Conversely,
a cell containing no species density indicates that the species is absent and that the cell’s target
variable should be assigned a value of 0. The process of mapping species density values to a
binary target variable may be visualised according to Figure 3.4. The left-hand side of Figure 3.4
is annotated with species density values for all cells within the study region containing non-zero
species densities. The right-hand side of Figure 3.4 illustrates the study region after being
shaded according to the classes of the target variable. As such, the shaded cells indicate species
presence (1), whereas the unshaded cells indicate species absence (0).
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Figure 3.4: Visualisation of converting species density to presence or absence classes.

The result of joining all of the relevant layers is exemplified in Table 3.1, where F1, F2,...,Fn
represents the descriptive features of the data set and the binary target variable in the last
column represents species presence or absence within each hexagonal cell of the data set.

Table 3.1: An extract from the data set constructed in the GIS software.

ID Latitude Longitude
Features Species

presenceF1 F2 F3 ...

1 −30.209 21.065 89.982 21.192 6 ... 1
2 −30.210 21.067 89.675 22.994 5 ... 1
3 −30.213 21.067 88.699 23.083 5 ... 0
4 −30.214 21.072 79.598 20.781 3 ... 1
5 −30.216 21.072 82.710 19.562 2 ... 0
...

...
...

...
...

...
. . .

...

3.1.2 The ML component

The purpose of the ML component, described by Modules 2.1 to 2.5 in Figure 3.2, is to develop
an ML model capable of predicting the likelihood of species presence within a study region,
effectively extracting the habitat suitability of that area for the species under consideration.
The expected output from the model is a prediction score in the range [0, 1] that represents
the habitat suitability for each hexagonal cell in the study region, with 0 translating to a low
habitat suitability and 1 translating to a high habitat suitability. The ML component workflow
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is illustrated graphically in the ML component section of Figure 3.2, where the spatial data set
constructed in the spatial analysis component is provided as input. The data then undergoes
preprocessing which involves imputing the missing values, as well as balancing the classes of the
target variable using the appropriate techniques. Thereafter, the relevant ML models are trained
and evaluated in order to assess their predictive performance, after which the process of feature
selection is conducted in order to determine the n best features within the data set. Finally, the
best suited ML model for the particular problem that achieved the highest performance score
when evaluated is selected to predict the habitat suitability throughout the study region.

For the purpose of this project, Iterative imputation is employed to handle the missing val-
ues since it is a powerful method for imputation on large data sets. Furthermore, since the
method performs multiple predictions for each missing value, as opposed to single imputations,
it accounts for the standard error resulting from imputing a missing value, known as statistical
uncertainty [3]. Briefly, this method models each of the descriptive features as a function of
every other feature in the data set and thereafter imputes the missing values in ascending order,
allowing for prior imputed values to be included as part of the model for subsequent imputations.
Thereafter, the distribution of the target classes in the data set are investigated as they are often
heavily skewed. In order to address this, random undersampling and SMOTE are employed to
correct the imbalance.

The transformed data is then employed as input for the relevant ML algorithms which predicts
the species presence or absence in each of the cells within the discretised study region. As such,
the supervised ML paradigm is employed as it is highly effective at mapping a given set of
input variables to output labels in the context of classification problems. The ML component
of this project is concerned with a binary classification problem, which further necessitates the
utilisation of this paradigm of algorithms. This project compares the predictive performance of
the four supervised ML algorithms discussed at length in §2.5.3, namely decision trees, random
forests, logistic regression, and the KNN algorithm. The decision tree algorithm requires minimal
effort when preparing the data and trains relatively quickly, making it suitable for large data
sets. Despite being a very intuitive algorithm, decision trees are prone to overfitting. As such,
the random forest algorithm proves to be a more robust classifier as it mitigates the inefficiencies
of the decision tree algorithm by aggregating the result of multiple decision trees. The logistic
regression algorithm is simple to implement and its output may conveniently be interpreted as
the probability of each target class occurring. However, the model is prone to overfitting the
data when presented with a high dimensional data set. Finally, the KNN algorithm is a popular
choice for solving classification problems, however, in the context of this project it exhibits
many drawbacks. Most importantly is the fact that KNN is not suited to large data sets since
the computational cost of calculating the distance between a test instance and each instance
in the data set is exceptionally high and adversely affects the performance of the algorithm.
Furthermore, as was reviewed in §2.5.3, the user’s selection of k strongly affects the quality of
the model’s prediction and may lead to the model overfitting or underfitting the data [41].

The classification performance of the constructed ML models may be evaluated according to
their AUC scores, and if their performances are deemed unsatisfactory, hyperparameter tuning
may be ensued. This is achieved by employing the Gridsearch optimisation algorithm which
determines the optimal combination of hyperparameters for the ML model. A final step to the
validation of the ML models is to evaluate and rank the descriptive features according to the
importance of the models. The most informative features are then selected and employed as
input to re-compute the relevant ML algorithms. Finally, the validated ML model exhibiting the
best predictive performance should be selected for predicting the species habitat suitability of
each hexagonal cell in the study region. This is achieved by outputting the predicted probability
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that a classification algorithm produces in order to identify the class to which an observation
belongs, rather than the identified class. The ML probability scores of a species being present
in the hexagon, is interpreted as the habitat suitability, and may be visualised as illustrated in
Figure 3.5. The hexagonal cells on the grid are shaded according to the ML habitat suitability
scores, ranging between 0 and 1, where the dark red cells indicate a high habitat suitability
for the species, and the light yellow cells indicate a low habitat suitability for the species. The
overlaid green regions illustrate the actual species distributions that may be employed to validate
the output of the ML models.

1

0

Habitat suitability
prediction

Figure 3.5: A visualisation of ML habitat suitability scores, overlaid with the actual species distribution.

3.1.3 The CA component

The CA component is the final modelling component and seeks to construct a spatio-temporal
model by employing the spatial data set generated from the GIS software in the spatial analysis
component and the habitat suitability scores of the ML component. The purpose of the spatio-
temporal model facilitated by a CA is to simulate the future growth and dispersal of the species
over space and time. The processes responsible for the development of the CA are illustrated
by Modules 3.1 to 3.5 in Figure 3.2. As discussed in §3.1.1, a two-dimensional hexagonal grid
structure is employed for the purpose of this project since the centre-to-centre distance between
a focal cell and any of its neighbours are the same. The hexagonal neighbourhood structure and
relevant axis system around a shaded focal cell is illustrated graphically in Figure 3.6, similar
to how it was reviewed in §2.3.

The structure of the hexagonal neighbourhood allows a focal cell C(i,j,k) to interact directly with
all six of its surrounding cells. As such, the set of neighbours for the focal cell C(i,j,k) is defined
as

Ω(i,j,k) = {C(i,j+1,k−1), C(i+1,j,k−1), C(i+1,j−1,k), C(i,j−1,k+1), C(i−1,j,k+1), C(i−1,j+1,k)}. (3.1)

In the case of boundary cells observed on the perimeter of the study region, the set of neighbours
are the cells that are adjacent to the boundary cell. As such, the neighbours of the boundary
cell which are not contained within the study region are truncated accordingly, as illustrated
in Figure 3.7. The shaded cells in the figure represent the boundary cells, and the cells con-
taining a dot represents the cells within the neighbourhood of focal cell C(i,j,k). Boundary cells
are, therefore, identified as those cells that have strictly less than six neighbouring cells in its
neighbourhood set Ω.
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Figure 3.6: The hexagonal neighbourhood structure employed by the CA model.

Figure 3.7: An illustration of the set of neighbours for a focal cell on the perimeter of the study area.

Cell states

The state St(i,j,k) of each cell C(i,j,k) at time t is equivalent to the density of the species population
in that cell and its value can exhibit one of the three following states:

Vacant. A focal cell C(i,j,k) exhibiting a vacant state St(i,j,k) = 0 indicates that the cell does not

contain any presence of the species (i.e. species density = 0).

Inhabited. A focal cell C(i,j,k) exhibiting an inhabited state 0 < St(i,j,k) < 1 indicates that the

cell contains a moderate degree of species presence (i.e. 0 < species density < 1).

Saturated. A focal cell C(i,j,k) exhibiting a saturated state St(i,j,k) = 1 indicates that the cell is

fully populated by the species (i.e. species density = 1). As such, the species population
size has reached its carrying capacity.

Restricted. A focal cell C(i,j,k) exhibiting a restricted state indicates that the majority of the
area of the cell intersects with features, such as buildings, roads, or bodies of water, which
do not permit the presence of the species, irrespective of the time at which the cell is
evaluated. As such, restricted cells remain in this state throughout the duration for which
the model runs.

Transition rule

During the execution of the CA model, the state of each cell contained in the spatial data
set comprising the hexagonal lattice structure is updated iteratively over m discrete time steps
t ∈ [0, 1, ...,m] according to a set of transition rules. In order to model the spatio-temporal
dynamics of the invasive species population, the transition rule is composed of the logistic
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growth population model which governs the species population growth, and the second rule which
governs the dispersal of the species population members. The set of transition rules governing the
state of cell C(i,j,k) during the discrete time step [t−1, t) are, therefore, functions of the population
growth occurring within a cell, as well as the diffusion of the population across its cell boundary to
and from suitable neighbouring cells during the specified interval. More succinctly, the updating
of cell states can be given by the transition rule St(i,j,k) = f

(
∆Sgrowth

(i,j,k) (t),∆Sdiff
(i,j,k)(t)

)
.

Growth: The reaction term of the model represented by logistic growth, as derived in §2.4.1, is
employed to define the transition rule for growth of the species within cell C(i,j,k) at time
t, at a rate of r which is proportional to the ML habitat suitability score M(i,j,k) of the
cell [64], and can be given as

Sgrowth
(i,j,k) (t) =

St−1
(i,j,k)

St−1
(i,j,k) +

(
1− St−1

(i,j,k)

)
e−rM(i,j,k)∆t

. (3.2)

Dispersal: To account for the diffusion of the species across its cell boundaries, into its hexag-
onal neighbouring cells, the change in species density in cell C(i,j,k) between time t−1 and
t may be modelled by Fickian diffusion [22, 15], and can be given by

∆Sdiff
(i,j,k)(t) =K

[
St−1

(i−1,j+1,k) − 2St−1
(i,j,k) + St−1

(i+1,j−1,k)

]
+

K
[
St−1

(i−1,j,k+1) − 2St−1
(i,j,k) + St−1

(i+1,j,k−1)

]
+

K
[
St−1

(i,j−1,k+1) − 2St−1
(i,j,k) + St−1

(i,j+1,k−1)

]
,

=K
∑

C(p,q,r)∈Ω(i,j,k)

[
St−1

(p,q,r) − S
t−1
(i,j,k)

]
,

(3.3)

where St−1
(i,j,k) and St−1

(p,q,r) are the cell states representing the respective population densities
of cell C(i,j,k) and its neighbouring cells denoted by the set Ω(i,j,k) at time t−1. Moreover,
K = D/` represents a constant which combines the species diffusion rate across its cell
boundary and the distance between the centroids of the hexagonal cells.

Since the habitat suitability for the species across the study area is non-uniform due
to varying environmental conditions, each hexagonal cell has its own degree of habitat
suitability. As such, the output of the ML model described in §3.1.2 is employed to satisfy
this requirement in order to realistically model the diffusion of the species among cells
with suitable habitats. In particular, the representation of the change in species density
during a time interval described by (3.3) can be adjusted by incorporating the habitat
suitability score predicted by the ML component and denoted as M(i,j,k), as a multiplier
for the diffusion from a focal cell C(i,j,k) to its neighbouring cells C(p,q,r) ∈ Ω(i,j,k) and vice
versa [15], yielding the diffusion component of the transition rule as

∆Sdiff
(i,j,k)(t) = K

∑
C(p,q,r)∈Ω(i,j,k)

[
M(i,j,k) ·max

(
St−1

(p,q,r) − S
t−1
(i,j,k), 0

)
−

M(p,q,r) ·max
(
St−1

(i,j,k) − S
t−1
(p,q,r), 0

)]
.

(3.4)

From (3.4), it is important to note that the diffusion of the species always occurs in
the direction from a cell having a high density to a cell having a lower density in its
neighbourhood, and the proportion of the population diffusing determined by the ML
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habitat suitability score for the cell accepting the species. The combined transition rule
for updating the cell states at time t may be calculated as the sum of the growth and
dispersal terms, and can be expressed as

St(i,j,k) = Sgrowth
(i,j,k) (t) + ∆Sdiff

(i,j,k)(t). (3.5)

Eradication: The aforementioned growth and dispersal rules governed the transition between
the inhabited and saturated states, however, it is necessary to develop another transition
rule that accounts for the transition from the inhabited state to the vacant state. This
comes as a result of the consideration of various control methods being implemented in
hexagonal cells experiencing rapid growth within a time step. As such, the transition rule
which accounts for the control method may be employed to calculate the new state of cell
C(i,j,k) after control is implemented as

St(i,j,k) =

α
(
Sgrowth

(i,j,k) (t) + ∆Sdiff
(i,j,k)(t)

)
, if

St
(i,j,k)

−St−1
(i,j,k)

St−1
(i,j,k)

≥ β

St(i,j,k), otherwise.
(3.6)

The value β denotes a threshold value which needs to be exceeded in order for the control
method to be implemented, and α ∈ [0, 1] denotes the effectiveness of the control method.
Moreover, the control method is assumed to be implemented at the end of the time step
at which the threshold β was exceeded so as to ensure that the states of the eradicated
cells in time step t are correctly reflected as the initial states at time t+ 1.

Inactivity: In the case where a cell’s state remains unchanged between two time steps such as
when the cell is restricted or vacant and no population density diffuses into it during the
time period, the transition rule assigns the value of the cell’s state at time t − 1 to the
state of the corresponding cell at time t and can be expressed as St(i,j,k) = St−1

(i,j,k).

Once the CA model is executed, the updated distribution of species density is iteratively stored
at each time step for the duration of the simulation. This enables for the visualisation of
the spatio-temporal growth and dispersal of the species population after each time step and is
achieved by storing and displaying each iteration as its own layer in the GIS software. Figure 3.8
illustrates the typical output of a CA model between two time steps where the shading of each
cell indicates the relative population density of the species within the cell, making it convenient
to observe the regions experiencing a large increase in population density between time steps.

High population
density

Low population
density

Figure 3.8: A visualisation of the expected CA output between two time steps.
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3.2 Chapter summary

This chapter was devoted to reviewing the three modelling components required for the execution
of this project. The chapter opened in §3.1.1 with a discussion on the spatial analysis component
and the analysis completed using GIS software. Thereafter, the implementation of the ML
component was described in §3.1.2, facilitating and producing the species habitat suitability
scores. The chapter concluded with a detailed description of the CA component in §3.1.3,
including the derivations necessary to develop and execute the CA model, facilitating the spatio-
temporal modelling of the species population growth and dispersal, as well as the implementation
of controlling species populations experiencing rapid growth.
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Model verification and validation
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This chapter focuses on the verification and validation considerations for the ML and CA models
employed in predicting the habitat suitability and modelling the spread and control of the
invasive species Prosopis in this project. First, in §4.1, the verification of the ML models is
discussed in great detail and the performance results of the considered models are tabulated in
support thereof. Thereafter, the process of feature importance and feature selection is conducted
in order to identify the minimum number of features from those deemed most important to the
prediction of Prosopis habitat suitability. A subset of these features are then employed to
validate the feature selection process. This is achieved by comparing the range of values of
the subset of features of the hexagonal cells in which Prosopis was predicted present, with the
preferred ranges of values for those features found within the literature. Secondly, the validation
and calibration considerations of the spatio-temporal model are discussed in §4.2 by comparing
various approaches which have been adopted in studies similar to this project. The chapter
finally concludes in §4.3 with a brief summary of the aforementioned sections.

4.1 ML model verification and validation

The purpose of verifying and validating the predictive model is to firstly ensure that the model
has been correctly built, and secondly, to ensure that the correct model was built. As such, all of
the ML algorithms considered in §2.5.3, except for the KNN algorithm, were evaluated for their
for their ability to correctly predict the presence or absence of Prosopis in each hexagonal cell
within a spatial data set constructed from the entire Northern Cape, the study region selected for
this project. The KNN algorithm was omitted from the analysis as it proved to be significantly
more computationally expensive than the remaining three algorithms. This is due to the fact
that it relies heavily on computing distance measures when classifying a new test instance, which
is undesirable when confronted with a large data set — as is the case in this project.

The AUC scores achieved by each of the relevant ML models are tabulated in Table 4.1, and
verifies that the random forest model performed best when compared to the other algorithms
considered. The high performance score obtained by the random forest model further verifies
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Table 4.1: AUC scores for the relevant ML algorithms considered.

ML algorithm AUC score

Random forest 0.998
Decision tree 0.910
Logistic rgression 0.735
KNN (infeasible) N/A

that the algorithm correctly predicted the absence or presence of Prosopis in almost all of
the hexagonal cells within the data set. Furthermore, the various algorithms were evaluated
and compared for each of the class balancing techniques, namely random undersampling and
SMOTE. As a result, the model employed for the remainder of the ML modelling component
was the random forest algorithm, which was constructed using the SMOTE balanced data set.
In order to optimise the model, hyperparameter tuning was implemented for the random forest
algorithm in order to obtain the combination of hyperparameters that yield the best performance
of the algorithm. This was achieved using the Gridsearch algorithm and employing 3-fold cross-
validation. Upon re-evaluating the model with the parameters obtained from the hyperparameter
tuning process, the performance of the baseline model was not significantly improved, yielding
an AUC score of 0.999. The lack of improvement may be attributed to the fact that the baseline
model had already performed excellently, leaving minimal room for improvement of the model’s
performance. Moreover, since the decision tree model performed very well, it was expected that
an ensemble of trees would perform even better.

A feature importance analysis was conducted in order to identify the features that were deemed
most important by the random forest ML model in predicting the absence or presence of Prosopis
throughout the study region. The process of ranking the features of a data set was be achieved
by investigating the amount that each feature contributes to decreasing the average entropy, as
reviewed in §2.5.3, across all trees within the forest [47]. As such, the 30 environmental features
in the data set considered in this project were scored and ranked, as illustrated in Figure 4.1.
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Figure 4.1: The 30 environmental features in the data set ranked in order of decreasing importance.
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As a result of obtaining the features in terms of their importance, the process of feature selection
was executed in order to reduce the dimensionality of the data set, whilst maintaining a desirable
level of performance. In doing so, the computational cost expended by the model was reduced,
leading to faster training of the model. The process entailed constructing a model for each
configuration of the possible number of features and evaluating the corresponding AUC score
of each of the models. With each model evaluated, the succeeding model was simply the same
model, but constructed to include the next most important feature in the data set. The effect
on the AUC score from adding additional features, in their ranked order, to the data set for the
ML model to consider is graphically illustrated according to the curve in Figure 4.2.
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Figure 4.2: Selecting a suitable number of features by comparing the number of features considered to
the resulting AUC scores.

The minimum number of features corresponding to a suitable AUC score is typically left to the
discretion of the analyst. Upon inspecting Figure 4.2, it was found that the top 16 features
corresponded with an AUC score of approximately 94% and was deemed an acceptable number
of features to consider for the model, since adding more features to the data set did not yield
significantly improved AUC scores. After developing the ML model only considering only the 16
most important features, the model was further validated by comparing the range of values that
each feature assumes for all instances in which Prosopis was predicted as being present, with the
known ranges of features extracted from the literature that are specific to Prosopis. It can be
assumed that if the range of values observed from the model fall within the range of the values
obtained from the literature, then the model was capable of accurately extracting the real-world
environmental requirements with respect to Prosopis. For the sake of concision as well as the
limited literature regarding the preferred habitat of Prosopis, three features were considered in
this regard, namely Annual temperature range, Annual precipitation, and Elevation.

Annual temperature range. The annual range of temperatures feature was ranked as the
ninth most important feature according to the ML model as per Figure 4.1, and hexagons
with Prosopis present assumed values in the range 30.39 – 33.70℃ within the data set, as
illustrated by the normalised curve in Figure 4.3(a). The invasive species compendium,
compiled by the Centre for Agriculture and Bioscience International (CABI) [65], confirms
that this range of values is plausible, since the species is known to be observed in areas
with an annual temperature range of 25 – 35℃.



52 Chapter 4. Model verification and validation

Annual precipitation. The annual precipitation feature was ranked as the tenth most im-
portant feature according to the ML model as per Figure 4.1, and assumed values in the
range 171 – 271 mm throughout the data set, as illustrated by the normalised curve in Fig-
ure 4.3(b). The CABI [65], confirms that this range of values is plausible, since Prosopis
is known to be observed in regions where the annual precipitation is less than 860 mm.

Elevation. The elevation above sea level feature was ranked as the 15-th most important feature
according to the ML model as per Figure 4.1, and hexagons containing the presence of
Prosopis assumed values in the range 863 – 1 606 m, as illustrated by the normalised curve
in Figure 4.3(c). The literature confirms that this range of values is plausible, since the
species is known to be observed within a range of 300 – 1 900 m above sea level [7].
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Figure 4.3: The normalised feature plots for the three validation features considered.

4.2 Spatio-temporal model validation and calibration

Traditional science has been developed on the foundation of theories which focus on making
predictions that are both accurate and testable. These theories are typically deterministic in
nature as they do not account for randomness in the development of predicting the future state
of the system being studied. Until recently, stochastic theories have focused on applications in
which deterministic predictions for a system are made. As geographically-rooted models increase
in popularity, many are focussed on representing a real-world process or system as realistically
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as possible [20]. As such, these models often extend beyond the realm of purely theoretical
considerations, and CA models are an example thereof.

Since the output values resulting from CA models are dynamic throughout the execution of the
model, the parameters provided as input critically affects the quality of the model’s ability to
replicate the equivalent real-world system. As such, it was necessary to calibrate the parameters
of the model and validate its output over the duration of the model execution. CA models
are often adopted in very specific applications, resulting in a scarcity of generally applicable
calibration and validation methods in the literature. Moreover, calibrating the model parameters
and validating spatial models are time-consuming, resulting in additional challenges during the
model development phase [31].

A suitable approach for addressing calibration and validation, and the approach followed for
the purpose of this project, was to survey the literature within the field of ecological modelling
for studies covering a variety of scenarios employing CA models [75]. The insights obtained
from the studies in the literature was then be employed as a point of departure for deriving the
calibration and validation methods for the project at hand. Furthermore, particular emphasis
was placed on reviewing studies that incorporated the spatio-temporal growth and dispersal of
single biological species populations.

In a study conducted by Cannas et al. [51], aerial photographs of the study region for three
different years were observed and compared with the CA model predictions. In doing so, they
were able to validate whether the results obtained from the model could be deemed as represen-
tative of the real-world system being studied. In a study titled Validation of a spatial simulation
model of a spreading alien plant population, Higgins et al. [31] focused on various methods for
validating spatial models. As such, they were able to employ known values to initialise some of
the parameters in order to calibrate the remaining parameters. Briefly, the initialised parame-
ters were obtained by utilising demographic data from aerial photographs. Thereafter, the level
of spatial agreement between the output of the model and the existing data was obtained for
each cell in the study region. The spatial agreement was determined by evaluating whether the
existing data fell within the range of the model’s predictions. Naturally, if the existing data is
inconsistent with the model output data, a low confidence in the model predictions are assumed,
while the converse holds true for the case in which the existing data is consistent with the model
output data. This approach, however, is not suitable for studies in which the range of values
predicted by the model is large.

While the methods addressed in the aforementioned studies focused primarily on comparing the
model outputs with the existing data, an alternative approach for calibrating and validating the
model parameters is to consult a so-called subject-matter expert (SME) [9]. Employing an SME
for the calibration of the model parameters greatly reduces the challenge associated with the
long calibration times observed when following the procedure of optimising the model through
manual calculation of parameter values. SMEs are likely to estimate an appropriate parameter
value based off a similar model, or draw upon personal experience gained from working with
similar studies. As such, employing an SME from the relevant field of study to perform parameter
calibration may yield favourable results that serve as a good representation of the real-world
system being studied [44]. For the purpose of this project, some of the parameters that an SME
could assist in calibrating included the intrinsic species population growth and dispersal rates,
as well as the effectiveness of the relevant control strategies in inhibiting the spread of Prosopis.
These values were estimated from similar studies in the literature that essentially functioned as
recommendations from an SME, and the values were further tuned by comparing their effects
on the several simulation instances before the final values were selected and the CA model was
considered calibrated.
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4.3 Chapter summary

This chapter reviewed the verification and validation considerations for the ML and CA models
employed in this project. The chapter opened with a description of the verification and validation
procedure of the ML model in §4.1. This included the process of evaluating the performance
scores of the various models considered, the process of ranking features by importance and the
selection of the most important features relevant to the study. The range of values assumed by
the features of the model was subsequently compared with the known range of values assumed by
those features within the literature in order to further validate the ML component. The chapter
concluded in §4.2 with a discussion on the relevant validation and calibration techniques that
have been adopted in order to calibrate and validate spatio-temporal models of studies similar
to this project.



CHAPTER 5
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This chapter is devoted to the implementation of the model described in Chapter 3 and takes
the form of a case study in the Northern Cape. The chapter opens in §5.1 with a description
of the procedure followed in order to identify a suitable study region within the Northern Cape
for the execution of the CA model. Thereafter, the process followed for obtaining the habitat
suitability predictions for the identified study region is explained and visualised in §5.2. This
is followed by §5.3 in which the combination of parameters employed during the execution of
the model is defined. Moreover, the corresponding summarised results are visualised and briefly
discussed. Finally, the chapter concludes in §5.4 with a brief summary of the work covered in
this chapter.

5.1 Study region selection

This project specifically focusses on modelling the spread and control of Prosopis in the Northern
Cape, however, due to the sheer size of the area, there is a need to select a specific study region
with the aim of reducing the computational burden associated with executing the CA simulation
on a large spatial grid. As such, the entire area of the province was partitioned into its 26 local
municipalities and a suitable municipality was be identified and selected as the region considered
for the implementation of the CA model developed in §3.1.3.

The identification of the study region or municipality considered for the case study was deter-
mined by employing an ML model capable of predicting the habitat suitability across the extent
of the Northern Cape, as outlined in §3.1.2. Moreover, the predictions made were based on a
2007 density data set of Prosopis. The ML model was constructed and trained on a subset of the
full data set (i.e. the entire Northern Cape area), after which the test data subset was provided
to the model to visualise the habitat suitability distribution across the 26 municipalities. The
test data subset are displayed in Figure 5.1. It is evident from Figure 5.1(a) that the outlined
Kareeberg local municipality in which the town of Carnarvon is located is the most suitable re-
gion for Prosopis from a habitat suitability perspective, given that it was the region containing
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the most test data subset predictions of Prosopis presence made by the ML model. An enlarged
illustration of the identified Carnarvon region is displayed in Figure 5.1(b) and served as the
region of interest discussed in the remainder of this chapter. The sporadic visual output of the
ML model’s predictions is attributed to the fact that the randomly sampled test data subset
was employed to predict the habitat suitability within the 26 municipalities of the Northern
Cape, as well as the fact that the predictions with a low habitat suitability score was omitted
for visualisation purposes in order to identify the regions for which the habitat suitability was
the highest.

(a) Habitat suitability for Prosopis in the North-
ern Cape

(b) The most suitable region for Prosopis

Figure 5.1: Identification of the case study region by inspecting the habitat suitability within the
Northern Cape.

The Kareeberg local municipality occupies an area of 17 702 km2, and accounts for 17% of
the total area of the Pixley ka Seme District municipality. The main town, Carnarvon, is
situated in the south of the municipal area and resides amongst the hills of the Kareeberg
mountain range. Carnarvon is home to a large sheep and game farming community which
contributes to Kareeberg’s largest sector, agriculture, accounting for 33.8% of its economy. As
such, Kareeberg is one of South Africa’s largest producers of mutton and wool. Furthermore, the
area is considered to be a micro bioregion, an area which is naturally defined by topographical and
biological features, as opposed to man-made features. As such, the region comprises mountains,
hills, plains, lowlands, and annual minimum and maximum temperatures ranging from −10℃
to 40℃ on average [40].

5.2 Predicting habitat suitability in the Carnarvon region

Fundamental to the execution of the CA model is the requirement of habitat suitability scores
for the study region. In this regard, a ML model was constructed with a holdout test set defined
to be the Kareeberg municipal region surrounding Carnarvon, comprising approximately 30%
of the data set composed of hexagonal cells discretising the Northern Cape. Consequently,
the remaining 70% of the data set was employed as the training data on which the random
forest ML model was developed—the ML model deemed deemed the most suitable in §4.1. Two
ML models were constructed for the prediction of the habitat suitability distribution around
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Carnarvon: The first considered all 30 descriptive features, and the second considered the 16
most important features, as per the analysis conducted in §4.1. The results of this habitat
suitability predictions made by each of the ML models are illustrated in Figure 5.2.

Upon comparing the distributions of the predictions, it is evident that the model which consid-
ered all 30 descriptive features, depicted by Figure 5.2(a), predicted a greater degree of habitat
suitability, particularly in the upper half of the region, when compared to the model which con-
sidered the 16 most important features, depicted by Figure 5.2(b). The model considering 16
features was employed for the remainder of the project since its habitat suitability predictions
were based on the most informative features which contributed meaningfully to the training
and testing phases of the ML model, and so yielding higher quality predictions compared to the
model employing all 30 descriptive features, for comparatively shorter training times.

(a) Habitat suitability for Prosopis around
Carnarvon employing all 30 descriptive fea-
tures

(b) Habitat suitability for Prosopis around
Carnarvon employing the 16 most important
descriptive features from §4.1

Figure 5.2: The visualisation of the predictions made by two ML models.

5.3 CA execution and results

The execution of the CA model required the definition of five parameters defined in §3.1.3,
namely the annual growth rate of the species r, the annual dispersal rate of the species which
is included in the diffusion constant K, the threshold value indicating when to implement a
control strategy β, the efficiency of the control strategy α, as well as the study period over
which the simulation is required to be observed. The combination of parameters implemented
were determined from the literature, as well as experimentally with the assistance of an SME
to be: r=0.18, K =0.05, β=1.5. Finally, α was given a theoretical minimum and maximum
effectiveness range of 40–60%. Moreover, the study period was observed over a period of ten
years. The pseudocode for the implementation of the CA model is provided in Appendix B.

A consideration that greatly affects the results of the CA model is the effectiveness of the
control method, α. As such, this parameter should be estimated with the aid of an SME so as
to make a realistic assumption, especially since these values are not explicitly available in the
literature. For the purpose of simulating the effectiveness of control methods in the real-world
system as realistically as possible in this project, the value for the control method effectiveness
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α was sampled randomly from the range 0.4–0.6 whenever a control method was required to
be implemented. By adopting a range of effectiveness values as opposed to a single value, the
varying effectiveness accounts for factors such as inefficient removal, human error, as well as
the sheer size of each hexagonal cell and the effort required to clear such a large region. This
consideration enables the CA model to be more representative of the real-world system, thus
producing a simulation of a higher quality. While the complete results for the 10-year study
period is given in Appendix C, a summary of three intervals during the execution of the model
is illustrated in Figure 5.3. The time steps illustrated in the figure show the growth of Prosopis
over ten years with no control implemented at year 1 in Figure 5.3(a), year 6 in Figure 5.3(c),
and year 10 in Figure 5.3(e). By implementing the control method for the same intervals, the
effectiveness of the control method significantly reduces the spread of Prosopis and is clearly
visualised in Figures 5.3(b), 5.3(d), and 5.3(f).

5.4 Chapter summary

This chapter was dedicated to a case study by implementing the CA model to simulate the spatio-
temporal spread and control of Prosopis in the Northern Cape. The procedure followed towards
identifying and selecting a suitable study region within the Northern Cape was described in
§5.1. Thereafter, the habitat suitability of the identified region was investigated and the results
thereof was visually illustrated in §5.2. Finally, the summarised results of the CA model with,
and without a control method implemented was discussed in §5.3.



5.4. Chapter summary 59

(a) Absence of control method, t=1 (b) Control method implemented, t=1

(c) Absence of control method, t=6 (d) Control method implemented, t=6

(e) Absence of control method, t=10 (f) Control method implemented, t=10

Figure 5.3: A summary of the CA model’s results comparing the spread of Prosopis with, and without
a control method implemented.
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The final chapter of this project is devoted to a reflection on the work covered in this project
and what the author has learnt throughout its execution. The chapter opens in §6.1 with a
summary of each of the five chapters contained within the project. Thereafter, an appraisal of
the project contributions is provided in §6.2. This is followed by suggestions for possible future
work relating to the project in §6.3. Finally, a reflection by the author is provided in §6.4 about
what he has learnt during the execution of the project.

6.1 Project summary

The introductory chapter of this project opened with a foundational background on invasive
biology, a brief introduction of the invasive plant species considered in this project, as well as
the various modelling components required to successfully execute the the problem addressed in
this project. Thereafter, the problem statement was formally declared in §1.2 and the objectives
were stated in §1.3. This was followed by §1.4 in which the scope of the project was outlined.
Lastly, the report organisation and research methodology was described in §1.5.

Chapter 2 consisted of a thorough review of the relevant literature in fulfilment of Objec-
tives I(a)–(f) as outlined in §1.3. The chapter opened with a detailed review on th characteristics
of Prosopis invasions, as well as the state of Prosopis invasions in South Africa. Subsequently,
the various control methods which are typically employed to inhibit the spread of a biologi-
cal invasive species was addressed. This was followed by an in-depth discussion introducing
the three modelling fields adopted for the successful execution of this project, including spatial
analysis, spatio-temporal population modelling, and supervised ML. The spatial analysis section
explained the use of GIS software as an important tool for visualising and analysing spatial data,
as well as the paradigm of CA modelling and how it may be integrated with the GIS software.
The spatio-temporal section was then discussed by elucidating the mathematical modelling of
population growth over time as well as over space and time. Finally, the ML component went
into great depth explaining the paradigm of supervised ML, the considerations for data pre-
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processing, the models considered for this project, typical validation techniques, the process of
hyperparameter tuning, the process of feature selection, as well as model evaluation.

The purpose of Chapter 3 was to provide a more detailed description for each of the modelling
components and explain how they were implemented in the project, in fulfilment of Objectives II,
III, and IV. A process model in the form of a high-level DFD was provided in order to explain
the workflow proposed for the execution of the project and the communication and data flow
between the spatial analysis, ML, and CA modelling components.

In pursuit of fulfilling Objective V, the verification and validation considerations of the model was
discussed in Chapter 4. The chapter opened in §4.1 and addressed the verification and validation
of the ML model. This entailed comparing the performance scores of the models considered,
describing the implementation of conducting feature importance and feature selection, as well as
comparing the range of values assumed by the model with the values identified by the literature
as being most suitable for Prosopis. Finally, §4.2 compared the various approaches which have
been adopted for validating and calibrating CA models similar to the one developed in this
project, so as to aid in selecting an appropriate approach that was used in this project.

Chapter 5 was devoted to applying the developed CA model to a real-world case study in the
Northern Cape in fulfilment of Objective VI. The identification process of the study region con-
sidered for the CA model, the Kareeberg municipality, was described in §5.1. This was followed
by the process of predicting the habitat suitability for Prosopis in the Carnarvon region in §5.2.
Finally in §5.3, the adopted parameters and input data were specified, and the corresponding
output of the CA simulation was provided. The results of the CA model were then evaluated
in an attempt to discover how accurately it was able to simulate the spread and control of the
Prosopis species in the Northern Cape, as per Objective VII.

6.2 Project appraisal

The model proposed in this project is capable of predicting the extent at which a single invasive
species spreads within a given study area. As such, the CA model employs the habitat suitability
predictions made by an appropriate ML model in order to simulate the growth and dispersal of
the species, as well as the effect that control strategies have on the spread of the species.

The CA model is governed by well-known mathematical models which are deeply rooted in the
modelling of population growth. As such, the model requires species-specific data, as well as pre-
defined parameters as input. The species-specific data refer to the habitat suitability predictions
made by the ML model, as well as the species density within each cell in the study region. The
pre-defined parameters refer to the species growth rate, dispersal rate, growth threshold for
necessitating a control strategy to be implemented, and the effectiveness thereof. The output
of the model is the simulated spread of the species at each of the discrete time steps for the
duration over which the simulation is specified to run.

The intended goal is that the proposed CA model is utilised as an effective and efficient decision-
making tool in the hands of management responsible for controlling the spread of an invasive
species within a region. Furthermore, the CA model in this project serves as a mechanism for
providing more insight into the complex nature of biological invasions. In particular, the model
may be utilised by management to understand how and why a species behaves in a certain
manner, given particular pre-defined parameter conditions. The insight gained from such a
model is believed to guide decision-makers in understanding the spatio-temporal dynamics of
the species and making better informed decisions regarding the management and control of the
species.
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The nature of the study conducted in this project may be an effective approach for introducing
inexperienced practitioners to the realm of spatial analysis, ML, and CA modelling in the context
of simulating population growth. This is attributed to the powerful visualisation and spatial
analysis tools which are employed when working in GIS software, the insightful ML results
obtained regarding the species habitat preferences, as well as the intuitive understanding of the
model outputs as a result of the visual output produced by the CA model.

Finally, the input and output data of the case study conducted in this project may be published
on public platforms such as Soar, a digital atlas of the world’s maps and imagery. Through
sharing of maps and environmental data, others may conduct similar studies and validate their
constructed model with the results obtained in this study. As such, this form of collaboration
may enrich the process of conducting thorough research, which in turn leads to greater insights
being derived in the field of invasive biology and an improved understanding of how best to
manage and control the spread of invasive species.

6.3 Suggestions for future work

The purpose of this section is to provide suggestions for future follow-up work that may be
conducted under less time-pressured conditions in order to build upon or improve the work
presented in this project.

Proposal I Including a user-interface to automate execution of the CA model.

The execution and visualisation of the outputs produced by the CA model in this project
was conducted manually. This required the user to execute the CA simulation in the
Python programming language, and thereafter export the data into the appropriate for-
mat in order to visualise the simulation in the GIS software. This may prove to be a tedious
task, especially when the user would like to compare the outputs for various combinations
of parameters. As such, a convenient computerised user-interface may be developed in
which a user is able to upload the relevant data and specify the parameters required
to execute and visualise the CA simulation. This proposal may be incorporated into a
computerised decision support system (DSS) and employed by management as a tool for
comparing the effect of varying parameters in order to determine which control method is
likely to be most effective.

Proposal II Improving the parameter calibration process.

The parameters employed in the CA model were determined either from known values
within the literature, or by estimating values and manually calibrating the model based
on the output produced by the previous simulation run. While this method may not
yield optimality in terms of obtaining the most accurate values for the parameters, it
is an acceptable technique, given the time constraints of this project. As such, in the
presence of more time, the analyst may estimate and calibrate the model parameters more
accurately by employing, for example, the Gridsearch algorithm, consulting additional
SMEs to validate the implemented parameters, or extracting parameters from surveillance
data such as aerial photographs.

Proposal III Approaching the ML component as a multinomial regression problem.

The ML component in this project was treated as a binary classification problem. This
meant that the target variable in the data set contained just two classes, namely Presence
or Absence. An alternative approach may be to investigate the effects of addressing the
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ML component as a regression problem, where the target variable consists of continuous
values. In particular, the target variable may be selected as the density of the species
within the study region.

Proposal IV Introducing an additional species to the model.

The model developed in this project considered only the invasive species Prosopis in the
Northern Cape. Many population growth models are, however, developed as multi-species
models, since no species live in complete isolation. As such, additional species may be
introduced into the model to account for the interactions that typically occur between
species. Additionally, the biological control method may be exploited in this regard by
developing a well-known model known as the predator-prey model, where the predator is
assumed to be the biological agent responsible for hindering the spread of Prosopis.

6.4 Reflections by the author

The author of this project thoroughly enjoyed the challenging task of completing a research
project of this magnitude. From a technical perspective, the author utilised many of the tech-
nical problem solving tools and techniques learnt during his four-year undergraduate degree
in Industrial Engineering. Most prominently, this project taught the author how to conduct
thorough research which required him to acquire knowledge within a field of work which was
previously foreign to him.

During the execution of the project, the author acquired many new skills which required him
to gain proficiency in the appropriate software, all of which was not formally taught during the
course of the undergraduate degree. In this regard, the author gained experience in working with
the Qgis software during the construction of the data set, as well as the visualisation of spatial
data. Furthermore, the author developed a proficiency in the Python programming language
which facilitated the development of the ML component, as well as the implementation of the
population dynamics mathematical models required to execute the CA simulation.

With respect to producing a professionally written scientific report, the author had mastered the
LATEX typesetting environment in order to present the information in an appealing and concise
manner. The author also gained valuable experience in the Beamer environment in order to
produce aesthetically pleasing presentations for sharing his research progress, as well as the
Inkscape and IPE software for producing high quality and visually pleasing figures.

From a non-technical perspective, the project strengthened the author’s time management skills,
and taught him the importance of communication in the context of working alongside a super-
visor. As such, this experience enabled the author to trust his abilities and work independently,
with his supervisors providing feedback and guidance when required. Furthermore, conducting
research within the SUnORE research group allowed the author to experience being a part of
a structured group which prides itself in delivering research excellence. This provided the au-
thor with an invaluable opportunity to share, present, and engage in academic conversations
with fellow peers and postgraduate students. Finally, the project taught the author that rigour,
perseverance, and discipline are fundamental characteristics in pursuit of excellence.
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APPENDIX A

Project Timeline

The expected timeline is given in Figure A.1 in Gantt-chart form.

Figure A.1: Expected timeline in Gannt-chart form.
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APPENDIX B

CA model implementation pseudocode

The updating of cell states according to the defined transition rules for the spatio temporal CA
model may be given by the algorithm in this appendix.

Algorithm B.1: CA model implementation of transition rules during time t

Input : The state St−1
(i,j,k) and ML habitat suitability score M t−1

(i,j,k) of cell C(i,j,k) and its set
of neighbouring cells C(p,q,r) ∈ Ω(i,j,k) at time t− 1, the species growth rate r, the
species-specific diffusion constant K, and a control method threshold β.

Output: The state St(i,j,k) of cell C(i,j,k) at time t.

for each cell C(i,j,k) in the study region do1

if St−1
(i,j,k) ≥ 0 then2

St(i,j,k) ← S
growth (t-1)
(i,j,k) + ∆S

diff (t-1)
(i,j,k)3

if
St
(i,j,k)

−St−1
(i,j,k)

St−1
(i,j,k)

≥ β then
4

α ← random number ∈ [0.4, 0.6]5

St(i,j,k) ← St(i,j,k)α6

else7

St(i,j,k) ← St(i,j,k)8
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APPENDIX C

Complete results of the CA model

The complete results of the CA model for the 10-year study period is given by Figure C.1–C.10.
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(a) Absence of control method, t=1 (b) Control method implemented, t=1

Figure C.1: The spread and control of Prosopis at year 1.
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(a) Absence of control method, t=2 (b) Control method implemented, t=2

Figure C.2: The spread and control of Prosopis at year 2.



8
0

A
p
p
e
n
d
ix

C
.

C
o
m

p
l
e
t
e

r
e
su

lt
s

o
f

t
h
e

C
A

m
o
d
e
l

(a) Absence of control method, t=3 (b) Control method implemented, t=3

Figure C.3: The spread and control of Prosopis at year 3.
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(a) Absence of control method, t=4 (b) Control method implemented, t=4

Figure C.4: The spread and control of Prosopis at year 4.
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(a) Absence of control method, t=5 (b) Control method implemented, t=5

Figure C.5: The spread and control of Prosopis at year 5.
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(a) Absence of control method, t=6 (b) Control method implemented, t=6

Figure C.6: The spread and control of Prosopis at year 6.
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(a) Absence of control method, t=7 (b) Control method implemented, t=7

Figure C.7: The spread and control of Prosopis at year 7.
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(a) Absence of control method, t=8 (b) Control method implemented, t=8

Figure C.8: The spread and control of Prosopis at year 8.
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(a) Absence of control method, t=9 (b) Control method implemented, t=9

Figure C.9: The spread and control of Prosopis at year 9.
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(a) Absence of control method, t=10 (b) Control method implemented, t=10

Figure C.10: The spread and control of Prosopis at year 10.
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