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Abstract

Production scheduling is one of the most important issues in the planning and operation
of manufacturing systems. Customers increasingly expect to receive the right product at the
right price at the right time. Various problems experienced in manufacturing, for example
low machine utilization and excessive work-in-process, can be attributed directly to inadequate
scheduling. In this project a generic production scheduling framework suitable for implementa-
tion with all popular metaheuristics is designed and evaluated for Optimatiz, a Gauteng-based
company specializing in supply chain optimization. To address the complex requirements of
the customer, various additional constraints were added to the Classical Job Shop Schedul-
ing Problem, including production down-time, scheduled maintenance, machine breakdowns,
sequence-dependent set-up times, release dates and multiple predecessors per job. Differentia-
tion between primary resources (machines) and auxiliary resources (labour, tools and jigs) were
also achieved. To accommodate the complex variant of the problem, principles of Particle Swarm
Optimization , a stochastic population based optimization technique originating from the
study of social behavior of birds and fish, were employed to test the scheduling framework. The
algorithm was tested against a comprehensive data set derived from actual data provided by
Optimatiz. The optimization technique showed promising results when compared with other
traditional job shop scheduling solution strategies, being strongly dependent on the concepts
of social intelligence and emergence. The benefit of an improved production schedule can be
generalized to include cost reduction, customer satisfaction, improved profitability and overall
competitive advantage.
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Chapter 1

Introduction

1.1 Background and rationale

Impacting on efficiency, customer satisfaction and overall competitive advantage, production
scheduling plays an important role in the current business environment. Customers increasingly
expect to receive the right product, at the right price, at the right time. In order to meet
these requirements, manufacturing companies need to improve their production scheduling per-
formance. The aim of this project is to design a generic production scheduling algorithm for
specific implementation in the job shop environment.

Optimatiz is a Gauteng-based company specializing in supply chain optimization. Their
primary business activities consist of the design and implementation of the Tactix product suite.
The product suite consists of a number of inter-related modules, which can be implemented
independently if required. Providing a customized supply and demand planning solution on a
strategic, tactical and operational level, they boast a number of successful implementations in the
low-volume-high-variety manufacturing industry. The scheduling module, Tactiz Scheduling, can
be classified as a forwards finite capacity production scheduling tool. Currently, the underlying
algorithms of this module consists of rules-based heuristic methods. Priority rules are the
most frequent heuristic method applied to job shop scheduling problems, due to their ease of
implementation and low time complexity Blazewicz et al.| (1996). However, the use of a more
sophisticated approximation technique should be investigated.

Before embarking on a project it is important to evaluate the potential benefits and costs
associated with its execution. [Hoitomt et al. (1993) consider a number of factors to justify the
development of a production scheduling algorithm for the job-shop environment: production
scheduling being one of the most important issues in the planning and operation of manu-

facturing systems. Many production related problems, including low machine utilization and



excessive work in process, can be assigned directly to inadequate scheduling. Addressing these
problems through improved scheduling can have a significant impact on cost reduction, customer
satisfaction, profitability and overall competitive advantage.

Recent customer demand for higher variety products have also contributed to an increase
in product complexity. The number of parts being produced in job shop environments has
dramatically increased during the past decade.

Production scheduling in the low-volume-high-variety manufacturing environment has al-
ready received considerable attention in Operations Research literature. The deterministic job
shop scheduling problem has developed a reputation of being notoriously difficult to solve. How-
ever, the business requirements of Optimatiz requires that a much more complex variation of
the classical job shop scheduling problem should be addressed. Since this problem can be con-
sidered a direct derivation from the classical job shop scheduling problem, it is also classified as
NP-hard. The sheer magnitude of the resources and operations which the algorithm should be
able to schedule, further adds to the complexity of the problem. Therefore, sufficient evidence
exist to suggest that this problem can not be solved optimally (Jain and Meeran) |1999).

An extensive analysis of solution strategies, which is documented in Chapter [2| provides
the basis for selecting a metaheuristic to solve the identified problem. The allowance of non-
improving moves to escape local optima, along with the ability to integrate local search tech-
niques for exploitation purposes ensure that metaheuristics are considered to be the most ef-
fective solution strategy (Jain and Meeran, 1999)). Particle Swarm Optimization is the

metaheuristic of choice for a number of reasons.

e Placing emphasis on the concept of social versus individual learning, [PSO] is a robust
algorithm which compares favourably with Genetic Algorithms and Tabu Searches, which

are often utilized to solve the job shop scheduling problem (Kennedy et al.l 2001).

e [PSOJis one of the simplest metaheuristics to implement. This inherent simplicity simplifies

the design and enhances the user-friendliness of the algorithm (Lian et al., 2006)).

e Even though [PSO| has been the focus of many a research study since its development, it
does not have a rich literature with respect to scheduling problems. Therefore, there is
a definite research opportunity associated with this optimization technique (Lian et al.,

2006).



1.2 Problem definition

Optimatiz has identified the need for an in-depth investigation into their production scheduling
algorithms. Opportunities for improvement exist in terms of solution quality and model formu-
lation. Furthermore, management is curious with respect to the potential use of metaheuristics
to obtain improved schedules. However, any improvements made should retain the functionality
of the existing production scheduling model. A compromise can be made with respect to the
time required to obtain a solution.

There are a number of other factors affecting the problem formulation that should be con-

sidered.

e Definite variations exists between the different production environments serviced by Opti-
matiz. It would be beneficial to meet the production scheduling requirements of all of these
clients by the implementation of a single algorithm. This implies that the metaheuristic

algorithm should be relatively generic.

e In Operations Research literature there is a tendency to focus on solving unrealistically
simplified problems. This implies that a very limited amount of information is available
with respect to model formulation of complex job shops. This complicates the formulation

of a which is intricate enough to be of value on the production floor.
The research question for the project can thus be formulated as:

“Can the use of Particle Swarm Optimization add value to the production scheduling

process in complex job-shop environments?”

1.3 Research design

Using the research question as a point of departure, the research design is analogous to a
blueprint of the desired end results of the project (Moutton, 2001). Specifying the research
design is helpful in determining the type of study or activities that should be performed to
achieve the desired end results.

The purpose of this project is to answer the research question through designing and testing
a generic job shop scheduling algorithm geared towards implementation in Tactix Scheduling.
The design phase of the algorithm mainly consists of defining the structure of the problem and
the development of an effective solution strategy. The algorithm’s structure makes provision for

the following features:
e The scheduling of 500 operations on 216 resources.
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e The scheduling of machines, manpower, as well as complementary resources such as jigs

and tools.
e Alternative routing and resource allocation.
e The evaluation of quality of schedule with respect to a number of predefined objectives.
e The incorporation of release dates and production calendars. a frozen horizon.
e Determining the effects of sequence dependent set-up times on the schedule.

e Processing time of fifteen minutes per 100 operations.

There are a number of factors which affect the model formulation and solution process. The
scope of the model is dependent on the underlying modeling assumptions made. The inherent
characteristics of the [JSSP| result in the model to only be applicable to the low volume-high va-
riety and mid-volume-mid-variety industries (Hoitomt et al.,1993)). Furthermore, the algorithm
assumes sufficient raw material being available at all times and is based on the principles of [PSOJ
as defined in Kennedy et al. (2001).

In order to use [PSO] or any other metaheuristic for that matter, to solve the Optimatiz
problem a specific structure is required to transfer solutions between the problem space in
which the metaheuristic functions and the space in which the objective function values are to be
evaluated. The generic production scheduling framework developed to address this issue has the
attractive feature that it is common to all popular metaheuristics. Since the generic production
scheduling algorithm is based exclusively on this framework, a large degree of flexibility in terms
of alternative metaheuristic-based solution strategies and varieties of scheduling problems, is
obtained.

One of the project’s main requirements is to ensure that the metaheuristic algorithm is
well-tested. The algorithm evaluation phase consists of a comparative analysis between the
designed algorithm and the various other algorithms currently implemented at Optimatiz. Tactiz
Scheduling currently implements priority dispatching rules, iterative schedule generation and
random schedule generation methods. The [PSOJalgorithm is also evaluated with respect to both
standard benchmark problems defined in literature and benchmark data developed specifically
for Optimatiz.

All required input data for testing the performance on real-world problems was provided
by Optimatiz. Pilot implementation may occur at the discretion of the client to aid further
algorithm evaluation. Full implementation feasibility, however, will only be evaluated at a later

stage.



In terms of the rest of the document, Chapter [2] consists of a discussion of the applicable
scheduling literature. An extensive discussion of the generic production scheduling framework is
provided in Chapter [3| while Chapter [ introduces [PSO| within the larger framework of Swarm
Intelligence and addresses its application to the Optimatiz problem. Chapter [5| provides a dis-
cussion around the various algorithm development activities. All algorithm testing activities are
discussed in Chapter [6] along with the results obtained during algorithm development. Finally,

Chapter [7] concludes the document and provides insight into future research opportunities.



Chapter 2

The Optimatiz problem — a

literature review

A review of the existing literature is of paramount importance. The purpose of this review is to
become aware of the most recent theories, results, definitions, tools and techniques in the field
of job shop scheduling. This prevents duplication and provides valuable insight towards a point

of departure (Moutton, 2001]).

2.1 Introduction to production scheduling

2.1.1 Definition of production scheduling

The definition of production scheduling, as quoted by (Graves| (1981), is specifically applicable to
this project. He widely defines production scheduling as “the allocation of available production
resources over time, to best satisfy some criteria”.

He elaborates on the definition by stipulating the differences between production schedul-
ing and two other related concepts: inventory management and production planning. Where
production planning focuses partly on the determination of the production resource level, that
is determined exogenously to the production scheduling process. Where production scheduling
is largely concerned with the allocation decisions of the production resources, the allocation
of production resources to jobs is used merely as input into traditional inventory management

models.

2.1.2 Generic classification of production scheduling models

Production scheduling has been fascinating researchers since the 1950s (Jain and Meeran), [1999).

The numerous articles and research papers resulting from this fascination led to the development



of a large number of production scheduling models. Models in literature are capable of addressing
almost every possible production scenario. The most popular method of classifying production
scheduling models is the four-field notation (A/B/C/D). Problems are classified according to:
the number of jobs (A), the number of machines (B), the flow pattern within the machine shop
(C) and the performance measure by which a schedule is evaluated (D).

Although the four-field notation is well-known among scheduling researchers, the recent
trend towards consideration of more complex scheduling problems have shown it to be largely
inadequate to describe nonbasic models (Xia and Wu, |2005)). The inclusion of certain problem
specific requirements, which varies from sequence-dependent set-up times to release dates, results
in models which can be more effectively classified by means of the three-field notation («/3/7)
developed by |Graham et al.| (1979). The three-field notation classifies models according to
the flow pattern and number of machines («/), the constraints placed on the jobs () and the

scheduling criteria (7).

2.2 Zandieh’s classification of scheduling models

Recently Zandieh et al.| (2006) has developed a classification for scheduling systems based on the
associated resource environments. Figure indicates the classification of various, yet similar,
types of models, each consisting of one or more operations to be processed on a number of

resources. The models are primarily classified according to the following criteria:

e The characteristics of the routings of each of the jobs.
e The number of operations for each of the jobs.

e The number of resources available to perform the required operations.

The models range from more generic formulations, for example the job shop scheduling
problem with duplicate machines, to more specific formulations, for example, the single machine
shop problem.

In most cases, operations are performed according to a predefined sequence, derived from
the product routing. However, one exception exists in the form of the open shop problem. This
formulation results from a relaxation of the operation sequencing constraint. In other words, no
specific sequence is specified in which the operations of each of the jobs should be performed.

The deterministic Job Shop Scheduling Problem is considered to be the best known
of the classical scheduling problems. |Jain and Meeran| (1999) describes the problem as con-

sisting of a finite set J of n jobs {Ji}?zl to be processed on a finite set M of m machines
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Figure 2.1: Classification of scheduling systems based on resource environments.
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Figure 2.2a: Flow patterns of “single resource per operation” models.

{M’f}:;r Each job J; must be processed on every machine and consists of a chain of m; op-
erations O;1, O;2, ..., Ojp,, Which have to be scheduled in a predetermined sequence. There are
N operations in total, where N = >, m;. Oy is the operation of job J; which has to be
processed on machine M} for an uninterrupted processing time period 7;;. No operation may
be pre-empted. Each job has its own independent and individual flow pattern through the ma-
chines. Each machine can process only one job at a time and each job can be processed by only
one machine at a time.

Figures [2:2a] and [2.2B] provide visual indications of the flow patterns, relative to the [JSSP]
supported by each of the classified models, since most of the models in Figure 2.1] are merely
specific applications of the job shop scheduling problem. For example, the job shop scheduling
problem with duplicate machines can be considered a generalization of the classical [JSSP| the

only addition being the allowance of more than one resource per operation.
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Figure 2.2b: Flow patterns of “multiple resources per operation” models.

The Flow Shop Scheduling Problem is restricted to specific applications where iden-
tical routings are defined for each of the jobs. Thus the problem consists of finding the order in
which jobs should be processed on each resource. Closely related to the [FSSP} the Permutation
Flow Shop Scheduling Problem boasts, in addition to identical routings, the addition
of a “no passing” constraint. This results in the same job sequence being followed for each of
the resources. Yet another close relation of the [FSSP] the hybrid flow shop scheduling problem
allows for identical routings along with multiple resources per operation.

The Single Machine Scheduling Problem is merely a with only one operation
per job. In contrast, the parallel machine shop problem is limited to jobs consisting of only one
operation, which can be performed on any one of a number of resources.

An analysis of the business requirements of Optimatiz resulted in the job shop with duplicate
machines problem, the parallel machine scheduling problem and the single machine scheduling
problem identified as suitable candidates to use as points of departure for the design of the
algorithm. The job shop with duplicate machines becomes an appropriate choice to consider as
the parallel machine and single machine scheduling problems can easily be addressed through
judicial selection of the input parameters of the job shop with duplicate machines.

However, it is noteworthy that Zandieh et al.| (2006)’s classification only addresses problems
on a relatively general level. Various detailed problem-specific characteristics are omitted. In
order to meet the distinct scheduling requirements of Optimatiz, a further analysis is performed
to identify a problem capable of addressing these specialized scheduling requirements. These
requirements include, amongst others, the inclusion of sequence-dependent set-up times and

release dates into the problem description.
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The next two sections provide a more detailed discussion of a logical sequence of problem
variations, which are closely related to the job shop scheduling problem with duplicate machines.
For comparison purposes, the most generic model in the class of job shop scheduling problems,
the classical is first presented. An evaluation of the assumptions of this model leads to
the identification of specific problem variations able to address the the proposed problem as it

is currently defined.

2.3 The classical job shop scheduling problem

The classical |JSSP| has received considerable attention in scheduling literature (Zhang et al.,
2006). A thorough review is provided by both Blazewicz et al. (1996) and |Jain and Meeran
(1999). The problem is classified as a combinatorial optimization problem and is one of the

most difficult NP-complete problems to solve.

2.3.1 Problem formulation

Blazewicz et al.| (1996)) describes the problem as follows:

n 2  The total number of operations.
m = The total number of machines.
A = The set of ordered pairs of operations constrained by the precedence relations
for each job.
Er 2 The set of all pairs of operations to be performed on machine k, where k =
{1,2,...,m}.
p; 2 The processing time of operation i, where i = {1,2,...,n}.
t; = The earliest possible starting time of operation i, where i = {1,2,...,n}.
minz = t, (2.1)
subject to
ti—ti > pi V(i,j) € A (2:2)
tj—ti > pi V(i,j) € Ex,Vk € {1,...,m} or
ti —t; > p; V(i,j) € B,k € {1,...,m} (2.3)
t; >0 Vie{l,...,n} (2.4)

11



The objective function ({2.1) minimizes the maximum makespan. Constraint (2.2)) ensures
that the precedence constraints between operations within the same job are respected. Con-
straints ([2.3) ensures that only one job may be scheduled on a machine at a time, and ([2.4)

ensures completion of all jobs.

2.3.2 Problem representation

Traditionally there are two main problem representations traditionally associated with the classi-
cal the Gantt chart (more frequently used to display the schedule than solve the schedule)
and the disjunctive graph model (Jain and Meeran, [1999). The latter is explained with the aid
of Figure [2.3

The disjunctive graph formulation consists of a set of nodes representing all the operations
to be processed on the set of machines. Two fictitious nodes are also added, namely the source
node (at the beginning of the network) and the sink node (at the end of the network). The set
of nodes are indicated by V. A weight, proportional to the processing time of the operation,
is assigned to each of the nodes. Precedence relationships between operations are indicated
by means of a set denoted by C of directed arcs. Capacity constraints ensure that two jobs
which require the same machine can not be processed simultaneously. These constraints are
enforced by means of a set of undirected arcs, D. Potential feasible solutions are obtained by
defining directions for each of the disjunctive arcs (Brucker, |2004)). Shortest path algorithms are
traditionally used to find the optimal solution when solving a makespan minimization problem.
An example of a disjunctive graph formulation for a 3 machine 4 job problem is illustrated in
Figure 2.3

Although the disjunctive graph representation is robust and useful for solving real life job
shop problems, there are a number of difficulties associated with this representation. Concurrent
or parallel processing and indefinite cyclical process flows can not be modelled directly (White
and Rogers, 1990). Feasibility of solutions can also be a problem since an acyclic graph is

required for schedule feasibility.

2.3.3 Assumptions

There are a number of key assumptions inherent to the formulation of the classical [JSSP} Some

of these include:

e Only one operation may be scheduled on any one resource at a time.

e All jobs require the same set of resources.

12
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e T'wo or more operations from the same job may not be processed on the same resource.
e Each resource type consists of only one resource.

e All jobs are available for scheduling at time zero.

These assumptions result in the problem, as it is formulated in this document, not being
suitable to address the requirements of Optimatiz. However, there are a large number of vari-
ations to the classical [JSSP| and various other algorithmic approaches, which are extensively
utilized in literature to meet more specific scheduling requirements. Figure provides a vi-
sual indication of the various approaches to scheduling encompassed within job shop scheduling.
They are classified according to [Graham et al.s [1979 three-field notation.

Table lists the various assumptions and the appropriate approaches which should be
investigated to overcome the limitations of the classical JSSP|with respect to the specific business

requirements.

2.4 Variations on the classical job shop scheduling problem

This section discusses the various different approaches to complex job shop scheduling which
were identified in the previous section. It is noteworthy that all the variations on the classical job
shop scheduling problem are in themselves classified as NP-hard problems, due to their direct

derivation from the classical problem instance.

2.4.1 The [JSSP| with precedence constraints

Additional to the precedence constraints occurring between the various operations of each of the
jobs, it is also possible to have precedence relations between jobs (Figure — a very useful
attribute in modeling assembly processes. Brucker| (2004)) describes the precedence relations by
means of an acyclic directed graph G = (V,B) where (i, k) € V corresponds with the jobs, and
(i,k) € B if and only if J; must be completed before Jj, starts. The problem can be modeled
analytically by adding the following constraint to the classical job shop scheduling problem:

t; —t; = p; V(i,j) € B

(2.5)

where B refers to the set of ordered pairs of operations constrained by the precedence rela-

tions between each job.
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Figure 2.5: Precedence relationships between jobs.

2.4.2 The with opening inventory

Inventory is a common occurrence in almost every production system. Companies often generate
schedules in intermittent intervals during the production run. Due to the continuous nature
of most production systems, it is possible to have jobs which are half complete at schedule
generation.

Taking into consideration the effect of beginning inventory during schedule generation is
relatively trivial, but has a definite impact on the realism of the schedule. The impact of
opening inventory is only apparent during the calculation of the processing time. However,
beginning inventory of a certain product affects the processing time of all operations of all jobs
associated with the specific product. This implies the requirement of additional data: the unit
processing times associated with each operation.

The problem can be formulated by adding Constraint to the classical where d;
denotes the demand in number of units which requires processing as part of operation i, g;
denotes the number of units in inventory which have completed processing up to a point past

operation ¢, and u; denotes the unit processing time associated with operation ¢:

17



pi = (di — gi)u; Vie{l,2,...,n}

(2.6)

Ivens and Lambrecht| (1996)) incorporated initial work-in-process into a disjunctive graph job
shop scheduling formulation. The opening inventory was incorporated by only generating the
remaining part of the network. In other words, the node weights are calculated similarly to p;
in constraint . The problem was solved successfully by means of the Shifting Bottleneck

Heuristic.

2.4.3 The[JSSP| with sequence-dependent set-up times

Set-up times are defined in literature as the time intervals between the completion of one op-
eration and the start of the next operation. The inclusion of set-up times is one of the most
frequent additional complications in scheduling and incorporation into traditional scheduling
models has already been attempted as early as the 1970s (Lockett and Muhlemann, [1972)). The
[JSSP| with sequence-dependent set-up times is useful in situations where cleaning operations
and tool changes play an important role in production. A typical example is the manufacturing
of different colours of paint.

Over the years, two distinct approaches have been developed. The first differentiates between
sequence-dependent and sequence-independent set-up times. The second approach only includes
set-up times when two jobs, which belong to two different predefined subsets of operations, are
processed sequentially (Noivo and Ramalhinho-Lourenol 2006)).

In the most complicated case, sequence-dependent setup times, where the setup time depends
on the job previously scheduled, as well as the machine on which the current operation is
performed, a n x n (operation X operation) matrix of set-up time data is required for each
resource m. The set-up time of operation j is defined by s;;, where i is the index of the previous
operation scheduled on machine k. If the set-up times are machine independent, s;;;, can be
simplified to s;;. Sequence-independent set-up times are denoted by s; and constant set-up times
only by s (Brucker] 2004).

In terms of the solution strategies followed, Noivo and Ramalhinho-Loureno (2006)) addressed
the [JSSP| with sequence-dependent set-up times by means of a number of priority dispatch
rules. Lockett and Muhlemann| (1972)) and |Asano and Ohta(1991) developed branch-and-bound

algorithms for single machine scheduling problems.
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2.4.4 The [JSSP| with machine availability constraints

In real-life production systems, the advent of production calendars, holidays, preventative main-
tenance and unexpected breakdowns have a significant effect on machine availability and sub-
sequently the scheduling of production resources. If no preemption is allowed, the inclusion
of machine availability constraints results in dividing the planning horizon into a number of
disconnected time windows (Asano and Ohtal |1991).

White and Rogers| (1990) addressed the problem by means of the disjunctive graph formu-
lation. Scheduled maintenance is regarded similarly to any other operation and is assigned a

node with a weight proportional to the time required for maintenance.

2.4.5 The flexible job shop scheduling problem

Xia and Wu (2005) describes the recent trend which exists in the research domain to solve a
much more complex version of the classical job shop scheduling problem. Being an extension

of the classical [JSSP| the [FJSSP] incorporates all of the complexities and challenges associated

with classical job shop scheduling. The [FJSSP]is the most common variation on the job shop
scheduling problem and it is also referred to in literature as the job shop scheduling problem with
duplicate machines, the hybrid job shop scheduling problem and the job shop with multi-purpose
machines.

The aim of the [FJSSP| is twofold: the assignment of all operations to machines and the
subsequent sequencing of these operations on each of the assigned machines. For solving any
realistically sized problem, either a hierarchical or integrated approach can be followed. The
former results in decomposition of the problem into two simpler problems which are solved
independently of one another, whereas the latter does not differentiate between allocation and
sequencing (Xia and Wu, [2005). The most notable solution strategies include Evolutionary
Algorithms (Kacem et al., 2002) and Tabu Searches (Dauzre-Prs and Paulli, 1997)).

The problem is defined formally by |[Kacem et al| (2002). It consists of a finite set J of N
jobs {Ji}ij\il to be processed on a finite set U of M machines {Mk}i\il Each job represents
a number (m;) of nonpreemptable ordered operations O;1, O2, . .., Oim,. The execution of each
operation of a job requires one resource or machine selected from a set of available machines
called U;; C U. The assignment of the operation O;; to the machine My (M}, € U;;) entails the
occupation of this machine during a processing time called d;j.

The uniqueness of the [FJSSP] lies in that each operation does not have to be performed
on a machine specifically dedicated to the specific operation. A selection can be made from

any of the available resources belonging to a predefined set of resources. It is important to

19



note, however, that each operation may still only be assigned one resource from the set. The
option of alternative resources ensures that the [FJSSP]is useful for scheduling in a wider range
of production systems, including flexible manufacturing systems and parallel machine shops
(Dauzre-Prs and Paulli, [1997)).

In the case of total flexibility U;; = U. In other words, all operations can be executed on
all machines. If a [FJSSP|is classified as a partial flexibility problem, there exist at least one
operation O;_;, such that U;,;, C U. This implies that operations can only be performed on
machines with which they are compatible.

Brucker| (2004) further differentiates between with identical machines, uniform ma-
chines and unrelated machines. If U;; consists of identical machines the processing time (d;;) of
operation O;; is the same regardless of which machine is used for processing. If U;; consists of

uniform machines, the processing time (d;;i) of operation O;; can be calculated by the formula:

dij
dijk = —2 (2.7)
Sk

where s;, is the processing speed of machine k. Finally, if U;; consists of unrelated machines, the
processing time (d;;1) varies from machine to machine and the processing time is dependent on
both the characteristics associated with the operation and the characteristics of the machine on

which it is performed.

2.4.6 Multiple resource constrained job shop scheduling

In real life production systems, the scheduling of operations are not only constrained by one
type of resource. In addition to machine availability, tooling and labour requirements also play a
vital role in the efficient generation of realistic schedules. Studies performed by Mason indicates
that typically 16% of scheduled production cannot be met because tooling is not available.
Additionally, 40 to 80% of a foreman’s time is spent looking for and expediting materials and
tools. Therefore incorporating the assignment of workers and tools into the schedule can have a
significant effect on production performance.

Gargeya and Deane| (1996) describes the multiple resource constrained job shop scheduling
problem: a job shop in which two or more resource types constrain output. This formulation
allows the simultaneous scheduling of machines, labour and other auxiliary resources, such as
tools and jigs. If only two resource types are involved in the scheduling scenario, the problem is
referred to as a dual resource constrained [JSSP} The two most common dual resource problems
solved in literature are the labour constrained job shop (for scheduling workers and machines)

and the auxiliary resource constrained job shop (for scheduling tools and machines).
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Brucker| (2004)) defines a class of problem that is very similar to the multiple resource con-
strained [JSSP} the multiprocessor task job shop scheduling problem. This problem requires that
a set of resources be linked to each operation. Each operation O;; requires during a processing
period p;; all resources belonging to the set p;; C {Mj, ..., My, }. Two tasks which require the
same resource cannot be processed simultaneously and are referred to as incompatible tasks.

Relatively little information is available with respect to solution strategies. In his book,
Brucker| (2004)) converted awith multiprocessor tasks, unit processing times, release dates
and precedence constraints between jobs into a shortest path problem. [Patel et al. (1999)
followed a genetic algorithm approach for solving a dual resource constrained scheduling problem,

labour being the secondary resource.

2.4.7 The reentrant job shop scheduling problem

The classical [JSSP| assumption that each job may visit a specific machine only once, is often vio-
lated in practice. This resulted in the development of the RJSSP]| where two different operations
belonging to the same job can be scheduled on one machine. The [RIJSSP|is especially useful to
model production scheduling scenarios in high-tech industries. For example, in semiconductor
manufacturing, wafers usually make multiple visits to the same machine as successive circuit

layers are added.

Pan and Chen| (2005|) formulated the [RJSSP|as an integer programming model.

£ The total number of jobs available for processing at time 0.

m £ The total number of machines.

N; = The number of operations of job i, where i = {1,2,...,n}.

pij = The processing time of operation j of job ¢, where i = {1,2,...,n},
j=11,2,....,N;}.
1 if operation j of job i requires machine k, where ¢ = {1,2,... ,n},
Tijk = j={1,2,..., N} k={1,2,....m} .
0 otherwise.
1 if operation j of job i precedes operation j" of job i’, where i,i' = {1,2,...,n},
Zijirjr = 4,7 =1{1,2,...,N;}.
0 otherwise.

H % A very large positive number.

C; 2 Completion time of job i, where i = {1,2,...,n}.
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A . . .
Cinar = Maximum completion time or makespan.

t;j £ The starting time of operation j of job i, where i = {1,2,...,n},
j={1,2,...,N;}.
min Cq, = max{C;}1- 4
subject to

m
Z”wk tij + pij) < Z Ti(j+1)kti(j+1)
k=1 =1

Vie{l,2,...,n},Vj€{1,2,...,N; — 1}
pij < H Q2 —rige —rivj) + H( = Zijiryr) + (tryr — tij)
Vi>1,Vi<i <n,Vje{1,2,...,N;},
Vil e {1,2,...,Ny},Vk € {1,2,...,m}
piry < H(2 —riji — rivj) + HZijirgr) + (tij — tirgr)
Vi > 1Vi <i' <n,¥j € {1,2,...,N;},

Vil e {1,2,... Ny}, Vk € {1,2,...,m}

m
Crmaz > Z riNik(tiNi + piNi)
k=1

Vie{l,2,...,n}
Crnaz 2> 0,1 > 0
Vie{l,2,...,n},Vj€{1,2,...,N; — 1}
Zijiry = 0or 1
Vi > 1Vi <i' <n,Vj € {1,2,...,N;},

Vi’ e {1,2,..., Ny}

(2.8)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

Constraint (2.9)) ensures that the starting time of operation j+ 1 of job i on machine & is no

earlier than the finish time of operation j of job i. Constraints ([2.10) and (2.11)) ensure that only

one job may be processed on a machine at any one time. If both operation j of job 7 and operation

j' of job i’ are processed on machine k, i.e., 75 = ryjrp = 1, then either s;; —

Sij = Pij oOr

Sij—Sirj» > Py holds (H is a very large positive number). The either-or construct is incorporated

into the model by means of constraints (2.10) and (2.11)). Constraint (2.12]) is used to calculate
C)naz which is minimized in the objective function (2.8]). Constraint (2.14) ensures that Cy,qz,

sij, and the binary integer variable Z;;; ;/, are greater than zero.
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2.4.8 The expanded job shop scheduling problem

The is more general than the classical The incorporates both release dates
and due dates. Job starting times are also restricted by what [Yu and Liang| (2001) define as
technological planning constraints or operation enabling conditions. Simply put, all cutting
tools, machines and other resources required for processing an operation has to be available
before the processing of the operation can start. This has positive implications for the scheduling
of labour and auxiliary resources. It also implies that alternative resources can be specified for
each operation. The [EJSSP|has already been solved successfully by means of a hybrid approach
involving neural networks and genetic algorithms (Yu and Liang, 2001)).
The model can be formulated as follows:

L

The total number of jobs.

Type number of various resources.

3
I

N; £ The number of operations of J;, where i = {1,2,...,n}.

rs = Number of resources of type s, where s = {1,2,...,m}.

R; £ Set of pairs of operations {k, [} belonging to job i, where operation k precedes
operation [, where i = {1,2,...,n}.

Q; = Set of pairs of operations {k,!} belonging to job i, for any operation k and
operation [, where i = {1,2,...,n}.

N, £ Set of operations requiring resource k, where k = {1,2,...,r}.

H % A very large positive number.

pa = The processing time of operation [ of job i, where ¢ = {1,2,...,n},
1=1{1,2,...,N;}.

ty = The starting time of operation k of job i, where i = {1,2,...,n},
kE={1,2,...,N;}.

tiy = The starting time of the first (or free) operation of job i, where
i={1,2,...,n}.

ty = The completion time of the last (or free) operation of job 4, where
i1=41,2,...,n}.

a; 2 The availability time of job i, where i = {1,2,...,n}.

d; = The delivery due date of job i, where i = {1,2,...,n}.

[i,k] 2 The k¥ operation of job i, where i = {1,2,...,n}.
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1 if operation i precedes operation j, where {i,j} € Ny,qg ={1,2,...,74},

zij & s=A11,2,...,m}.
0 otherwise.
N 1 if operation k precedes operation [, where {k,l} € Q;,i = {1,2,...,n}.
Ykl =

0 otherwise.

t;j £ The starting time of operation O;;, where i = {1,2,...,n}, j = {1,2,..., N;}.

min Crez = miaX(tiz +pa) (2.15)
subject to
tis — tis — i > 0 Vie{1,2,....n), if {k,I} € R  (2.16)
tjig —tiw — P + H(1 — 211) > 0 Vge{1,2,...,r}, if {k,i} € N, (2.17)
tik —tjy—pjy+Hzy >0 Vge{1,2,...,r}, if {k,l} € N, (2.18)
ti — tis — pir + H(L — yg) > 0 Vie{l,2,....n}, if {1} €Q;  (2.19)
tik —ti — pi + Hyi > 0 Vie{l,2,...,n}, if {k,1} € Q; (2.20)
ti >0 Vie{l,2,...,n} (2.21)
tn < di — pi Vie{1,2,...,n} (2.22)
tigs bty > 0 Vie{1,2,...,n}, (2.23)
2kl Y = 0 or 1 (2.24)

The objective function expressed in (2.15) minimizes the completion time of the last com-
pleted job. Constraint ensures that the precedence constraints between operations be-
longing to the same job are not violated. Constraints and ensures that a resource
only processes one operation at a time, while constraints and are referred to as hid-
den job constraints. These hidden job constraints ensure that two operations belonging to the
same job are not processed simultaneously. The starting and completion time constraints ((2.21))
and ) restricts the processing time of the job to start and end in the interval between the
job available time (release date) and the due date. Constraint ensures that the decision

variables remain positive and constraint (2.24)) defines the binary variables zx; and yy;.
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2.4.9 Selection of suitable variations

There are a number of factors which were considered during the evaluation of the variations.
Initially the algorithm will be kept as simple as possible, therefore any unnecessary complexity
will be eliminated. However, it is still important to ensure that the metaheuristic algorithm
will have the same functionality as the algorithm currently implemented by Optimatiz. Similar
functionality will ensure that the comparison between the two algorithms will be meaningful.
The variations were also selected on the basis of efficiency: those variations incorporating the
most functional characteristics receive preference.

The selection process resulted in three variations deemed suitable to use as points of depar-
ture for the design of the algorithm. Therefore the algorithm should be designed as such that

its structure will enable it to have the same functionality as the following variations:

e The expanded job shop scheduling problem.
e The with sequence-dependent set-up times.

e The with precedence constraints.

2.5 Objective function variations on the classical job shop schedul-

ing problem

Apart from cost functions, a large number of objective functions have been formulated to eval-
uate the quality of schedules. Brucker| (2004) provides a list of the most common measurements
which can be used to formulate objective functions. Any of the measures in Table can be used
to formulate at least four different objective functions of the form: max{m;} | i = {1...,n},
Yo ymg, Yo wim; and max{w;m;} | i = 1...,n}, where m; denotes the measurement asso-
ciated with job i, w; the numerical weight associated with job ¢ and d; the due date of job i.
For example, the following four objective functions can be formulated for job completion time,
where C; denotes the completion time of job i: makespan (max{C;} | i =1...,n}), total flow

time (3_;~; C;) and weighted total flow time (37" ; w;C;).

2.6 Solution strategies

The design of an efficient algorithm requires the identification of the most appropriate solution
strategy for the given implementation environment. Being the most general of the classical

scheduling problems, the classical job shop scheduling problem has a rich history. An indication
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Table 2.2: Commonly used [JSSP| measurements.

JSSP| measurement Formulation

Lateness L, =C;—d;
Earliness E; = max{0,d; — C;}
Tardiness T; = max{0,C; — d;}

Absolute deviation D; =|C; —d; |
Squared deviation — D; = (C; — d;)?

of all the major solution strategies which have been applied to the [JSSP|in the past fifty years,
along with the benchmark problems on which they were tested, is indicated in Figure (Jain
and Meeran), [1999).

2.6.1 Optimal solution strategies

During the 1960s a lot of emphasis was placed on finding exact solutions by means of elaborate
and sophisticated mathematical constructs. However, in their article, \Jain and Meeran (1999)
refer to research from the 1970s which clearly highlights the extreme intractability of the job
shop scheduling problem. The problem can be classified as strongly NP-hard. Therefore, only
a small number of special instances of the problem are solvable within polynomial time. This
implies that these techniques are of limited practical use, since the majority of these techniques
are unable to achieve feasible solutions to many problems.

The most widely used enumerative strategy is the Branch-and-Bound algorithm entailing
implicitly searching a tree structure which represents the solution space. A number of procedures
have been developed to exclude large portions of the tree to speed up the searching process.
Unfortunately, apart from the excessive computational burden, this strategy’s performance is
also relatively problem dependent and is sensitive to the initial upper or lower bound values

(Jain and Meeran, (1999).

2.6.2 Heuristic methods

The use of approximation methods has more and more become a viable alternative. Even
though the optimality of the solutions can not be guaranteed, larger problems can be solved
more efficiently. Heuristic methods simply aim to obtain a “good enough” solution by selecting
decision variables to obtain solutions which continuously progress towards a superior solution.
The General Local Search Procedure, the Shifting Bottleneck Heuristic and various other priority

based rules are often applied to the [JSSP}
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General Local Search Procedure

The simplest heuristic method for solving the is the General Local Search Procedure. This
method consists of iteratively evaluating the current solution and determining the direction in
which movement should take place to improve the objective function. Search directions and
step lengths can be determined using steepest gradient descent, conjugate gradients or Newton

methods (Engelbrecht], 2005]).

Priority Dispatch Rules

One of the earliest heuristic methods developed for scheduling applications, Priority Dispatch
Rules (PDRs), functions by assigning priorities to all operations available for sequencing. These
priorities can be assigned according to a large number of heuristic rules, for example shortest
processing time (SPT) and earliest due date (EDD). Although very easy to implement with a
low computational burden, PDRs are highly problem dependent and solution quality degrades

significantly as dimensionality increases (Jain and Meeran) 1999).

The Shifting Bottleneck Heuristic

The Shifting Bottleneck Heuristic (SBP) is commonly considered to have had the greatest in-
fluence on approximation methods for production scheduling applications. This is due to its
exploitation of the well-developed algorithms for the single machine shop scheduling problem.
The strategy involves relaxing the problem into a number of single machine problems, which are
solved one at a time and ranked according to objective function values. The schedule for the
more complex problem is generated by sequentially scheduling each machine based on its rank.
The SBP does, however, have a problem with the generation of infeasible solutions (Jain and

Meeran|, 1999).

2.6.3 Metaheuristics

The inability of heuristic methods to escape local optima have resulted in the development of
metaheuristics. The allowance of nonimproving feasible moves allows the search to continue in
regions where progress can resume (Rardin, [1998)). The motivation for using a metaheuristic to
solve the job-shop scheduling algorithm is imbedded in the inherent complexity of the problem.
Simulated Annealing , Tabu Search and Genetic Algorithms are most commonly
applied to the (Gongalves et al., [2005)).
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Tabu Search

Rardin| (1998) defines a as an algorithm which deals with cycling by temporarily forbidding
moves that would return to a solution recently visited. This is accomplished by means of a
tabu list which records the most recent solutions and prevents the search from continuing with
these now non-feasible moves. This list can act as both a recency-based memory (where the list
classifies solutions according to the length of time they have spent on the list) and frequency-
based memory (where the number of times a solution occurs has an influence). Additionally,
an incumbent solution (Zhang et al., 2006) is used to keep track of the best solution found thus
far and certain aspiration criteria can also be defined to override the tabu list if this should
become necessary. This solution strategy has led to a number of successful solutions of job shop

scheduling problems.

Simulated Annealing

[SA]is an optimization process based on the cooling process of liquids and solids. As a substance
cools, the molecules tend to align themselves in a crystalline structure associated with the
minimum energy state of the system. This is analogous to the algorithm converging to the
optimal solution of an optimization problem. As the temperature of the metals decrease, the
alignment of the atoms in the structure continually change. This alignment is analogous to
the fitness of the solution: an alignment which results in a lower energy state also results in an
improved solution. Alignments of atoms are probabilistically accepted based on the Boltzmann—

Gibbs distribution (Engelbrecht, [2005).
Py & ! ) 1 7leg) < 7o) (2.25)

exp 7 otherwise
where P;; is the probability of moving from point x; to xj, ¢, > 0 and T is the temperature
of the system. |Jain and Meeran| (1999) classifies as a generic technique unable to achieve
good solutions quickly and requires excessive computational effort. However, the hybridization
of [SA] with other solution strategies, including Genetic Algorithms, has greatly improved its

competitiveness.

Genetic Algorithms

Genetic Algorithms (GA])s attempt to parallel the process of biological evolution to find better
and better solutions (Rardin) [1998)). A number of operators (for example selection, crossover,

mutation and cloning) act upon on a population of randomly initialized individuals to trans-
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form these individuals into better solutions. This technique has been the most unsuccessful at
addressing the classical job shop scheduling problem. |Jain and Meeran| (1999) states that
are unable to successfully represent the classical job shop scheduling problem due to the fact

that crossover operators cannot generate feasible schedules without losing efficiency.

2.7 Conclusion

The most important contribution of this chapter lies in the identification of a job shop-based
scheduling model which adequately addresses the unique business requirements of Optimatiz.
Much success has been achieved in the field of job shop scheduling, yet room for improve-
ment still exists. Numerous research papers propose solution strategies ranging from complex
metaheuristic implementations to simple rules-based approaches. The next chapter discusses in
greater detail the development of a suitable solution strategy for the Optimatiz problem. Every

solution strategy has its merits — the challenge is to find the best one for the purpose at hand.
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Chapter 3

A generic production scheduling

framework

Jain and Meeran| (1999) states that metaheuristics is the most successful class of solution strate-
gies for solving the job shop scheduling problem. In order to use a metaheuristic-based approach
to solving the Optimatiz problem, the proposed solution strategy should fulfill a number of
problem-dependent requirements, the first of which is an effective problem-mapping mechanism.

The problem-mapping mechanism has to ensure that effective communication occurs between
the various domains the Optimatiz problem consists of. The problem can be divided into three
domains: the domain of the metaheuristic, consisting of for example, chromosomes or particles,
the decision space, consisting of all possible decision variable values and the objective space
which consists of all possible objective function values. This state of events is largely due to the
fact that not all the information required to derive an objective function value associated with
a specific scheduling solution can be stored inside the schedule representation.

A useful byproduct of effective communication between the various domains is that the
inherent structure of such a framework results in it being generic to all common metaheuristics.
Optimatiz has only recently started to consider metaheuristics as a potential solution strategy
and a large number of alternative metaheuristics exist that can in some way or other meet the
unique scheduling requirements of Optimatiz. The framework will enable Optimatiz to employ
population-based techniques when the computational cost is justified or to select a technique
which is relatively insensitive to the quality of the initial solution, when it is inevitable to
use a poor starting solution, this structure can add immense value to the production scheduling
efforts of Optimatiz. After all, metaheuristics are largely problem-dependent, therefore the more
alternatives available, the higher the quality of the final solution and the faster the most suitable

metaheuristic can be found.
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3.1 Structural requirements of the framework

In order to create such a generic production scheduling framework for Optimatiz there are a
number of important structural requirements which should be addressed. The first step in using
a metaheuristic is to define the schedule representation. Critical to the success of the algorithm,
this representation can be used to implicitly enforce a number of problem constraints. Because
the framework should be a fully functional solution strategy, special emphasis should be placed on
addressing the various problem-specific constraints, multiple objectives and it should be ensured
that effective functionality is obtained in the dynamic scheduling environment of Optimatiz. For

the sake of simplicity terminology will be used throughout the rest of the chapter.

3.1.1 The schedule representation

The schedule representation can be loosely defined as the structure in which the metaheuristic
stores each scheduling solution and thus it is extremely important for this representation to
address all aspects of the problem to be solved. For example, the Optimatiz problem requires
the representation to address both the allocation of operations to primary resources as well as the
subsequent sequencing of each of the operations on their allocated resources. In this framework,
the allocation of operations are denoted by the decision variables x;; which takes on a value of 1
if operation i is performed on resource j and is 0 otherwise. The sequencing decision is denoted
by t; (the starting time of operation 7).

Selecting a suitable representation has an enormous impact on the algorithm’s efficiency and
is partially responsible for incorporating the required constraints into the algorithm’s structure.
The more constraints which are implicitly incorporated into the particle representation, the less
constraints remain which have to be enforced by other methods. Probably one of the most
important decisions to be made during algorithm development, a brief review of scheduling
representations is provided in Section before a decision is made regarding the most suitable

option for the Optimatiz problem.

Review of existing schedule representations

The most common particle representation for the allocation of operations uses a vector of integer
values corresponding to the unique resource index of the machine on which each operation is to
be processed (Tamaki et al., [2001). This approach can, however, result in infeasible resource
allocations in partially Flexible Job Shop Scheduling Problem s, where a specific oper-
ation can not simply be processed on any available resource. Traditional scheduling constraints,

for example the constraint that ensures no two operations are processed simultaneously on the
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same resource, may also be violated. Attempting to incorporate more constraints implicitly
into the particle representation, [Tay and Wibowo| (2004) discusses a representation which only
assigns operations to those resources which are available at the time of the assignment.

Bit strings indicating the satisfaction of proposed precedences between operations and sorted
vectors consisting of the correct sequence of operation indices have been used to sequence oper-
ations. Other representations make provision for the starting times of all operations or assigns
priority values (Zhang et al., |2004)). However, the assignment of priorities to all operations
should be accompanied by a relatively complex scheduling heuristic which translates the parti-
cle representation into a feasible schedule.

Most scheduling algorithms, which address both allocation and sequencing, use a two-vector
particle representation, but an interesting three-vector representation can be found in [Tay and
Wibowo (2004) and there are a number of authors who have used matrix representations (Hsu

et al., 2002) (Mesghouni et al., 1997).

Schedule representation selection

The final selection opts for a two-vector representation consisting of primary resource indices and
starting times of operations (Figure . Consisting of one continuous-valued and one discreet-
valued vector, both continuous and discreet optimization algorithms can be used, provided that
a discretization-mechanism is incorporated for continuous algorithms. This mechanism simply
ensures that the continuous-valued output of the metaheuristic can be converted to its associated

discreet value for interpretation as a production schedule.

Primary
. resource 1
Primary
resource 5
5 S} 1 2 10.65 hr 2.56 hr 3.23 hr 9.23 hr

Figure 3.1: The selected schedule representation.

Since the sequencing decision variables (¢; Vi € {1,...,I}) are already used in the represen-

tation, the only other required conversion to decision variables is relatively simple. If we denote
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d; as the resource index of operation i, then z(4,); takes on the value of 1 Vi € {1,...,1} and
j€{1,...,J}, where I denotes the total number of operations and J denotes the total number

of primary resources.

3.1.2 Constraints

In any scheduling environment, factors exist which prevent the complete optimization of the
various objectives. A number of these constraints have been identified for the Optimatiz problem.
For example, precedence relationships, release dates and production calendars are just some of
the constraining factors in the Optimatiz problem.

Consider the scenario illustrated in Figure A particle p flies through a search space S,
which consists of an infeasible area I and a number of disjointed feasible areas denoted by F;,
where i € {1,...,3}. The particle has to search S to find the optimal solution which can be

located in any of the feasible areas.

.

X2

-~

X1

Figure 3.2: Constrained search space.

Various approaches, which range from randomly initializing infeasible particles to repairing
infeasible particles by converting them to their associated feasible solutions, have already been
used to address constrained optimization problems. Unfortunately many of these methods are
not suitable for use in the Optimatiz problem because of the highly constrained nature of the
search space.

The use of a penalty function is the most common way of addressing all constraints which

are not implicitly incorporated into the particle representation in cases where feasible solutions

34



can not be initialized easily. This approach involves calculating a penalty associated with each
particle in accordance with the number of constraints which are violated as well as the extent of
the violations. Subsequent minimization over the sum of all penalty values attracts the particles
towards feasible areas of the search space and repels them from infeasible areas. For example, if
two operations intersect on the same primary resource, the penalty is calculated as the number
of time units of unavailable capacity.

It should be noted that the inclusion of a penalty function involves an additional objective
over which the problem is to be minimized and therefore the Optimatiz problem becomes a
multiobjective optimization problem. However, these multiple objectives can easily be addressed
and moreover this allows for the incorporation of additional standard production scheduling
objectives so that the schedule can be optimized simultaneously with respect to more than one
objective functions. This situation more realistically portrays reality as the “final solution” of

many real world problems is often a trade-off between multiple objectives.

3.1.3 Multiple objectives

Currently Optimatiz aims to evaluate the schedules obtained by the algorithm simultaneously
in terms of three scheduling objectives: minimum makespan (Equation (3.1])), minimum late-
ness/earliness (Equation (3.2)) and minimum total queue time (Equation (3.3)). In Equa-
tions (3.1)) to fi denotes the finishing time, ¢; the starting time and d; the due date of
operation ¢ and L is the set containing the last operations of each job j where J denotes the

total number of jobs and I; the number of operations in job j.

min mzax{fz} (3.1)

min » _ |d; — fi| (3.2)
i€l
;

mlnz Z (ti+1 *fz) (33)
j=liel;igL

In order to address all three objectives simultaneously, a number of concepts in Multiobjective
Optimization theory will first be discussed.

The use of  MOO] somewhat complicates the concept of an “optimal” solution. The purpose
of MOO is to obtain a set of good compromises rather than a single solution. A non-dominated
solution is a good example of an appropriate compromise that will suffice as a solution to a
Multiobjective Optimization Problem (MOP). Rardin| (1998)) defines a non-dominated solution

to be a feasible solution to a[MOP]so that no other feasible solution performs at least as well in
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all objective functions and strictly better in one. Assuming a minimization problem:

fe(x1) < fr(z2) Vk e {1,2,...,n} (3.4)

and there exists a k € {1,2,...,n;} such that

fe(x1) < fr(z2) (3.5)

where fi(21) denotes the objective function value of solution vector x1 with respect to the kg,
objective.

The set of non-dominated solutions of a [MODP] is referred to as the Pareto-optimal set and
the set of objective function values associated with each point in the Pareto-optimal set, is
referred to as the Pareto front. The estimation of the Pareto front is an integral part of [MOO]
and is often used to evaluate algorithm performance.

Engelbrecht| (2005) discusses a number of different approaches to [MOO| which includes,
amongst others, the aggregation-based approch to[MOO] This approach is considered to be the
most simple and involves converting all functions which are to be optimized into a single aggre-
gated objective function of the form Y '*  wy fi(x), where fi(x) again refers to the objective
function value of solution vector z with respect to the k" objective. The weight associated with
the kyp, objective function is denoted by wj and ny is the total number of objectives over which
the problem is optimized.

Unfortunately, this method does have a number of drawbacks. All wy values are problem-
dependent and the algorithm needs to be solved repeatedly to obtain an estimate of the Pareto
front because in actual fact, one aggregated function is solved with a single-solution metaheuris-
tic. Furthermore, if the Pareto front is concave, in other words, if there are conflicting objectives
or if objectives are measured in incompatible units, this method is not suitable at all. In the
light of these facts, it is clear that a more suitable approach to [MOO] will need to be utilized.

Goal programming is intuitive, yet effective and involves the assignment of target values to
each of the objective functions (Rardin, [1998). Deficiency variables are also assigned to each
objective function value and determines the extent to which the target values are not met.
Minimizing over a weighted sum of all deficiency variables and repeated solving of the algorithm

with different target values, provides a reasonable estimate of the Pareto front.

3.2 The production scheduling framework

By being able to meet the structural requirements defined in the previous section the scheduling

framework is capable of addressing all the various classes of scheduling problems which form part

36



of the Optimatiz scheduling environment, as well as a large number of additional scenarios. This
was made possible by using two different reference frames as basis for the framework: |Zandieh
et al[s scheduling classification, discussed in Section and the variations on the job shop
scheduling problem, presented in Figure [2.4

The actual framework developed from these two classifications is indicated in Figure [3.3
The generic production scheduling framework consists of five interrelated components: an ini-
tialization procedure, the schedule representation, a conversion mechanism, the penalty function

and finally, the metaheuristic algorithm.

Particle

—> represen- |
tation

Objective
Schedule |« function ———
values

Conversion
mechanism ¢

Penalty :
Initialization function
algorithm
v
.
Stopping Yes
criteria —— Best solution
satisfied?

f\’\/\/\/\‘i "
L Meta-A )
ZZ heuristic ?

Figure 3.3: The generic production scheduling framework.

The framework is structured around the schedule representation which is continuously up-
dated and improved by being moved through the search space. In order to optimize the schedule,
fitness evaluations should be performed for each of the potential solutions. The objective func-
tion value of the associated scheduling solution of each particle can be obtained by means of
the conversion mechanism between the domain of the metaheuristic and the decision space.
This mechanism also incorporates machine breakdowns, scheduled maintenance and produc-
tion downtime into the schedule and provides as output the decision variables which can be
used to evaluate the objective function values. The information obtained from this conversion
mechanism is fed back to the metaheuristic algorithm to use during the optimization process.
Completing the cycle, the standard objective function values and penalties associated with each
particle is used to intelligently update the particle representation until a stopping criteria is
satisfied.

Although the overview in the previous paragraph was helpful in describing the internal

workings of the framework, the rest of this chapter is dedicated to a more in-depth discussion
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of each of the three remaining components of the structure.

3.2.1 The initialization procedure

During algorithm development, it became clear that [PSO] was unable to obtain feasible solutions
from random generated initial solutions. The rationale behind using an initialization algorithm
is to start the algorithm off with a feasible initial solution to reduce the search space which
the metaheuristic is to cover. Due to the added computational complexity, the framework was
developed to not require completely feasible initial solutions. However, experimental results
indicated that immense improvement in algorithm performance was obtained by using semi-
feasible particles when implementing the framework by means of [PSO] For this framework, a
semi-feasible initial particle is defined as a particle which does not violate any of the precedence
constraints of the problem.

The procedure used to initialize the starting-time variables consists of sorting the various
operations according to the number of predecessors associated with each operation. The starting
times of all operations with the same number of predecessors are then randomly initialized within
the same interval. These initialization intervals are chronologically sequenced to ensure that the
initialized solutions satisfy all precedence constraints.

The procedure, illustrated by means of an example in Figure [3.4] reduces the optimization
problem to the problem of sequencing sets of operations independently based on the precedence
constraints between operations and jobs. However, it should be noted that the inherent struc-
ture of the optimization framework allows the metaheuristic to change the sequence of any of
the operations in any way it sees fit to obtain an improved solution. After initialization, the
penalty function is responsible throughout the rest of the optimization process for recording and
also minimizing the extent to which these subsequent sequencing changes violate the problem
constraints.

In contrast, allocation variables are initialized randomly. These random numbers are subse-
quently discretized to obtain resource indices. For each operation, unique intervals are defined
for each resource on which the operation may be scheduled, such that a resource index can be

assigned to the operation depending on where the allocation variable is initialized.

3.2.2 The conversion mechanism

The conversion mechanism produces as output the actual finishing time associated with each
operation given that the starting time of operation ¢ processed on resource d; is given by ;. The

total processing time of an operation in the Optimatiz problem depends on a number of factors
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Figure 3.4: A network diagram of the precedence constraints between operations is used as
input to the initialization procedure. The operations initialized into their respective intervals is

obtained as output.

including the resource on which it is processed, the setup-time associated with the operation and
the effect of machine breakdowns, scheduled maintenance and production calendars on available
processing time. These factors are incorporated into the processing time of the operations by
distinguishing between a proposed finishing time and an actual finishing time for each operation.
The proposed finishing time ignores the time intervals where the required resources are not

available. If we define g; to be the proposed finishing time and s; to be the setup-time of

operation ¢

9i =ti + Tiq;Did; + Si (3.6)
and
Yjilji if Uji > 0.
S; —
Zid;Vid, otherwise.
where
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1 if operation i is performed on resource d;.
'Iidi =
0 otherwise.
(1 if operation j is performed before operation ¢ on resource d;.
Yji =
0 otherwise.

and p;q, denotes the processing time and v;q4, the default set-up time of operation i on resource
d; and uj; is the sequence-dependent setup-time of operation ¢ if processed immediately after
operation j. Basically, Equation allows the framework to make use of default set-up time
values when no sequence-dependent set-up times are defined in the problem data as well as for
the first operation processed on each resource.

As soon as the proposed finishing time of each operation is determined, production down time
can be taken into account to determine the actual finishing time of each operation. The inclusion
of production down time is the single most complicating factor within the Optimatiz problem
and this also ensures that the problem can not be modelled analytically and can therefore not
be solved to optimality.

There are three factors which influence the available production time in the Optimatiz envi-
ronment. For each unique production calendar a number of intervals are defined during which
no production on any of the auxiliary or primary resources is allowed. Scheduled maintenance
defines intervals which only affects the specified resources and for the sake of simplicity machine
breakdowns are treated as prolonged scheduled maintenance. After all production down time
intervals are defined, this data is concatenated per primary and auxiliary resource.

Incorporating the down time intervals into the production time of each operation requires
an analysis of the relationship between the current starting time of each operation to the down
time intervals associated with the primary and auxiliary resources on which it is to be scheduled.
If the starting time (g;) and the finishing time (r;) is given for each of the j production down
time intervals, the actual finishing time of operation i, denoted by f;, can be determined by the

procedure described in Algorithm [If and the diagram provided in Figure |3.5

3.2.3 The penalty function

The Optimatiz scheduling environment is characterized by a large number of constraints, which
range from the enforcement of precedence constraints between jobs and operations within the
same job to the inclusion of release dates into the schedule. This section attempts to provide an
analysis of those constraints enforced by the penalty function as well as the calculation of the

penalty values associated with their violation.
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Algorithm 1: The conversion mechanism for the incorporation of production down time

into the schedule.

0.1 for All operations i do

0.2 for All downtime intervals j do
0.3 if f; <gq; ort; > r; then
0.4 Interval j is an intersected down time interval of operation ¢
0.5 end
0.6 end
0.7 for Intersected down time intervals k of operation i to K do
0.8 if g < f; and t; < ¢ then
0.9 fi=fi+re—a
0.10 end
0.11 if g <t; and t; <7y then
0.12 fi=fi+tre—t
0.13 end
0.14 end
0.15 for All downtime intervals j from k to J do
0.16 if f; > g; then
0.17 fi=fi+tre—ar
0.18 else
0.19 Break to operation ¢ + 1
0.20 end
0.21 end
0.22 end
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Figure 3.5: The schedule before and after the inclusion of production down time intervals.

The penalty function makes use of two important decision variables, obtained as output
from the particle representation and the conversion mechanism, namely the starting time ¢; of
operation i as well as the actual finishing time f;, referred to hereafter as simply the finishing
time, of operation i. Both ¢; and f; may only take on positive values.

The precedence relationships are enforced by means of Constraint where the set A
contains all precedence relationships. For each relationship, the starting time of the second
operation (operation i) in the precedence relationship has to be larger than the finishing time
of the first operation (operation j) in the precedence relationship. In case of violation of Con-
straint ([3.7) a penalty corresponding to the number of time units the precedence constraint is
violated can be calculated for each operation according to Equation . These penalty values
are then summed over all precedence relationships (Equation (3.9))) to obtain the precedence

relationships penalty value (pla) for each schedule.

fi <t V(i,j) € A (3.7)

Pl ) = [min(0, (t; — fi))] V(i,j) € A (3-8)

pla = Z Pl j) (3.9)
(3,5)€A

Since release dates are defined per job and not per operation, Constraint (3.10|) ensures
that the first operation of job k, defined in set F, is only released on the production floor after

the arrival of the job release date rp. The release date penalty value of each schedule can be
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calculated according to Equations (3.11)) and (3.12)).

tr > Tk VkeF (3.10)
P2 = [min(0, (tx — ri))] Vk e F (3.11)
pa = p2 (3.12)

keF

The most critical production scheduling constraints are those that prevent two operations
being scheduled at the same time on the same resource. The constraints are relatively simple
to formulate, but the calculation of the penalty, defined as the actual intersection time of two
operations on the same primary resource, is more complex. If operation ¢ and operation j is
performed on the same finite capacity primary resource, the relationship between f;, f;, t; and
t; determines the value of the penalty assigned. The four mutually exclusive scenarios which can
occur is incorporated into the calculation of p3; j), where Jy; consists of the set of all operations
performed on resource d;. The total penalty value (p3a) associated with these “intersection

constraints” can be calculated according to Equation (3.14]).

;

fi—1t iftiztj,fi<fj and wz‘jZOV(i,j)EJdi.

fj —t; ift; > tj, fj < fl and Wij = 0 V(Z,j) S Jdi-

P3(ij) =
fj —t if tj > 1, fj < f; and w;j =0 V(Z,]) S Jdi~
fi—t]‘ iftj > i, fz Sf] and wij:OV(i,j) GJdi.
where
0 if f <tjor f; <t V(i,j) € Jq,-
wij ==
1 otherwise.
fi—ti iftiztj,fz‘<fj and wijZOV(i,j)EJdi.
3 fj_ti iftith,fjgfi and wijZOV(i,j)EJdi.

Plij) = (3.13)
fj —t; if tj > t;, fj < f; and Wij = 0 V(Z,j) S Jd,-'

fi — tj if tj > i, fz < fj and Wij = 0 V(Z,j) S Jdi-

p3a = Z P3(ij) (3.14)
(ivj)e']di
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The operation processing time is independent of the auxiliary resource allocation. This
results in the auxiliary resource allocation not having a direct influence on schedule optimization.
Instead the auxiliary resources is simply incorporated as constraints into the penalty function.
However, before the penalty values can be calculated, the algorithm first attempts to obtain
feasible auxiliary resource allocations for all the operations to one auxiliary resource from each
set of auxiliary resources required. An allocation is considered feasible if all the specified auxiliary
resources are available throughout the time period that the operation is scheduled on the primary
resource.

This allocation procedure, indicated in Algorithm [2| provides as output a list of operations
for which no feasible auxiliary resource allocation can be obtained. Since this implies that
insufficient capacity exist to fulfill the processing requirements for these infeasible operations,
the penalties are calculated in Equation as the operation production times and are summed

to obtain the total penalty value associated with auxiliary resource allocation (p4a).

pda = Zai(fi —t;) (3.15)

i

where 1 if operation 7 is infeasible.

0 otherwise.

The total penalty function value (P) for each schedule can be calculated according to Equa-
tion (3.16]). It should be noted that due to the total per schedule penalty function value being
calculated as the sum of the penalty values associated with each set of constraints, the penal-

ization of the objective function is directly proportional to the extent of infeasibility.

P = pla + p2a + p3a + pda (3.16)

3.3 Conclusion

At this point it should be remembered that an algorithm is only as good as the results it produces
and in order for appropriate testing and benchmarking to be done, a specific metaheuristic has
to be selected within which the framework can be implemented. In compliance with the research
question, the next chapter will provide an extensive introduction into Swarm Intelligence and
more specifically [PSO] before the application of[PSO]to the framework developed in this chapter,

is discussed.
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Algorithm 2: Allocation of operations to auxiliary resources.

1.1 for All operations i do

1.2 for All resource sets j do
1.3 if A resource is required from resource set j then
1.4 for All resources k in set j do
1.5 for All scheduled intervals | do
1.6 if f; <gq ort; > r; then
1.7 Operation ¢ will overlap interval [
1.8 end
1.9 end
1.10 if Operation i overlaps any intervals then
1.11 Operation ¢ cannot be scheduled on resource k of set j
1.12 if £ = K; then
1.13 Operation ¢ is infeasible
1.14 Break to operation 7 + 1
1.15 else
1.16 Break to resource k + 1
1.17 end
1.18 else
1.19 Schedule operation ¢ on resource k of set j
1.20 end
1.21 end
1.22 end
1.23 end
1.24 end
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Chapter 4

Particle Swarm Optimization

An insect may only have a number of brain cells, but insect organizations are capable
of architectural marvels, elaborate communication systems, and terrific resistance to

the threats of nature (Kennedy et al., 2001)).

4.1 Optimization through Swarm intelligence

Over the past twenty years, a number of studies have addressed the collective behaviour of
animals in a fixed social hierarchy. The more interesting cases, however, are those where no
clear leader can be identified, yet the individuals manage to self-organize in order to meet a
specified objective. This objective can range from predator avoidance to searching for food.

These early studies have led to the development of various distributive collective problem
solving strategies. More formally, Engelbrecht| (2005) defines Swarm Intelligence (SI) as the
property of a system whereby the collective behaviours of unsophisticated agents, which inter-
act locally with their environment, cause coherent functional global patterns to emerge. This
definition addresses four interrelated concepts, commonly believed to be the secret behind the
success of SI as an optimization strategy. These concepts include emergence, social intelligence,
stigmergy and adaptation.

Consider the example of a flock of birds which have a single objective — finding a source of
food within a predefined solution space. The ability of the flock to find the food source can be
best explained by the concept of emergence: simple local interactions which lead to global effects.
A single bird possesses a relatively limited amount of intelligence, but the complex behaviour of
the entire flock allow the birds to settle on the food source. This flocking behaviour results from
simple social interactions between individual birds. The knowledge that a single bird obtains

from interacting with and adapting to its environment is propagated through the entire flock by
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indirect communication or stigmergy between individuals. In other words, even though a single
bird is not aware of the location of the source of food, the local interactions and information-
exchange mechanism of the flock leads to convergence of the entire flock to the intended location.

The purpose of Computational Swarm Intelligence (CSI) is to model the simple local interac-
tions of individuals with the environment and neighbouring individuals, in order to obtain more
complex behaviours that can be used to solve optimization problems (Engelbrecht 2005)). To aid
this objective, two CSI paradigms have been developed: Ant Algorithms, which are developed
from behaviours observed in ant and termite colonies and Particle Swarm Optimization

— the focus of this project.

4.2 Introduction to Particle Swarm Optimization (PSO)|

4.2.1 Origin and applications

Many researchers trace the origins of the [PSO] algorithm back to Reynold’s “boid” simulations.
The initial objectives of this and the other collective behaviour studies of the late 80s was to
simulate the graceful, unpredictable choreography of collision-proof birds in a flock (Eberhart
and Shil 2001)). However, the optimization potential, of what was at that stage only a conceptual
model, soon became apparent. Simplification and parameter derivation resulted in the first
simplistic implementation by |[Kennedy et al.| in 1995.

Since its humble beginnings, [PSO] has established itself as a simple and computationally
efficient optimization method in both the fields of Artificial Intelligence and Mathematical Op-
timization. Applications range from more traditional implementations like evolving artificial
neural networks and optimizing various planning and scheduling models to more specific appli-

cations, like the design of aircraft wings and the generation of interactive, improvised music.

4.2.2 Schedule-specific applications

One of the most complex production scheduling applications of [PSO| was performed by [Xia and
Wul (2005), who developed a Simulated Annealing-Particle Swarm Optimization based
hybrid solution strategy for the Flexible Job Shop Scheduling Problem . The algorithm
addresses with both total and partial flexibility. In this specific implementation, only
the allocation of operations to resources is done by means of [PSO] The actual sequencing of
the assigned operations are performed by a Simulated Annealing algorithm. Additionally,
multiple objectives are addressed by combining the relevant objectives into a single weighted

sum objective. Finally, although the[SA-PSO]algorithm improved on current best known [FJSSP]
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benchmark values, the algorithm found a 56 operation problem to be challenging.

The most interesting aspect of Xia and Wu's article is the problem mapping of [PSO] particles
to schedules. All the machines on which a specific operation can be processed, is sorted according
to their shortest processing time. One particle is represented by a discreet value corresponding
to each operation. This value refers to the position of the machine to which the operation is
allocated, with respect to the other sorted machines. The continuous optimization problem is
converted to its corresponding discreet optimization problem by simply rounding the continuous
variables to discreet resource indices.

Due to its extreme intractability, the basic job shop scheduling problem has been used a
number of times to test the performance of scheduling algorithms. A number of authors have
managed to solve basic with hybrid algorithms (Xia Weijun and Genke, 2004).
Other scheduling applications include schedule optimization in a flexible manufacturing system
(Jerald et al., 2004), various Permutation Flow Shop Scheduling Problem s (Lian et al.,
2006]) and a resource-constrained project scheduling problem (RCPSP) (Zhang et al., 2004).

4.3 The Basic [PSO] algorithm

In order to apply a[PSO}based approach to the proposed problem, a working knowledge of [PSO|
techniques is required. A good place to start is with the simplest of the lot — the basic [PSO|

algorithm.

4.3.1 Algorithm structure

All Swarm Intelligence-based solution strategies, and therefore also the [PSOJ algorithm, have

four distinct characteristics:

e A group of individuals performs space and time calculations. In the algo-
rithm, each potential solution to the scheduling problem is represented by the position of
a particle in a multi-dimensional hyperspace (Figure . Velocity and displacement up-
dates are applied over time to each particle to move it to a different position and therefore

a different solution in the search space.

e The individuals respond to quality factors in the environment. Information about
the environment is stored by each particle in the form of the personal best position obtained
by each particle (pbest) and the global best position obtained by the entire swarm (gbest).
Both the pbest and gbest values are incorporated into the velocity updates and therefore

have a significant influence on particle trajectories.
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Figure 4.1: Particle positions that represent potential solutions.

e The behaviours of the individuals should only be changed when the computa-
tional cost is justified, which implies that a minimum level of stability should
be maintained. Although the state of the swarm is changed every time the pbest and
gbest values are updated, these updates do not occur at each iteration, but only occur if

a particle happens to stray onto a better solution.

e A specific method of exploration should be incorporated into the algorithm.
Their are numerous methods of ensuring that exploration into a [PSO] algorithm. Due to

the importance of adequate exploration, this is discussed in more detail in Section

Emergence and social intelligence is incorporated into the velocity update which is consid-
ered to be the most critical component of the [PSO] algorithm. Figure illustrates that the
magnitude and direction of a particle’s velocity at time step ¢ is considered to be the resultant of
three vectors: the particle velocity vector at time £ — 1, the cognitive component pbest, which is a
vector representation of the best solution found to date by the particle and the social component
gbest, which is a vector representation of the best solution found to date by all the particles in

the swarm. The velocity of particle ¢ in dimension j at time step ¢ + 1 is given by:
vij (t + 1) =vi(t) + e (£)[yis (t) — a5 ()] + cary (1) [Y;(E) — 245(2)] (4.1)

where v;;(t) represents the velocity of particle ¢ in dimension j at time step ¢, ¢; and ¢y are the
cognitive and social acceleration constants, y;;(t) and x;;(t) respectively denotes the personal
best position (pbest) and the position of particle ¢ in dimension j during time step t. Yj(¢)
denotes the global best position (gbest) in dimension j and r(¢) is a random number sampled

from a uniform distribution during time step t.
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Figure 4.2: Particle velocity as resultant of three components.

The displacement of particle ¢ at time ¢ is simply derived from the calculation of v;;(t + 1)

in Equation (4.6)):
xi(t+ 1) =z;(t) + v (t + 1) (4.2)

For the sake of completeness a flowchart of the basic[PSO|algorithm is provided in Figure
where the pbest and gbest updates referred to in Figure are enforced by Equations (4.3))

and .

if f(@s) <f(yi) then

Yi =x; Vie{l,...,ns} (4.3)
if f(ys) <f(Y) then
Y =y Vie {1,... n} (4.4)

4.3.2 Algorithm requirements and limitations

A number of factors exist which results in the basic [PSO| algorithm not being suitable for use
in the Optimatiz scheduling framework. Some of these limitations include: the algorithm has a
tendency to stagnate, has problem-dependent parameters and there exists significant potential
for improvement in the algorithm’s use of exploration and exploitation. Fortunately a number
of strategies exist to overcome these limitations and there is significant proof that a variation

on the basic algorithm may be more than adequate (Engelbrecht, 2005).
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Figure 4.3: The basic [PSO] algorithm.

The tendency to stagnate

The basic [PSO] algorithm has a potentially dangerous property. The algorithm is driven by the
fact that as a particle moves through the decision space, it is always attracted towards its pbest
value and the flock’s gbest value. However, if any of the particles reaches a position in the search

space where

Yij (t) =2ij(t) = Y;(t) (4.5)

there is no driving force for the particle to continue exploring the rest of the search space. This
property can result in the swarm converging to a point which cannot necessarily be classified as
a local optima. It can simply be said that the swarm has reached an equilibrium state.

Fortunately a number of different methods have been developed to force the gbest particle
out of its stagnation point. The first method, the [GCPSO] will be used in this project. In effect
the gbest particle is forced into a random search around the global best position. The size of
the search space is adjusted on the basis of the number of consecutive successes or failures of
the particle, where success is defined as an improvement in the objective function value.

The second approach to prevent algorithm stagnation involves the use of the Convergent

Linear Particle Swarm Optimization (CLPSO)) algorithm. Originally developed to address con-
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strained optimization problems, the algorithm requires that all particle adjustments be linear

combinations of the initial conditions (Engelbrecht, 2005).

The problem-dependent nature of input parameters

Engelbrecht) (2005)) states that the performance of is sensitive to control parameter choices
and inadequate selection of parameter values can lead to divergent or cyclic behaviour. This

limitation is often addressed by means of comprehensive parameter derivation studies.

Exploration versus exploitation

The use of approximation algorithms results in a trade-off required between exploration and
exploitation. Where exploration refers to the algorithm’s ability to cover large areas of the
search space, exploitation refers to the refinement of a potential solution. In most applications,
exploration is called for in the initial stages of algorithm execution and exploitation is utilized
near the end, to fine-tune potential solutions. The easiest way of addressing this trade-off is

again by judicial selection of required input parameters.

4.4 Existing variations on the basic [PSO|

In order to address the inherent limitations and requirements of the basic [PSO] a number of
variations on the [PSO| algorithm has been developed. These variations, indicated in Figure [£.4]

are organized into six main categories:

e Social based algorithms use different social typologies or network structures. The
three most common network structures implemented in [PSO] are indicated in Figure 4.5
The black lines between particles represent the existence of a communication mechanism
between the linked particles. Algorithms using a different pbest and gbest calculations are

also classified as social based algorithms.

e Hybrid algorithms refer to all [PSO] variations that combine Evolutionary Algorithms
(EA)-based concepts like selection, reproduction and mutation, as well as all algorithms

which consist of more than one metaheuristic.

e Sub-swarm based algorithms are based on some explicit or implicit grouping of parti-
cles in sub-swarms and can be divided into cooperative and competitive sub-swarm based

algorithms.
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e Memetic algorithms incorporates local search procedures between iterations of the stan-

dard [PSOJ to enhance the exploitation ability of the algorithm.

e Multi-start algorithms inject chaos into the swarm to increase diversity through random

initialization of particles.

e Algorithms which utilize various repelling methods also has as their main objective
the diversification of the swarm. This class of algorithms include all variations where

specific mechanisms are employed to avoid particle collisions or to repel adjacent particles.

4.5 Applying [PSO|to the Optimatiz problem

In order to apply [PSO] effectively to the production scheduling framework developed in the pre-
vious chapter, it is important to briefly review the context and functionality of the metaheuristic
within the framework. Basically, the framework provides the [PSOJ algorithm with a schedule
representation to be intelligently updated. These updated schedules are continuously fed back to
the framework which in turn provides the [PSO] algorithm with information of the fitness of the
various solutions. This information is then used to further guide the optimization algorithm’s
search throughout the problem space.

Unfortunately the basic[PSO] in its current form, is not able to meet these requirements and
the algorithm has to be adapted accordingly. This adaptation takes the form of a discretiza-
tion mechanism, the inclusion of two additional parameters and converting the basic [PSO] to a

IGCPSO

4.5.1 Algorithm discretization

Due to the continuous nature of displacement and velocity values, all variables obtained as
output from a[PSO}based algorithm are elements of the set of real numbers. Because the particle
representation of the Optimatiz production scheduling framework consists of one discreet and
one continuous-valued vector (Section , a discretization-mechanism has to be incorporated
into the [PSO] algorithm. To interpret the resource allocation obtained as output from the [PSOJ
algorithm, the same initialization mechanism of Section [3.2.1] is used.

It should be noted that the discreet variables are converted back to their associated contin-
uous values before being used by the [PSO] algorithm in the velocity and displacement updates

of the next iteration.
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4.5.2 The inclusion of inertia weight as an input parameter

In order to achieve greater control over the exploration and exploitation abilities of the swarm
and to ensure that the particle trajectories converge, an inertia weight (w) was incorporated

into the velocity update of the algorithm thereby changing it to Equation (?7).

vij (t + 1) =wvi(t) + c1rj ()i (t) — i (0)] + cors (B)[Y;(E) — zi5(t)] (4.6)
4.5.3 The Guaranteed Convergence Particle Swarm Optimization (GCPSO))
algorithm

In order to prevent algorithm stagnation, the [GCPSO]| algorithm applies different velocity and
displacement updates, respectively indicated by Equations (4.7) and (4.8)), to the global best

particle.
Urj(t 4+ 1) = — 275(t) + Y;(t) + wor(t) + p(t) (1 — 2r4(t)) (4.7)
oyt 1) =Y;(0) + wor (6) + plt) (1 — 2r;(1)) (4.8)

The seemed to be effective to prevent algorithm stagnation as can be seen from
Figure [4.6] where the [GCPSO] algorithm avoids swarm stagnation at iterations 22, 52 and 93.

Objective function value
—_ —_ (] (]
™ | M i -

.
=

“] 2 Il 1 Il Il 1 1 1 1 1
1] 10 20 30 40 50 1] 70 50 a0 100

Iteration number

Figure 4.6: Convergence graph of the implementation of the[GCPSO|algorithm on the Optimatiz
problem. The plot is of the aggregated objective function which minimizes the deficiencies

between the target values for the objective functions and the actual values obtained.
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4.6 Conclusion

This implementation of the [GCPSO|in the generic production scheduling algorithm is the sim-
plest algorithm structure which can be used to solve the Optimatiz problem by means of [PSO]
As this structure results in a relatively computationally complex algorithm, the algorithm de-
velopment process described in the next chapter serves as a detailed rationale.

The rationale also serves another purpose. After the design and coding of the basic algorithm
requirements, the results obtained are simply not good enough for the client and in order to
identify suitable strategies to improve algorithm performance, it is sometimes helpful to consider

the path that has already been walked.
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Chapter 5

Reflection on the algorithm

development process

Algorithm development consisted of three distinct phases. The initial phase was simply con-
cerned with obtaining a feasible solution. After the feasible solution was obtained, it became
clear that the algorithm was very sensitive to the input parameter values. Subsequently the most
critical parameters were identified and used in an experimental run. After suitable parameter
values were obtained, the algorithm development process was concluded with the final phase
which involved further experimentation with different parameters and the inclusion of a local
search.

A number of performance measurements were used throughout the development process to
evaluate algorithm performance. All algorithm improvements were evaluated with respect to the
Optimatiz benchmark data set, a set of benchmark data developed in Chapter [6] that requires
the schedule to be evaluated simultaneously with respect to all three objective functions.

The following performance measurement criteria largely drove the improvement process (En-

gelbrecht, 2005)):

e The accuracy acc(Yj) of a solution Yj is defined by Equation , where X represents the
theoretical optimum. This was the most important measure used during the initial phase of
algorithm development. Due dates are not a binding constraint in the Optimatiz problem.
This implies that a large number of feasible solutions exist for any problem modelled as
an Optimatiz problem and that the global optima, when minimizing the penalty function,

is always equal to zero.

acc(Y;) =[f(¥;) — f(=)| (5.1)
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e As soon as the algorithm started generating feasible solutions the most obvious measure-
ment, the actual objective function values of each of the three objective functions, was

used.

e Efficiency, in other words either the time taken or the number of iterations either to a
specified solution or level of accuracy, became increasingly important as the computational
complexity of the algorithm increased. As time to convergence increased it became more

and more necessary to find a good answer within as few iterations as possible.

e After the algorithm proved competent in generating feasible solutions, reliability was in-
corporated as a measurement to determine the percentage of time the algorithm produced
feasible solutions. The reliability (R) of an algorithm can be defined by Equation ,
where n. is the number of feasible solutions and N is the number of times the algorithm

was executed.

R :% x 100 (5.2)

e At the final stages of algorithm development, the robustness of the algorithm was also
measured. This measurement focuses on the stability of the solution obtained over a
number of algorithm executions. The robustness (Rb) of a performance criteria can be
calculated according to Equation , where 6 denotes the average and oy the variance

of the performance criteria over a fixed number of iterations.

Rb :[g—a'g,g—l—O'g] (5.3)

5.1 Phase 1: working towards a feasible schedule

Obtaining a feasible solution turned out to be no mean feat as the procedure followed in Fig-
ure testifies. The figure also serves as a rationale of why the complex structure described in
Chapter [3| is required. Throughout this phase accuracy was used as the performance measure-
ment of choice and the results obtained by the algorithm upon conclusion of Phase 1 is indicated
in Table The convergence graph of this first feasible answer of the algorithm is indicated in
Figure [5.1] The graph was obtained under the conditions stipulated in Table [5.2]
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Table 5.1: Results obtained at completion of the first development phase.

Performance measurement Answer obtained
Makespan 10564h
Lateness/earliness 29108h

Queue time 9879h

Aggregated objective function 49100h
Penalty function 0h

Time to solution 226s

Table 5.2: Parameter values used after completion of the first development phase.

Parameter ¢ ¢ w9 P a b N

Valueused 14 14 0.7 0.5 35 10000 700 30

5.2 Phase 2: parameter derivation

One of the major drawbacks of [PSOJis that algorithm performance is dependent on the values
of a large number of input parameters. To add insult to injury the inclusion of the
resulted in a number of additional parameters being included in the algorithm.

Both the fields of Operations Research and Computational Intelligence, is increasingly mov-
ing towards parameter-free optimization. These algorithms are capable of continuously adapting
the values of their input parameter according to information obtained about the search space and
the current state of the optimization process. Parameter-free algorithms reduce the time and
cost associated with experimental runs geared towards obtaining suitable values for all param-
eters each time a new problem is solved. Although this is the ideal situation, it is not required
for optimization in the Optimatiz environment, since algorithm implementation involves a large
degree of customization which generates revenue for the company.

In order to determine the most effective input parameter values while taking into account
the complex relationships between the parameters, the optimization algorithm was repeatedly
executed and the effect of different parameter values on algorithm performance was monitored.
Table provides information regarding the parameters tested, as well as a brief explanation of
their purpose and the values used as input to the experimental run. It should be noted that the
inertia weight, penalty function coefficient and the size of the swarm was kept constant and that
the parameter values tested complies with Clerc’s parameter selection heuristics (Equation )

which guarantee convergent particle trajectories (Engelbrecht, [2005).
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Figure 5.1: Convergence graph of the algorithm at the end of Phase 1 of the development process.
The plot is of the aggregated objective function which minimizes the deficiencies between the

target values for the objective functions and the actual values obtained.

1
1>w>§(61+62)—120 (5.4)

From the results of the experimental analysis illustrated in Figure [5.3] it became clear that
a definite relationship exists between the input parameter values. The data was analyzed and
suitable parameter values were selected based on three criteria: the feasibility of the schedule,
the value of the aggregated objective function and the rate of convergence of the algorithm,
where slower convergence is more desirable. Based on this analysis, the best parameter values
for the Optimatiz benchmark data is indicated in Table[5.4] The results obtained from this set of

parameter values are indicated in Table[5.5| with the associated convergence graph in Figure|5.4

5.3 Phase 3: performance improvement

The final phase of development again focused on improving the algorithm structure. From the
results obtained after parameter derivation, it became clear that algorithm performance could

be improved by incorporating a local search after the final iteration.
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Rardin| (1998)) describes a local search as an algorithm that starts with a feasible solution and
advances along a search path of feasible points with ever-improving function values. Concluding
the third phase of algorithm improvement, this local search resulted in significant improvement
in algorithm performance. This improvement can be attributed to the transferring of the global

best particle to the nearest optimum in the search space.

5.4 Conclusion

After the final algorithm design and testing, the focus of performance measurement shifts from
evaluation for the sole purpose of identifying and correcting weaknesses to a more thorough
benchmark approach for algorithm evaluation against client expectations and academic stan-

dards.
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Table 5.4: Parameter values used after completion of the first development phase.

Parameter ¢4 ¢ w 0 P a b Tig

Valueused 2 2 09 0.25 20 20000 700 30

Table 5.5: Results obtained at completion of the first development phase.

Performance measurement Answer obtained
Makespan 10229h
Lateness/earliness 27849h

Queue time 9304h

Aggregated objective function 46930h
Penalty function 0h
Time to solution 117.29s

1 B T T T T T T T T T

16 .

14} -

12 -

Objective function value
=]

D 1 | | 1 1 | 1 1 |
1] 10 20 30 40 50 60 70 g0 a0 100

Iteration number

Figure 5.4: Convergence graph of the algorithm after parameter derivation. The plot is of the
aggregated objective function which minimizes the deficiencies between the target values for the

objective functions and the actual values obtained.
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Chapter 6

Performance evaluation

Testing and validation makes up an integral part of the algorithm design process. The algorithm
which was developed in Chapter [4| and improved in Chapter [5| has to be thoroughly verified and
validated. Since the validation process was addressed in Chapter [2] this chapter will only focus
on algorithm verification and evaluation with respect to both academic standards and client
expectations. Unless otherwise specified, the final Guaranteed Convergence Particle Swarm
Optimization algorithm developed in the previous chapter is used under the conditions
indicated in Table 5.4l

6.1 Algorithm verification

Verification can simply be defined as the process of evaluating the algorithm output against the
expectations created by the conceptual model. In other words verification simply addresses the
question: “Does this answer make sense?”

In order to facilitate algorithm verification the schedule was drawn in Excel. The schedule
generated for the Optimatiz benchmark data set does not have any serious anomalies, all the

constraints are satisfied and in general, it appeared to be a good scheduling effort.

6.2 Benchmarking against industry standards

The easiest way to evaluate the academic significance of an algorithm is to test its performance
with respect to standard benchmark problems provided in literature for this very purpose.
Unfortunately, not a lot of benchmarking problems exist in literature for production scheduling
algorithms which address both allocation and sequencing and those problems that do exist focus

mainly on very small sized problems.
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The most commonly used Flexible Job Shop Scheduling Problem benchmark prob-
lem sets are the two sets developed by Kacem et al.| (2002)). The T-FJSP problem set requires
the scheduling of 30 operations, each one on any one of 10 primary resources. The P-FJSP prob-
lem set consists of 27 operations to be scheduled on 8 primary resources. The second problem
set falls within the class of Partial Flexible Job Shop Scheduling Problems, where all opera-
tions may not be processed on all resources. These problems are not as severely constrained as
the Optimatiz problem and are therefore in a completely different class to the problems which
Optimatiz deals with. Instead of spending a lot of time benchmarking against these industry
standards this phase of the project will rather focus on the development of a benchmark data

set catered specifically for the needs of Optimatiz.

6.3 Design of a customized benchmark problem

The benchmark problem sets found in literature are clearly inadequate in evaluating the proposed
algorithm. In order to overcome this problem a benchmark problem set was derived specifically
for the Optimatiz environment. Containing all constraints and features of the problems ad-
dressed by this project, a much better indication of algorithm performance can be obtained.
Additionally, future production scheduling research can benefit from meaningful performance
comparisons enabled by the existence of a benchmark data set which is generic enough to be
applicable to a large number of scheduling scenarios.

The Optimatic benchmark problem is the same size as the problems which Kacem et al.
(2002) describes to be great sized: namely 56 operations are to be scheduled on any operation
from a resource set differing in size from one to 10 primary resources, selected from a total of
216 resources.

The benchmark data is based on real world production data sourced from one of the Op-
timatiz data sets. However, the data set had to be extended to include sequence-dependent
set-up times and resource-dependent processing and resource-dependent default set-up times.
To ensure that this extension is based on realistic assumptions, the variation U% of all operation
process times processed on different resources were calculated from the |[Kacem et al. (2002)
benchmark data set. Subsequently the Optimatiz benchmark problem data was randomly gen-
erated within the interval [up — o, up + o], where up denotes the operation dependent data
point, for example the resource-dependent default setup-time value (s;q,) for operation i on
resource d;. For the sake of simplicity half of the sequence-dependent setup-times data was
initialized to zero.

An analysis of algorithm performance with respect to the Optimatiz benchmark problem is
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provided in Table The results are significantly better than those obtained earlier in the
development process. The best indication that a schedule is sub-optimal is if operations have
to wait on the production floor due to resources not being available. Therefore, the fact that
the algorithm is able to obtain a queue time of zero hours suggests that no room for
improvement exists in terms of the sequencing of operations on resources. Further improvement
efforts will therefore focus on minimizing the makespan and lateness/earliness functions through

addressing the allocation decision.

Table 6.1: Final algorithm results.

Performance measurement Answer obtained
Makespan 2352h
Lateness/earliness 3895h

Queue time 0h

Aggregated objective function 5753h
Penalty function 0h

Time to solution 231s

Unfortunately the data structures do not yet exist to evaluate these benchmark results
against other algorithms currently in use by Optimatiz, but this data set provides a solid basis

for the extension of the algorithm to address larger and more complex problems.

6.4 Conclusion

This chapter was instrumental in showing that Particle Swarm Optimization (PSO|) can defi-
nitely add value in the production scheduling environment. Obviously room for improvement

does exist but the results that have been obtained thus far are very promising.
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Chapter 7

Final remarks

7.1 Results and value added

This project achieved what it set out to do: to investigate the optimization potential of Particle
Swarm Optimization in complex job shop environments. A complex variation on the
basic Job Shop Scheduling Problem , now known as the Optimatiz problem, has been
analyzed extensively in terms of its position in existing production scheduling structures. This
analysis resulted in the single most important contribution of this project: the development of
a production scheduling framework generic to all common metaheuristics. Useful in solving a
large number of variations on the Job Shop Scheduling Problem (JSSP)), the framework also has
important implications for evaluation of alternative metaheuristic-based strategies.

Important work was also done in the field of constrained and multiobjective optimization.
Not many algorithms exist in the field of Computation Intelligence which are able to simulta-
neously address both these important aspects.

A number of important conclusions regarding the implementation of [PSO] to complex opti-
mization problems and more specifically to production scheduling problems, was reached during
the development process.

In problems where feasible solutions can not be obtained easily, the use of initialization
algorithms or semi-feasible initialization procedures is of critical importance. Throughout the
optimization process, a penalty function is required to allow particles to move through infeasible
regions of the search space to obtain better solutions.

The uniform initialization of particles throughout the search space is absolutely critical for
the implementation of [PSO}based algorithms. This results in especially rules-based algorithms
not always being suitable for initializing complex problems.

Finally, the judicial selection and incorporation of problem constraints have to be considered
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very carefully during algorithm development to ensure acceptable performance.

7.2 Future research opportunities

The first thing that comes to mind, in terms of future research, is the implementation of al-
ternative metaheuristics on the generic production scheduling framework. Tabu Search
is commonly considered to be the best suited to complex production scheduling problems and
could also prove to be less computationally expensive.

In terms of the actual problem formulation, it could potentially be valuable to determine
how the structure of the problem could be exploited for optimization purposes. This project
followed a more generic variable-based approach, but considering optimization in terms of, for
example, swopping operations on the same resource to move from one iteration to the next could
potentially add value and should be considered in the future.

Another option would be to adapt the disjunctive graph formulation to take production down
time, scheduled maintenance and machine breakdowns into account. A binary optimization
algorithm would be sufficient to solve this problem and the tradeoff between shorter execution
time and computational complexity would definitely make for interesting research.

More specifically, a number of alternatives exist to address the structural requirements of
the scheduling framework. Mostly considered to be too complex for the scope of this project
they are prime candidates for future research in the field of Swarm Intelligence and production
scheduling.

A more complex approach to algorithm discretization exists in the form of derivation of
arithmetic operators. The standard operators, for example addition and multiplication, which
forms the basis of [PSO] is redefined to facilitate the solution process of various constraint
satisfaction problems, amongst which the Travelling Salesperson Problem .

Another approach consists of addressing particle representations consisting of both discreet
and continuous variables, by means of a Particle Swarm Optimization-Genetic Algorithm (PSO-
hybrid. Genetic Algorithms s are inherently discreet optimization techniques and
could potentially add value where the continuous-valued [PSO| could not.

In terms of addressing constraints, Pareto-ranking methods uses concepts of [MOO] to rank
solutions based on their degree of violation. These methods, along with conversion of the
constrained problem into an unconstrained problem by means of La Grange multipliers was not
investigated in this project due to the added complexity.

Multiobjective optimization is one of the fastest growing subject areas in the field of opti-

mization. Dominance-based methods are the most complicated but also the most powerful class
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of PSO|MOQ] algorithms. Utilizing complex archiving mechanisms to store all non-dominated
solutions, the distance to the true Pareto front can be minimized while sufficient diversification
of the Pareto front is maintained. Due to the severe complexity and computational expensive-
ness of this class of algorithms, they were also not considered to fall within the scope of this
project.

The production scheduling environment is notorious for its dynamic nature. There exists
numerous approaches to incorporating stability between successive schedule generations. These
range from the inclusion of an additional objective function to the use of Dynamic Job Shop
Scheduling, where rescheduling is performed subject to certain predefined criteria. One of[PSOJ's
most important claims to fame is its tracking and optimizing ability of dynamic systems. Re-
search showed that [PSO] converges faster and obtains a higher fitness value than any of the other

evolutionary algorithms which were tested (Eberhart and Shi, 2001)).

7.3 Conclusion

The concept of social learning and adaptation is responsible for a large number of natural
phenomena ranging from the multiplication bacteria to the complex schooling behaviour of
fish. This project discussed the significant potential for implementation of Particle Swarm
Optimization to production scheduling. In short, this project is all about the application

of Particle Swarm Optimization — a simple algorithm with big implications.
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