
Swarm Intelligence

A multiobjective production scheduling application

Jacomine Grobler

October 13, 2006

Abstract

Production scheduling is one of the most important issues in the planning and operation

of manufacturing systems. Customers increasingly expect to receive the right product at the

right price at the right time. Various problems experienced in manufacturing, for example

low machine utilization and excessive work-in-process, can be attributed directly to inadequate

scheduling. In this project a generic production scheduling framework suitable for implementa-

tion with all popular metaheuristics is designed and evaluated for Optimatix, a Gauteng-based

company specializing in supply chain optimization. To address the complex requirements of

the customer, various additional constraints were added to the Classical Job Shop Schedul-

ing Problem, including production down-time, scheduled maintenance, machine breakdowns,

sequence-dependent set-up times, release dates and multiple predecessors per job. Differentia-

tion between primary resources (machines) and auxiliary resources (labour, tools and jigs) were

also achieved. To accommodate the complex variant of the problem, principles of Particle Swarm

Optimization (PSO), a stochastic population based optimization technique originating from the

study of social behavior of birds and fish, were employed to test the scheduling framework. The

algorithm was tested against a comprehensive data set derived from actual data provided by

Optimatix. The optimization technique showed promising results when compared with other

traditional job shop scheduling solution strategies, being strongly dependent on the concepts

of social intelligence and emergence. The benefit of an improved production schedule can be

generalized to include cost reduction, customer satisfaction, improved profitability and overall

competitive advantage.

Keywords: Job shop scheduling problem; Particle Swarm Optimization (PSO)

Acronyms

PSO Particle Swarm Optimization

SA Simulated Annealing

TS Tabu Search

GA Genetic Algorithms

SA-PSO Simulated Annealing-Particle Swarm Optimization

PSO-GA Particle Swarm Optimization-Genetic Algorithm

GCPSO Guaranteed Convergence Particle Swarm Optimization

CLPSO Convergent Linear Particle Swarm Optimization

MOO Multiobjective Optimization

VEPSO Vector Evaluated Particle Swarm Optimization

TSP Travelling Salesperson Problem

MOP Multiobjective Optimization Problem

JSSP Job Shop Scheduling Problem

FJSSP Flexible Job Shop Scheduling Problem

RJSSP Reentrant Job Shop Scheduling Problem

EJSSP Expanded Job Shop Scheduling Problem

EA Evolutionary Algorithms

PFSSP Permutation Flow Shop Scheduling Problem

FSSP Flow Shop Scheduling Problem

SMP Single Machine Scheduling Problem

i

Contents

Acronyms i

Contents ii

List of Figures v

1 Introduction 2

1.1 Background and rationale . 2

1.2 Problem definition . 4

1.3 Research design . 4

2 The Optimatix problem — a literature review 7

2.1 Introduction to production scheduling . 7

2.1.1 Definition of production scheduling . 7

2.1.2 Generic classification of production scheduling models 7

2.2 Zandieh’s classification of scheduling models . 8

2.3 The classical job shop scheduling problem . 11

2.3.1 Problem formulation . 11

2.3.2 Problem representation . 12

2.3.3 Assumptions . 12

2.4 Variations on the classical job shop scheduling problem 14

2.4.1 The Job Shop Scheduling Problem (JSSP) with precedence constraints . . 14

2.4.2 The JSSP with opening inventory . 17

2.4.3 The JSSP with sequence-dependent set-up times 18

2.4.4 The JSSP with machine availability constraints 19

2.4.5 The flexible job shop scheduling problem 19

2.4.6 Multiple resource constrained job shop scheduling 20

2.4.7 The reentrant job shop scheduling problem 21

ii

2.4.8 The expanded job shop scheduling problem 23

2.4.9 Selection of suitable variations . 25

2.5 Objective function variations on the classical job shop scheduling problem 25

2.6 Solution strategies . 25

2.6.1 Optimal solution strategies . 26

2.6.2 Heuristic methods . 26

2.6.3 Metaheuristics . 28

2.7 Conclusion . 30

3 A generic production scheduling framework 31

3.1 Structural requirements of the framework . 32

3.1.1 The schedule representation . 32

3.1.2 Constraints . 34

3.1.3 Multiple objectives . 35

3.2 The production scheduling framework . 36

3.2.1 The initialization procedure . 38

3.2.2 The conversion mechanism . 38

3.2.3 The penalty function . 40

3.3 Conclusion . 44

4 Particle Swarm Optimization 47

4.1 Optimization through Swarm intelligence . 47

4.2 Introduction to Particle Swarm Optimization (PSO) 48

4.2.1 Origin and applications . 48

4.2.2 Schedule-specific applications . 48

4.3 The Basic PSO algorithm . 49

4.3.1 Algorithm structure . 49

4.3.2 Algorithm requirements and limitations 51

4.4 Existing variations on the basic PSO . 53

4.5 Applying PSO to the Optimatix problem . 56

4.5.1 Algorithm discretization . 56

4.5.2 The inclusion of inertia weight as an input parameter 57

4.5.3 The Guaranteed Convergence Particle Swarm Optimization (GCPSO) al-

gorithm . 57

4.6 Conclusion . 58

iii

5 Reflection on the algorithm development process 59

5.1 Phase 1: working towards a feasible schedule . 60

5.2 Phase 2: parameter derivation . 61

5.3 Phase 3: performance improvement . 62

5.4 Conclusion . 63

6 Performance evaluation 68

6.1 Algorithm verification . 68

6.2 Benchmarking against industry standards . 68

6.3 Design of a customized benchmark problem . 69

6.4 Conclusion . 70

7 Final remarks 71

7.1 Results and value added . 71

7.2 Future research opportunities . 72

7.3 Conclusion . 73

Bibliography 74

iv

List of Figures

2.1 Classification of scheduling systems based on resource environments. 9

2.2a Flow patterns of “single resource per operation” models. 9

2.2b Flow patterns of “multiple resources per operation” models. 10

2.3 Disjunctive graph formulation (Jain and Meeran, 1999). 13

2.4 Variations on the classical JSSP. 15

2.5 Precedence relationships between jobs. 17

2.6 Solution strategies of the classical JSSP (Jain and Meeran, 1999). 27

3.1 The selected schedule representation. 33

3.2 Constrained search space. 34

3.3 The generic production scheduling framework. 37

3.4 A network diagram of the precedence constraints between operations is used as in-

put to the initialization procedure. The operations initialized into their respective

intervals is obtained as output. 39

3.5 The schedule before and after the inclusion of production down time intervals. . 42

4.1 Particle positions that represent potential solutions. 50

4.2 Particle velocity as resultant of three components. 51

4.3 The basic PSO algorithm. 52

4.4 Variations on the basic PSO algorithm (Engelbrecht, 2005). 54

4.5 The three most popular social network structures. The black lines between par-

ticles indicate the propagation of information throughout the swarm (Kennedy

et al., 2001). 55

4.6 This figure . 57

v

5.1 Convergence graph of the algorithm at the end of Phase 1 of the development

process. The plot is of the aggregated objective function which minimizes the

deficiencies between the target values for the objective functions and the actual

values obtained. 62

5.2 Process flow of the first phase of the algorithm development phase. The processes

as well as the value-added is indicated. 64

5.3 The relationship between the various input data parameters. 66

5.4 Convergence graph of the algorithm after parameter derivation. The plot is of

the aggregated objective function which minimizes the deficiencies between the

target values for the objective functions and the actual values obtained. 67

1

Chapter 1

Introduction

1.1 Background and rationale

Impacting on efficiency, customer satisfaction and overall competitive advantage, production

scheduling plays an important role in the current business environment. Customers increasingly

expect to receive the right product, at the right price, at the right time. In order to meet

these requirements, manufacturing companies need to improve their production scheduling per-

formance. The aim of this project is to design a generic production scheduling algorithm for

specific implementation in the job shop environment.

Optimatix is a Gauteng-based company specializing in supply chain optimization. Their

primary business activities consist of the design and implementation of the Tactix product suite.

The product suite consists of a number of inter-related modules, which can be implemented

independently if required. Providing a customized supply and demand planning solution on a

strategic, tactical and operational level, they boast a number of successful implementations in the

low-volume-high-variety manufacturing industry. The scheduling module, Tactix Scheduling, can

be classified as a forwards finite capacity production scheduling tool. Currently, the underlying

algorithms of this module consists of rules-based heuristic methods. Priority rules are the

most frequent heuristic method applied to job shop scheduling problems, due to their ease of

implementation and low time complexity Blazewicz et al. (1996). However, the use of a more

sophisticated approximation technique should be investigated.

Before embarking on a project it is important to evaluate the potential benefits and costs

associated with its execution. Hoitomt et al. (1993) consider a number of factors to justify the

development of a production scheduling algorithm for the job-shop environment: production

scheduling being one of the most important issues in the planning and operation of manu-

facturing systems. Many production related problems, including low machine utilization and

2

excessive work in process, can be assigned directly to inadequate scheduling. Addressing these

problems through improved scheduling can have a significant impact on cost reduction, customer

satisfaction, profitability and overall competitive advantage.

Recent customer demand for higher variety products have also contributed to an increase

in product complexity. The number of parts being produced in job shop environments has

dramatically increased during the past decade.

Production scheduling in the low-volume-high-variety manufacturing environment has al-

ready received considerable attention in Operations Research literature. The deterministic job

shop scheduling problem has developed a reputation of being notoriously difficult to solve. How-

ever, the business requirements of Optimatix requires that a much more complex variation of

the classical job shop scheduling problem should be addressed. Since this problem can be con-

sidered a direct derivation from the classical job shop scheduling problem, it is also classified as

NP -hard. The sheer magnitude of the resources and operations which the algorithm should be

able to schedule, further adds to the complexity of the problem. Therefore, sufficient evidence

exist to suggest that this problem can not be solved optimally (Jain and Meeran, 1999).

An extensive analysis of solution strategies, which is documented in Chapter 2, provides

the basis for selecting a metaheuristic to solve the identified problem. The allowance of non-

improving moves to escape local optima, along with the ability to integrate local search tech-

niques for exploitation purposes ensure that metaheuristics are considered to be the most ef-

fective solution strategy (Jain and Meeran, 1999). Particle Swarm Optimization (PSO) is the

metaheuristic of choice for a number of reasons.

• Placing emphasis on the concept of social versus individual learning, PSO is a robust

algorithm which compares favourably with Genetic Algorithms and Tabu Searches, which

are often utilized to solve the job shop scheduling problem (Kennedy et al., 2001).

• PSO is one of the simplest metaheuristics to implement. This inherent simplicity simplifies

the design and enhances the user-friendliness of the algorithm (Lian et al., 2006).

• Even though PSO has been the focus of many a research study since its development, it

does not have a rich literature with respect to scheduling problems. Therefore, there is

a definite research opportunity associated with this optimization technique (Lian et al.,

2006).

3

1.2 Problem definition

Optimatix has identified the need for an in-depth investigation into their production scheduling

algorithms. Opportunities for improvement exist in terms of solution quality and model formu-

lation. Furthermore, management is curious with respect to the potential use of metaheuristics

to obtain improved schedules. However, any improvements made should retain the functionality

of the existing production scheduling model. A compromise can be made with respect to the

time required to obtain a solution.

There are a number of other factors affecting the problem formulation that should be con-

sidered.

• Definite variations exists between the different production environments serviced by Opti-

matix. It would be beneficial to meet the production scheduling requirements of all of these

clients by the implementation of a single algorithm. This implies that the metaheuristic

algorithm should be relatively generic.

• In Operations Research literature there is a tendency to focus on solving unrealistically

simplified problems. This implies that a very limited amount of information is available

with respect to model formulation of complex job shops. This complicates the formulation

of a JSSP which is intricate enough to be of value on the production floor.

The research question for the project can thus be formulated as:

“Can the use of Particle Swarm Optimization add value to the production scheduling

process in complex job-shop environments?”

1.3 Research design

Using the research question as a point of departure, the research design is analogous to a

blueprint of the desired end results of the project (Moutton, 2001). Specifying the research

design is helpful in determining the type of study or activities that should be performed to

achieve the desired end results.

The purpose of this project is to answer the research question through designing and testing

a generic job shop scheduling algorithm geared towards implementation in Tactix Scheduling.

The design phase of the algorithm mainly consists of defining the structure of the problem and

the development of an effective solution strategy. The algorithm’s structure makes provision for

the following features:

• The scheduling of 500 operations on 216 resources.

4

• The scheduling of machines, manpower, as well as complementary resources such as jigs

and tools.

• Alternative routing and resource allocation.

• The evaluation of quality of schedule with respect to a number of predefined objectives.

• The incorporation of release dates and production calendars. a frozen horizon.

• Determining the effects of sequence dependent set-up times on the schedule.

• Processing time of fifteen minutes per 100 operations.

There are a number of factors which affect the model formulation and solution process. The

scope of the model is dependent on the underlying modeling assumptions made. The inherent

characteristics of the JSSP result in the model to only be applicable to the low volume-high va-

riety and mid-volume-mid-variety industries (Hoitomt et al., 1993). Furthermore, the algorithm

assumes sufficient raw material being available at all times and is based on the principles of PSO

as defined in Kennedy et al. (2001).

In order to use PSO, or any other metaheuristic for that matter, to solve the Optimatix

problem a specific structure is required to transfer solutions between the problem space in

which the metaheuristic functions and the space in which the objective function values are to be

evaluated. The generic production scheduling framework developed to address this issue has the

attractive feature that it is common to all popular metaheuristics. Since the generic production

scheduling algorithm is based exclusively on this framework, a large degree of flexibility in terms

of alternative metaheuristic-based solution strategies and varieties of scheduling problems, is

obtained.

One of the project’s main requirements is to ensure that the metaheuristic algorithm is

well-tested. The algorithm evaluation phase consists of a comparative analysis between the

designed algorithm and the various other algorithms currently implemented at Optimatix. Tactix

Scheduling currently implements priority dispatching rules, iterative schedule generation and

random schedule generation methods. The PSO algorithm is also evaluated with respect to both

standard benchmark problems defined in literature and benchmark data developed specifically

for Optimatix.

All required input data for testing the performance on real-world problems was provided

by Optimatix. Pilot implementation may occur at the discretion of the client to aid further

algorithm evaluation. Full implementation feasibility, however, will only be evaluated at a later

stage.

5

In terms of the rest of the document, Chapter 2 consists of a discussion of the applicable

scheduling literature. An extensive discussion of the generic production scheduling framework is

provided in Chapter 3, while Chapter 4 introduces PSO within the larger framework of Swarm

Intelligence and addresses its application to the Optimatix problem. Chapter 5 provides a dis-

cussion around the various algorithm development activities. All algorithm testing activities are

discussed in Chapter 6 along with the results obtained during algorithm development. Finally,

Chapter 7 concludes the document and provides insight into future research opportunities.

6

Chapter 2

The Optimatix problem — a

literature review

A review of the existing literature is of paramount importance. The purpose of this review is to

become aware of the most recent theories, results, definitions, tools and techniques in the field

of job shop scheduling. This prevents duplication and provides valuable insight towards a point

of departure (Moutton, 2001).

2.1 Introduction to production scheduling

2.1.1 Definition of production scheduling

The definition of production scheduling, as quoted by Graves (1981), is specifically applicable to

this project. He widely defines production scheduling as “the allocation of available production

resources over time, to best satisfy some criteria”.

He elaborates on the definition by stipulating the differences between production schedul-

ing and two other related concepts: inventory management and production planning. Where

production planning focuses partly on the determination of the production resource level, that

is determined exogenously to the production scheduling process. Where production scheduling

is largely concerned with the allocation decisions of the production resources, the allocation

of production resources to jobs is used merely as input into traditional inventory management

models.

2.1.2 Generic classification of production scheduling models

Production scheduling has been fascinating researchers since the 1950s (Jain and Meeran, 1999).

The numerous articles and research papers resulting from this fascination led to the development

7

of a large number of production scheduling models. Models in literature are capable of addressing

almost every possible production scenario. The most popular method of classifying production

scheduling models is the four-field notation (A/B/C/D). Problems are classified according to:

the number of jobs (A), the number of machines (B), the flow pattern within the machine shop

(C) and the performance measure by which a schedule is evaluated (D).

Although the four-field notation is well-known among scheduling researchers, the recent

trend towards consideration of more complex scheduling problems have shown it to be largely

inadequate to describe nonbasic models (Xia and Wu, 2005). The inclusion of certain problem

specific requirements, which varies from sequence-dependent set-up times to release dates, results

in models which can be more effectively classified by means of the three-field notation (α/β/γ)

developed by Graham et al. (1979). The three-field notation classifies models according to

the flow pattern and number of machines (α), the constraints placed on the jobs (β) and the

scheduling criteria (γ).

2.2 Zandieh’s classification of scheduling models

Recently Zandieh et al. (2006) has developed a classification for scheduling systems based on the

associated resource environments. Figure 2.1 indicates the classification of various, yet similar,

types of models, each consisting of one or more operations to be processed on a number of

resources. The models are primarily classified according to the following criteria:

• The characteristics of the routings of each of the jobs.

• The number of operations for each of the jobs.

• The number of resources available to perform the required operations.

The models range from more generic formulations, for example the job shop scheduling

problem with duplicate machines, to more specific formulations, for example, the single machine

shop problem.

In most cases, operations are performed according to a predefined sequence, derived from

the product routing. However, one exception exists in the form of the open shop problem. This

formulation results from a relaxation of the operation sequencing constraint. In other words, no

specific sequence is specified in which the operations of each of the jobs should be performed.

The deterministic Job Shop Scheduling Problem (JSSP) is considered to be the best known

of the classical scheduling problems. Jain and Meeran (1999) describes the problem as con-

sisting of a finite set JJJ of n jobs
{
Ji

}n

i=1
to be processed on a finite set MMM of m machines

8

Open shop
Job shop with

duplicate
machines

Job shop

Flow shop

Permutation
flow shop

Single machine
shop

Hybrid flow
shop

Parallel
machine shop

Identical routings
defined for each job

Identical routings per job &
single resource per
operation

Single operation defined
for each job

Specific routings
defined for each job

Identical routings per job,
single resource per operation
and “no-passing” constraints

Specific identical routings
defined for each job

Identical routings
defined for each job

Single resource per
operation

Single resource
per operation

Single operation per job &
single resource per operation

Figure 2.1: Classification of scheduling systems based on resource environments.

Entrance Exit

Flow Shop Scheduling Problem
Job Shop Scheduling Problem
Single Machine Shop Scheduling Problem

Figure 2.2a: Flow patterns of “single resource per operation” models.

{
Mk

}m

k=1
. Each job Ji must be processed on every machine and consists of a chain of mi op-

erations Oi1, Oi2, ..., Oimi , which have to be scheduled in a predetermined sequence. There are

N operations in total, where N =
∑n

i=1 mi. Oik is the operation of job Ji which has to be

processed on machine Mk for an uninterrupted processing time period τik. No operation may

be pre-empted. Each job has its own independent and individual flow pattern through the ma-

chines. Each machine can process only one job at a time and each job can be processed by only

one machine at a time.

Figures 2.2a and 2.2b provide visual indications of the flow patterns, relative to the JSSP,

supported by each of the classified models, since most of the models in Figure 2.1 are merely

specific applications of the job shop scheduling problem. For example, the job shop scheduling

problem with duplicate machines can be considered a generalization of the classical JSSP, the

only addition being the allowance of more than one resource per operation.

9

Entrance Exit

Hybrid Flow Shop Scheduling Problem
Flexible Job Shop Scheduling Problem
Parallel Machine Shop Scheduling Problem

Figure 2.2b: Flow patterns of “multiple resources per operation” models.

The Flow Shop Scheduling Problem (FSSP) is restricted to specific applications where iden-

tical routings are defined for each of the jobs. Thus the problem consists of finding the order in

which jobs should be processed on each resource. Closely related to the FSSP, the Permutation

Flow Shop Scheduling Problem (PFSSP) boasts, in addition to identical routings, the addition

of a “no passing” constraint. This results in the same job sequence being followed for each of

the resources. Yet another close relation of the FSSP, the hybrid flow shop scheduling problem

allows for identical routings along with multiple resources per operation.

The Single Machine Scheduling Problem (SMP) is merely a JSSP with only one operation

per job. In contrast, the parallel machine shop problem is limited to jobs consisting of only one

operation, which can be performed on any one of a number of resources.

An analysis of the business requirements of Optimatix resulted in the job shop with duplicate

machines problem, the parallel machine scheduling problem and the single machine scheduling

problem identified as suitable candidates to use as points of departure for the design of the

algorithm. The job shop with duplicate machines becomes an appropriate choice to consider as

the parallel machine and single machine scheduling problems can easily be addressed through

judicial selection of the input parameters of the job shop with duplicate machines.

However, it is noteworthy that Zandieh et al. (2006)’s classification only addresses problems

on a relatively general level. Various detailed problem-specific characteristics are omitted. In

order to meet the distinct scheduling requirements of Optimatix, a further analysis is performed

to identify a problem capable of addressing these specialized scheduling requirements. These

requirements include, amongst others, the inclusion of sequence-dependent set-up times and

release dates into the problem description.

10

The next two sections provide a more detailed discussion of a logical sequence of problem

variations, which are closely related to the job shop scheduling problem with duplicate machines.

For comparison purposes, the most generic model in the class of job shop scheduling problems,

the classical JSSP, is first presented. An evaluation of the assumptions of this model leads to

the identification of specific problem variations able to address the the proposed problem as it

is currently defined.

2.3 The classical job shop scheduling problem

The classical JSSP has received considerable attention in scheduling literature (Zhang et al.,

2006). A thorough review is provided by both Blazewicz et al. (1996) and Jain and Meeran

(1999). The problem is classified as a combinatorial optimization problem and is one of the

most difficult NP -complete problems to solve.

2.3.1 Problem formulation

Blazewicz et al. (1996) describes the problem as follows:

n , The total number of operations.

m , The total number of machines.

A , The set of ordered pairs of operations constrained by the precedence relations

for each job.

Ek , The set of all pairs of operations to be performed on machine k, where k =

{1, 2, . . . ,m}.

pi , The processing time of operation i, where i = {1, 2, . . . , n}.

ti , The earliest possible starting time of operation i, where i = {1, 2, . . . , n}.

min z = tn (2.1)

subject to

tj − ti ≥ pi ∀(i, j) ∈ A (2.2)

tj − ti ≥ pi ∀(i, j) ∈ Ek,∀k ∈ {1, . . . ,m} or

ti − tj ≥ pj ∀(i, j) ∈ Ek,∀k ∈ {1, . . . ,m} (2.3)

ti ≥ 0 ∀i ∈ {1, . . . , n} (2.4)

11

The objective function (2.1) minimizes the maximum makespan. Constraint (2.2) ensures

that the precedence constraints between operations within the same job are respected. Con-

straints (2.3) ensures that only one job may be scheduled on a machine at a time, and (2.4)

ensures completion of all jobs.

2.3.2 Problem representation

Traditionally there are two main problem representations traditionally associated with the classi-

cal JSSP: the Gantt chart (more frequently used to display the schedule than solve the schedule)

and the disjunctive graph model (Jain and Meeran, 1999). The latter is explained with the aid

of Figure 2.3.

The disjunctive graph formulation consists of a set of nodes representing all the operations

to be processed on the set of machines. Two fictitious nodes are also added, namely the source

node (at the beginning of the network) and the sink node (at the end of the network). The set

of nodes are indicated by V. A weight, proportional to the processing time of the operation,

is assigned to each of the nodes. Precedence relationships between operations are indicated

by means of a set denoted by C of directed arcs. Capacity constraints ensure that two jobs

which require the same machine can not be processed simultaneously. These constraints are

enforced by means of a set of undirected arcs, D. Potential feasible solutions are obtained by

defining directions for each of the disjunctive arcs (Brucker, 2004). Shortest path algorithms are

traditionally used to find the optimal solution when solving a makespan minimization problem.

An example of a disjunctive graph formulation for a 3 machine 4 job problem is illustrated in

Figure 2.3.

Although the disjunctive graph representation is robust and useful for solving real life job

shop problems, there are a number of difficulties associated with this representation. Concurrent

or parallel processing and indefinite cyclical process flows can not be modelled directly (White

and Rogers, 1990). Feasibility of solutions can also be a problem since an acyclic graph is

required for schedule feasibility.

2.3.3 Assumptions

There are a number of key assumptions inherent to the formulation of the classical JSSP. Some

of these include:

• Only one operation may be scheduled on any one resource at a time.

• All jobs require the same set of resources.

12

0

O11

O31

O42

O23

O12

O33

O43

O21

O13

O32

O41

O22

S

0

5 8 2

7 3 9

1 7 10

4 11 7

0

Source Sink

Oij Operation i of job j with processing time Tij

Disjunctive arcs which enforce the capacity
constraints associated with machine 1

Conjunctive arcs which indicate the precedence
constraints between operations

Tij

Disjunctive arcs which enforce the capacity
constraints associated with machine 2

Disjunctive arcs which enforce the capacity
constraints associated with machine 3

Figure 2.3: Disjunctive graph formulation (Jain and Meeran, 1999).

13

• Two or more operations from the same job may not be processed on the same resource.

• Each resource type consists of only one resource.

• All jobs are available for scheduling at time zero.

These assumptions result in the problem, as it is formulated in this document, not being

suitable to address the requirements of Optimatix. However, there are a large number of vari-

ations to the classical JSSP and various other algorithmic approaches, which are extensively

utilized in literature to meet more specific scheduling requirements. Figure 2.4 provides a vi-

sual indication of the various approaches to scheduling encompassed within job shop scheduling.

They are classified according to Graham et al.’s 1979 three-field notation.

Table 2.1 lists the various assumptions and the appropriate approaches which should be

investigated to overcome the limitations of the classical JSSP with respect to the specific business

requirements.

2.4 Variations on the classical job shop scheduling problem

This section discusses the various different approaches to complex job shop scheduling which

were identified in the previous section. It is noteworthy that all the variations on the classical job

shop scheduling problem are in themselves classified as NP -hard problems, due to their direct

derivation from the classical problem instance.

2.4.1 The JSSP with precedence constraints

Additional to the precedence constraints occurring between the various operations of each of the

jobs, it is also possible to have precedence relations between jobs (Figure 2.5) — a very useful

attribute in modeling assembly processes. Brucker (2004) describes the precedence relations by

means of an acyclic directed graph G = (V,B) where (i, k) ∈ V corresponds with the jobs, and

(i, k) ∈ B if and only if Ji must be completed before Jk starts. The problem can be modeled

analytically by adding the following constraint to the classical job shop scheduling problem:

tj − ti ≥ pi ∀(i, j) ∈ B

(2.5)

where B refers to the set of ordered pairs of operations constrained by the precedence rela-

tions between each job.

14

F
ig

ur
e

2.
4:

V
ar

ia
ti

on
s

on
th

e
cl

as
si

ca
l
JS

SP
.

15

T
ab

le
2.

1:
O

pt
im

at
ix

bu
si

ne
ss

re
qu

ir
em

en
ts

an
d

po
ss

ib
le

ap
pr

oa
ch

es
.

B
us

in
es

s
re

qu
ir

em
en

t
A

pp
ro

ac
he

s
in

L
it

er
at

ur
e

Sc
he

du
lin

g
of

m
ac

hi
ne

s,
m

an
po

w
er

an
d

ot
he

r
co

m
pl

em
en

ta
ry

re
so

ur
ce

s
M

ul
ti

pl
e

re
so

ur
ce

co
ns

tr
ai

ne
d

JS
SP

JS
SP

w
it

h
m

ul
ti

pr
oc

es
so

r
ta

sk
sy

st
em

s

E
xp

an
de

d
Jo

b
Sh

op
Sc

he
du

lin
g

P
ro

bl
em

(E
JS

SP
)

A
lt

er
na

ti
ve

ro
ut

in
g

an
d

re
so

ur
ce

al
lo

ca
ti

on
F
le

xi
bl

e
Jo

b
Sh

op
Sc

he
du

lin
g

P
ro

bl
em

(F
JS

SP
)

E
JS

SP

T
he

in
co

rp
or

at
io

n
of

re
le

as
e

da
te

s
E

JS
SP

JS
SP

w
it

h
re

le
as

e
da

te
s

T
he

in
co

rp
or

at
io

n
of

pr
od

uc
ti

on
ca

le
nd

ar
s

E
JS

SP

Sc
he

du
lin

g
of

m
or

e
th

an
on

e
op

er
at

io
ns

fr
om

th
e

sa
m

e
jo

b
R

ee
nt

ra
nt

Jo
b

Sh
op

Sc
he

du
lin

g
P

ro
bl

em
(R

JS
SP

)

on
th

e
sa

m
e

re
so

ur
ce

F
JS

SP

E
JS

SP

T
he

in
co

rp
or

at
io

n
of

se
qu

en
ce

-d
ep

en
de

nt
se

t-
up

ti
m

es
JS

SP
w

it
h

se
qu

en
ce

-d
ep

en
de

nt
se

t-
up

ti
m

es

T
he

in
co

rp
or

at
io

n
of

m
ac

hi
ne

br
ea

kd
ow

ns
JS

SP
w

it
h

m
ac

hi
ne

av
ai

la
bi

lit
y

co
ns

tr
ai

nt
s

D
yn

am
ic

JS
SP

E
JS

SP

T
he

in
co

rp
or

at
io

n
of

pr
ec

ed
en

ce
s

be
tw

ee
n

jo
bs

JS
SP

w
it

h
pr

ec
ed

en
ce

co
ns

tr
ai

nt
s

16

Oij Operation i of job j

Precedence constraints between
operations of the same job

Precedence constraints between jobs

O11 O12 O13

O21 O22 O23

O31 O32 O33

Figure 2.5: Precedence relationships between jobs.

2.4.2 The JSSP with opening inventory

Inventory is a common occurrence in almost every production system. Companies often generate

schedules in intermittent intervals during the production run. Due to the continuous nature

of most production systems, it is possible to have jobs which are half complete at schedule

generation.

Taking into consideration the effect of beginning inventory during schedule generation is

relatively trivial, but has a definite impact on the realism of the schedule. The impact of

opening inventory is only apparent during the calculation of the processing time. However,

beginning inventory of a certain product affects the processing time of all operations of all jobs

associated with the specific product. This implies the requirement of additional data: the unit

processing times associated with each operation.

The problem can be formulated by adding Constraint (2.6) to the classical JSSP where di

denotes the demand in number of units which requires processing as part of operation i, gi

denotes the number of units in inventory which have completed processing up to a point past

operation i, and ui denotes the unit processing time associated with operation i:

17

pi = (di − gi)ui ∀i ∈ {1, 2, . . . , n}

(2.6)

Ivens and Lambrecht (1996) incorporated initial work-in-process into a disjunctive graph job

shop scheduling formulation. The opening inventory was incorporated by only generating the

remaining part of the network. In other words, the node weights are calculated similarly to pi

in constraint (2.5). The problem was solved successfully by means of the Shifting Bottleneck

Heuristic.

2.4.3 The JSSP with sequence-dependent set-up times

Set-up times are defined in literature as the time intervals between the completion of one op-

eration and the start of the next operation. The inclusion of set-up times is one of the most

frequent additional complications in scheduling and incorporation into traditional scheduling

models has already been attempted as early as the 1970s (Lockett and Muhlemann, 1972). The

JSSP with sequence-dependent set-up times is useful in situations where cleaning operations

and tool changes play an important role in production. A typical example is the manufacturing

of different colours of paint.

Over the years, two distinct approaches have been developed. The first differentiates between

sequence-dependent and sequence-independent set-up times. The second approach only includes

set-up times when two jobs, which belong to two different predefined subsets of operations, are

processed sequentially (Noivo and Ramalhinho-Loureno, 2006).

In the most complicated case, sequence-dependent setup times, where the setup time depends

on the job previously scheduled, as well as the machine on which the current operation is

performed, a n × n (operation × operation) matrix of set-up time data is required for each

resource m. The set-up time of operation j is defined by sijk where i is the index of the previous

operation scheduled on machine k. If the set-up times are machine independent, sijk can be

simplified to sij . Sequence-independent set-up times are denoted by si and constant set-up times

only by s (Brucker, 2004).

In terms of the solution strategies followed, Noivo and Ramalhinho-Loureno (2006) addressed

the JSSP with sequence-dependent set-up times by means of a number of priority dispatch

rules. Lockett and Muhlemann (1972) and Asano and Ohta (1991) developed branch-and-bound

algorithms for single machine scheduling problems.

18

2.4.4 The JSSP with machine availability constraints

In real-life production systems, the advent of production calendars, holidays, preventative main-

tenance and unexpected breakdowns have a significant effect on machine availability and sub-

sequently the scheduling of production resources. If no preemption is allowed, the inclusion

of machine availability constraints results in dividing the planning horizon into a number of

disconnected time windows (Asano and Ohta, 1991).

White and Rogers (1990) addressed the problem by means of the disjunctive graph formu-

lation. Scheduled maintenance is regarded similarly to any other operation and is assigned a

node with a weight proportional to the time required for maintenance.

2.4.5 The flexible job shop scheduling problem

Xia and Wu (2005) describes the recent trend which exists in the research domain to solve a

much more complex version of the classical job shop scheduling problem. Being an extension

of the classical JSSP, the FJSSP incorporates all of the complexities and challenges associated

with classical job shop scheduling. The FJSSP is the most common variation on the job shop

scheduling problem and it is also referred to in literature as the job shop scheduling problem with

duplicate machines, the hybrid job shop scheduling problem and the job shop with multi-purpose

machines.

The aim of the FJSSP is twofold: the assignment of all operations to machines and the

subsequent sequencing of these operations on each of the assigned machines. For solving any

realistically sized problem, either a hierarchical or integrated approach can be followed. The

former results in decomposition of the problem into two simpler problems which are solved

independently of one another, whereas the latter does not differentiate between allocation and

sequencing (Xia and Wu, 2005). The most notable solution strategies include Evolutionary

Algorithms (Kacem et al., 2002) and Tabu Searches (Dauzre-Prs and Paulli, 1997).

The problem is defined formally by Kacem et al. (2002). It consists of a finite set J of N

jobs
{
Ji

}N

i=1
to be processed on a finite set U of M machines

{
Mk

}M

k=1
. Each job represents

a number (mi) of nonpreemptable ordered operations Oi1, Oi2, . . . , Oimi . The execution of each

operation of a job requires one resource or machine selected from a set of available machines

called Uij ⊆ U. The assignment of the operation Oij to the machine Mk(Mk ∈ Uij) entails the

occupation of this machine during a processing time called dijk.

The uniqueness of the FJSSP lies in that each operation does not have to be performed

on a machine specifically dedicated to the specific operation. A selection can be made from

any of the available resources belonging to a predefined set of resources. It is important to

19

note, however, that each operation may still only be assigned one resource from the set. The

option of alternative resources ensures that the FJSSP is useful for scheduling in a wider range

of production systems, including flexible manufacturing systems and parallel machine shops

(Dauzre-Prs and Paulli, 1997).

In the case of total flexibility Uij = U. In other words, all operations can be executed on

all machines. If a FJSSP is classified as a partial flexibility problem, there exist at least one

operation Oiojo such that Uiojo ⊂ U. This implies that operations can only be performed on

machines with which they are compatible.

Brucker (2004) further differentiates between FJSSPs with identical machines, uniform ma-

chines and unrelated machines. If Uij consists of identical machines the processing time (dij) of

operation Oij is the same regardless of which machine is used for processing. If Uij consists of

uniform machines, the processing time (dijk) of operation Oij can be calculated by the formula:

dijk =
dij

sk
(2.7)

where sk is the processing speed of machine k. Finally, if Uij consists of unrelated machines, the

processing time (dijk) varies from machine to machine and the processing time is dependent on

both the characteristics associated with the operation and the characteristics of the machine on

which it is performed.

2.4.6 Multiple resource constrained job shop scheduling

In real life production systems, the scheduling of operations are not only constrained by one

type of resource. In addition to machine availability, tooling and labour requirements also play a

vital role in the efficient generation of realistic schedules. Studies performed by Mason indicates

that typically 16% of scheduled production cannot be met because tooling is not available.

Additionally, 40 to 80% of a foreman’s time is spent looking for and expediting materials and

tools. Therefore incorporating the assignment of workers and tools into the schedule can have a

significant effect on production performance.

Gargeya and Deane (1996) describes the multiple resource constrained job shop scheduling

problem: a job shop in which two or more resource types constrain output. This formulation

allows the simultaneous scheduling of machines, labour and other auxiliary resources, such as

tools and jigs. If only two resource types are involved in the scheduling scenario, the problem is

referred to as a dual resource constrained JSSP. The two most common dual resource problems

solved in literature are the labour constrained job shop (for scheduling workers and machines)

and the auxiliary resource constrained job shop (for scheduling tools and machines).

20

Brucker (2004) defines a class of problem that is very similar to the multiple resource con-

strained JSSP: the multiprocessor task job shop scheduling problem. This problem requires that

a set of resources be linked to each operation. Each operation Oij requires during a processing

period pij all resources belonging to the set µij ⊆ {M1, . . . ,Mm}. Two tasks which require the

same resource cannot be processed simultaneously and are referred to as incompatible tasks.

Relatively little information is available with respect to solution strategies. In his book,

Brucker (2004) converted a JSSP with multiprocessor tasks, unit processing times, release dates

and precedence constraints between jobs into a shortest path problem. Patel et al. (1999)

followed a genetic algorithm approach for solving a dual resource constrained scheduling problem,

labour being the secondary resource.

2.4.7 The reentrant job shop scheduling problem

The classical JSSP assumption that each job may visit a specific machine only once, is often vio-

lated in practice. This resulted in the development of the RJSSP, where two different operations

belonging to the same job can be scheduled on one machine. The RJSSP is especially useful to

model production scheduling scenarios in high-tech industries. For example, in semiconductor

manufacturing, wafers usually make multiple visits to the same machine as successive circuit

layers are added.

Pan and Chen (2005) formulated the RJSSP as an integer programming model.

n , The total number of jobs available for processing at time 0.

m , The total number of machines.

Ni , The number of operations of job i, where i = {1, 2, . . . , n}.

pij , The processing time of operation j of job i, where i = {1, 2, . . . , n},

j = {1, 2, . . . , Ni} .

rijk ,


1 if operation j of job i requires machine k, where i = {1, 2, . . . , n},

j = {1, 2, . . . , Ni},k = {1, 2, . . . ,m} .

0 otherwise.

Ziji′j′ ,


1 if operation j of job i precedes operation j′ of job i′, where i, i′ = {1, 2, . . . , n},

j, j′ = {1, 2, . . . , Ni}.

0 otherwise.

H , A very large positive number.

Ci , Completion time of job i, where i = {1, 2, . . . , n}.

21

Cmax , Maximum completion time or makespan.

tij , The starting time of operation j of job i, where i = {1, 2, . . . , n},

j = {1, 2, . . . , Ni}.

minCmax = max{Ci}n
i=1 (2.8)

subject to

m∑
k=1

rijk(tij + pij) ≤
m∑

k=1

ri(j+1)kti(j+1)

∀i ∈ {1, 2, . . . , n},∀j ∈ {1, 2, . . . , Ni − 1} (2.9)

pij ≤ H(2− rijk − ri′j′k) + H(1− Ziji′j′) + (ti′j′ − tij)

∀i ≥ 1,∀i < i′ ≤ n,∀j ∈ {1, 2, . . . , Ni},

∀j′ ∈ {1, 2, . . . , Ni′},∀k ∈ {1, 2, . . . ,m} (2.10)

pi′j′ ≤ H(2− rijk − ri′j′k) + HZiji′j′) + (tij − ti′j′)

∀i ≥ 1∀i < i′ ≤ n,∀j ∈ {1, 2, . . . , Ni},

∀j′ ∈ {1, 2, . . . , Ni′},∀k ∈ {1, 2, . . . ,m} (2.11)

Cmax ≥
m∑

k=1

riNik(tiNi + piNi)

∀i ∈ {1, 2, . . . , n} (2.12)

Cmax ≥ 0, tij ≥ 0

∀i ∈ {1, 2, . . . , n},∀j ∈ {1, 2, . . . , Ni − 1} (2.13)

Ziji′j′ = 0 or 1

∀i ≥ 1∀i < i′ ≤ n,∀j ∈ {1, 2, . . . , Ni},

∀j′ ∈ {1, 2, . . . , Ni′} (2.14)

Constraint (2.9) ensures that the starting time of operation j +1 of job i on machine k is no

earlier than the finish time of operation j of job i. Constraints (2.10) and (2.11) ensure that only

one job may be processed on a machine at any one time. If both operation j of job i and operation

j′ of job i′ are processed on machine k, i.e., rijk = ri′j′k = 1, then either si′j′ − sij ≥ pij or

sij−si′j′ ≥ pi′j′ holds (H is a very large positive number). The either-or construct is incorporated

into the model by means of constraints (2.10) and (2.11). Constraint (2.12) is used to calculate

Cmax which is minimized in the objective function (2.8). Constraint (2.14) ensures that Cmax,

sij , and the binary integer variable Ziji′j′ , are greater than zero.

22

2.4.8 The expanded job shop scheduling problem

The EJSSP is more general than the classical JSSP. The EJSSP incorporates both release dates

and due dates. Job starting times are also restricted by what Yu and Liang (2001) define as

technological planning constraints or operation enabling conditions. Simply put, all cutting

tools, machines and other resources required for processing an operation has to be available

before the processing of the operation can start. This has positive implications for the scheduling

of labour and auxiliary resources. It also implies that alternative resources can be specified for

each operation. The EJSSP has already been solved successfully by means of a hybrid approach

involving neural networks and genetic algorithms (Yu and Liang, 2001).

The model can be formulated as follows:

n , The total number of jobs.

m , Type number of various resources.

Ni , The number of operations of Ji, where i = {1, 2, . . . , n}.

rs , Number of resources of type s, where s = {1, 2, . . . ,m}.

Ri , Set of pairs of operations {k, l} belonging to job i, where operation k precedes

operation l, where i = {1, 2, . . . , n}.

Qi , Set of pairs of operations {k, l} belonging to job i, for any operation k and

operation l, where i = {1, 2, . . . , n}.

Nq , Set of operations requiring resource k, where k = {1, 2, . . . , r}.

H , A very large positive number.

pil , The processing time of operation l of job i, where i = {1, 2, . . . , n},

l = {1, 2, . . . , Ni}.

til , The starting time of operation k of job i, where i = {1, 2, . . . , n},

k = {1, 2, . . . , Ni}.

toi , The starting time of the first (or free) operation of job i, where

i = {1, 2, . . . , n}.

tio , The completion time of the last (or free) operation of job i, where

i = {1, 2, . . . , n}.

ai , The availability time of job i, where i = {1, 2, . . . , n}.

di , The delivery due date of job i, where i = {1, 2, . . . , n}.

[i, k] , The kth operation of job i, where i = {1, 2, . . . , n}.

23

zij ,


1 if operation i precedes operation j, where {i, j} ∈ Nq,q = {1, 2, . . . , rs},

s = {1, 2, . . . ,m}.

0 otherwise.

ykl ,


1 if operation k precedes operation l, where {k, l} ∈ Qi,i = {1, 2, . . . , n}.

0 otherwise.

tij , The starting time of operation Oij , where i = {1, 2, . . . , n}, j = {1, 2, . . . , Ni}.

minCmax = max
i

(tio + pio) (2.15)

subject to

til − tik − pik ≥ 0 ∀i ∈ {1, 2, . . . , n}, if {k, l} ∈ Ri (2.16)

tjl − tik − pik + H(1− zkl) ≥ 0 ∀q ∈ {1, 2, . . . , r}, if {k, l} ∈ Nq (2.17)

tik − tjl − pjl + Hzkl ≥ 0 ∀q ∈ {1, 2, . . . , r}, if {k, l} ∈ Nq (2.18)

til − tik − pik + H(1− ykl) ≥ 0 ∀i ∈ {1, 2, . . . , n}, if {k, l} ∈ Qi (2.19)

tik − til − pil + Hykl ≥ 0 ∀i ∈ {1, 2, . . . , n}, if {k, l} ∈ Qi (2.20)

toi ≥ 0 ∀i ∈ {1, 2, . . . , n} (2.21)

tio ≤ di − pio ∀i ∈ {1, 2, . . . , n} (2.22)

tik, toi, tio ≥ 0 ∀i ∈ {1, 2, . . . , n}, (2.23)

zkl, ykl = 0 or 1 (2.24)

The objective function expressed in (2.15) minimizes the completion time of the last com-

pleted job. Constraint (2.16) ensures that the precedence constraints between operations be-

longing to the same job are not violated. Constraints (2.17) and (2.18) ensures that a resource

only processes one operation at a time, while constraints (2.19) and (2.20) are referred to as hid-

den job constraints. These hidden job constraints ensure that two operations belonging to the

same job are not processed simultaneously. The starting and completion time constraints ((2.21)

and (2.22)) restricts the processing time of the job to start and end in the interval between the

job available time (release date) and the due date. Constraint (2.23) ensures that the decision

variables remain positive and constraint (2.24) defines the binary variables zkl and ykl.

24

2.4.9 Selection of suitable variations

There are a number of factors which were considered during the evaluation of the variations.

Initially the algorithm will be kept as simple as possible, therefore any unnecessary complexity

will be eliminated. However, it is still important to ensure that the metaheuristic algorithm

will have the same functionality as the algorithm currently implemented by Optimatix. Similar

functionality will ensure that the comparison between the two algorithms will be meaningful.

The variations were also selected on the basis of efficiency: those variations incorporating the

most functional characteristics receive preference.

The selection process resulted in three variations deemed suitable to use as points of depar-

ture for the design of the algorithm. Therefore the algorithm should be designed as such that

its structure will enable it to have the same functionality as the following variations:

• The expanded job shop scheduling problem.

• The JSSP with sequence-dependent set-up times.

• The JSSP with precedence constraints.

2.5 Objective function variations on the classical job shop schedul-

ing problem

Apart from cost functions, a large number of objective functions have been formulated to eval-

uate the quality of schedules. Brucker (2004) provides a list of the most common measurements

which can be used to formulate objective functions. Any of the measures in Table 2.2 can be used

to formulate at least four different objective functions of the form: max{mi} | i = {1 . . . , n},∑n
i=1 mi,

∑n
i=1 wimi and max{wimi} | i = 1 . . . , n}, where mi denotes the measurement asso-

ciated with job i, wi the numerical weight associated with job i and di the due date of job i.

For example, the following four objective functions can be formulated for job completion time,

where Ci denotes the completion time of job i: makespan (max{Ci} | i = 1 . . . , n}), total flow

time (
∑n

i=1 Ci) and weighted total flow time (
∑n

i=1 wiCi).

2.6 Solution strategies

The design of an efficient algorithm requires the identification of the most appropriate solution

strategy for the given implementation environment. Being the most general of the classical

scheduling problems, the classical job shop scheduling problem has a rich history. An indication

25

Table 2.2: Commonly used JSSP measurements.

JSSP measurement Formulation

Lateness Li = Ci − di

Earliness Ei = max{0, di − Ci}

Tardiness Ti = max{0, Ci − di}

Absolute deviation Di =| Ci − di |

Squared deviation Di = (Ci − di)2

of all the major solution strategies which have been applied to the JSSP in the past fifty years,

along with the benchmark problems on which they were tested, is indicated in Figure 2.6 (Jain

and Meeran, 1999).

2.6.1 Optimal solution strategies

During the 1960s a lot of emphasis was placed on finding exact solutions by means of elaborate

and sophisticated mathematical constructs. However, in their article, Jain and Meeran (1999)

refer to research from the 1970s which clearly highlights the extreme intractability of the job

shop scheduling problem. The problem can be classified as strongly NP -hard. Therefore, only

a small number of special instances of the problem are solvable within polynomial time. This

implies that these techniques are of limited practical use, since the majority of these techniques

are unable to achieve feasible solutions to many problems.

The most widely used enumerative strategy is the Branch-and-Bound algorithm entailing

implicitly searching a tree structure which represents the solution space. A number of procedures

have been developed to exclude large portions of the tree to speed up the searching process.

Unfortunately, apart from the excessive computational burden, this strategy’s performance is

also relatively problem dependent and is sensitive to the initial upper or lower bound values

(Jain and Meeran, 1999).

2.6.2 Heuristic methods

The use of approximation methods has more and more become a viable alternative. Even

though the optimality of the solutions can not be guaranteed, larger problems can be solved

more efficiently. Heuristic methods simply aim to obtain a “good enough” solution by selecting

decision variables to obtain solutions which continuously progress towards a superior solution.

The General Local Search Procedure, the Shifting Bottleneck Heuristic and various other priority

based rules are often applied to the JSSP.

26

Th
e

cl
as

si
ca

l j
ob

sh
op

 s
ch

ed
ul

in
g

pr
ob

le
m

A
rt

if
ic

ia
l

in
te

lli
ge

nc
e

M
at

he
m

at
ic

al

G
en

er
al

 A
lg

or
it

hm
s

(i
te

ra
ti

ve
 m

et
ho

ds
)

A
pp

ro
xi

m
at

io
n

Ta
ilo

re
d

al
go

ri
th

m
s

(c
on

st
ru

ct
iv

e
m

et
ho

ds
)

B
ot

tl
en

ec
k

ba
se

d
he

ur
is

ti
cs

In
se

rt
io

n
al

go
ri

th
m

s
P

ri
or

it
y

di
sp

at
ch

 r
ul

es

E
nu

m
er

at
iv

e
m

et
ho

ds

S
ur

ro
ga

te
du

al
ity

La
gr

an
g

ia
n

re
la

xa
tio

n

D
ec

om
po

si
tio

n
m

et
ho

ds

In
te

ge
r

lin
ea

r
pr

og
ra

m
m

in
g

M
ix

ed
 in

te
ge

r
lin

ea
r

pr
og

ra
m

m
in

g

O
pt

im
is

at
io

n

S
im

u
la

te
d

a n
ne

al
in

g

Ite
ra

tiv
e

im
pr

ov
em

en
t

G
en

et
ic

lo
ca

l s
ea

rc
h

E
vo

lu
ti

on
ar

y
co

m
pu

ta
ti

on

S
P

T

LR
M

M
W

R

Th
re

sh
ol

d
ac

ce
pt

in
gTh

re
sh

ol
d

al
go

ri
th

m
s

P
ro

bl
em

 a
nd

he
ur

is
tic

 s
p

ac
e

G
R

A
S

P

G
en

et
ic

al
go

rit
hm

s

R
ei

ns
er

tio
n

al
go

rit
hm

s

V
ar

ia
bl

e
de

p
th

 s
ea

rc
h

Ta
bu

 s
ea

rc
h

La
rg

e
st

ep
o

pt
im

is
at

io
n

Lo
ca

l
se

ar
ch

P
ro

bl
em

 s
pa

ce
m

et
ho

ds

N
eu

ra
l

ne
tw

or
ks

E
xp

er
t

sy
st

em
s

A
nt

op
tim

is
at

io
n

C
on

st
ra

in
t

sa
tis

fa
ct

io
n

B
ea

m
 s

ea
rc

h
B

ra
nc

h
an

d
bo

un
d

E
ffi

ci
en

t
m

et
ho

ds

G
re

at
 d

el
ug

e
al

go
rit

hm
 a

nd
re

co
rd

-t
o-

re
co

rd
tr

av
el

S
hi

fti
ng

bo
ttl

en
ec

k
pr

oc
ed

u
re

F
ig

ur
e

2.
6:

So
lu

ti
on

st
ra

te
gi

es
of

th
e

cl
as

si
ca

l
JS

SP
(J

ai
n

an
d

M
ee

ra
n,

19
99

).

27

General Local Search Procedure

The simplest heuristic method for solving the JSSP is the General Local Search Procedure. This

method consists of iteratively evaluating the current solution and determining the direction in

which movement should take place to improve the objective function. Search directions and

step lengths can be determined using steepest gradient descent, conjugate gradients or Newton

methods (Engelbrecht, 2005).

Priority Dispatch Rules

One of the earliest heuristic methods developed for scheduling applications, Priority Dispatch

Rules (PDRs), functions by assigning priorities to all operations available for sequencing. These

priorities can be assigned according to a large number of heuristic rules, for example shortest

processing time (SPT) and earliest due date (EDD). Although very easy to implement with a

low computational burden, PDRs are highly problem dependent and solution quality degrades

significantly as dimensionality increases (Jain and Meeran, 1999).

The Shifting Bottleneck Heuristic

The Shifting Bottleneck Heuristic (SBP) is commonly considered to have had the greatest in-

fluence on approximation methods for production scheduling applications. This is due to its

exploitation of the well-developed algorithms for the single machine shop scheduling problem.

The strategy involves relaxing the problem into a number of single machine problems, which are

solved one at a time and ranked according to objective function values. The schedule for the

more complex problem is generated by sequentially scheduling each machine based on its rank.

The SBP does, however, have a problem with the generation of infeasible solutions (Jain and

Meeran, 1999).

2.6.3 Metaheuristics

The inability of heuristic methods to escape local optima have resulted in the development of

metaheuristics. The allowance of nonimproving feasible moves allows the search to continue in

regions where progress can resume (Rardin, 1998). The motivation for using a metaheuristic to

solve the job-shop scheduling algorithm is imbedded in the inherent complexity of the problem.

Simulated Annealing (SA), Tabu Search (TS) and Genetic Algorithms are most commonly

applied to the JSSP (Gongalves et al., 2005).

28

Tabu Search

Rardin (1998) defines a TS as an algorithm which deals with cycling by temporarily forbidding

moves that would return to a solution recently visited. This is accomplished by means of a

tabu list which records the most recent solutions and prevents the search from continuing with

these now non-feasible moves. This list can act as both a recency-based memory (where the list

classifies solutions according to the length of time they have spent on the list) and frequency-

based memory (where the number of times a solution occurs has an influence). Additionally,

an incumbent solution (Zhang et al., 2006) is used to keep track of the best solution found thus

far and certain aspiration criteria can also be defined to override the tabu list if this should

become necessary. This solution strategy has led to a number of successful solutions of job shop

scheduling problems.

Simulated Annealing

SA is an optimization process based on the cooling process of liquids and solids. As a substance

cools, the molecules tend to align themselves in a crystalline structure associated with the

minimum energy state of the system. This is analogous to the algorithm converging to the

optimal solution of an optimization problem. As the temperature of the metals decrease, the

alignment of the atoms in the structure continually change. This alignment is analogous to

the fitness of the solution: an alignment which results in a lower energy state also results in an

improved solution. Alignments of atoms are probabilistically accepted based on the Boltzmann–

Gibbs distribution (Engelbrecht, 2005).

Pij ,


1 if f(xj) < f(xi)

exp
f(xj)−f(xi)

cbT otherwise
(2.25)

where Pij is the probability of moving from point xi to xj , cb > 0 and T is the temperature

of the system. Jain and Meeran (1999) classifies SA as a generic technique unable to achieve

good solutions quickly and requires excessive computational effort. However, the hybridization

of SA with other solution strategies, including Genetic Algorithms, has greatly improved its

competitiveness.

Genetic Algorithms

Genetic Algorithms (GA)s attempt to parallel the process of biological evolution to find better

and better solutions (Rardin, 1998). A number of operators (for example selection, crossover,

mutation and cloning) act upon on a population of randomly initialized individuals to trans-

29

form these individuals into better solutions. This technique has been the most unsuccessful at

addressing the classical job shop scheduling problem. Jain and Meeran (1999) states that GAs

are unable to successfully represent the classical job shop scheduling problem due to the fact

that crossover operators cannot generate feasible schedules without losing efficiency.

2.7 Conclusion

The most important contribution of this chapter lies in the identification of a job shop-based

scheduling model which adequately addresses the unique business requirements of Optimatix.

Much success has been achieved in the field of job shop scheduling, yet room for improve-

ment still exists. Numerous research papers propose solution strategies ranging from complex

metaheuristic implementations to simple rules-based approaches. The next chapter discusses in

greater detail the development of a suitable solution strategy for the Optimatix problem. Every

solution strategy has its merits — the challenge is to find the best one for the purpose at hand.

30

Chapter 3

A generic production scheduling

framework

Jain and Meeran (1999) states that metaheuristics is the most successful class of solution strate-

gies for solving the job shop scheduling problem. In order to use a metaheuristic-based approach

to solving the Optimatix problem, the proposed solution strategy should fulfill a number of

problem-dependent requirements, the first of which is an effective problem-mapping mechanism.

The problem-mapping mechanism has to ensure that effective communication occurs between

the various domains the Optimatix problem consists of. The problem can be divided into three

domains: the domain of the metaheuristic, consisting of for example, chromosomes or particles,

the decision space, consisting of all possible decision variable values and the objective space

which consists of all possible objective function values. This state of events is largely due to the

fact that not all the information required to derive an objective function value associated with

a specific scheduling solution can be stored inside the schedule representation.

A useful byproduct of effective communication between the various domains is that the

inherent structure of such a framework results in it being generic to all common metaheuristics.

Optimatix has only recently started to consider metaheuristics as a potential solution strategy

and a large number of alternative metaheuristics exist that can in some way or other meet the

unique scheduling requirements of Optimatix. The framework will enable Optimatix to employ

population-based techniques when the computational cost is justified or to select a technique

which is relatively insensitive to the quality of the initial solution, when it is inevitable to

use a poor starting solution, this structure can add immense value to the production scheduling

efforts of Optimatix. After all, metaheuristics are largely problem-dependent, therefore the more

alternatives available, the higher the quality of the final solution and the faster the most suitable

metaheuristic can be found.

31

3.1 Structural requirements of the framework

In order to create such a generic production scheduling framework for Optimatix there are a

number of important structural requirements which should be addressed. The first step in using

a metaheuristic is to define the schedule representation. Critical to the success of the algorithm,

this representation can be used to implicitly enforce a number of problem constraints. Because

the framework should be a fully functional solution strategy, special emphasis should be placed on

addressing the various problem-specific constraints, multiple objectives and it should be ensured

that effective functionality is obtained in the dynamic scheduling environment of Optimatix. For

the sake of simplicity PSO terminology will be used throughout the rest of the chapter.

3.1.1 The schedule representation

The schedule representation can be loosely defined as the structure in which the metaheuristic

stores each scheduling solution and thus it is extremely important for this representation to

address all aspects of the problem to be solved. For example, the Optimatix problem requires

the representation to address both the allocation of operations to primary resources as well as the

subsequent sequencing of each of the operations on their allocated resources. In this framework,

the allocation of operations are denoted by the decision variables xij which takes on a value of 1

if operation i is performed on resource j and is 0 otherwise. The sequencing decision is denoted

by ti (the starting time of operation i).

Selecting a suitable representation has an enormous impact on the algorithm’s efficiency and

is partially responsible for incorporating the required constraints into the algorithm’s structure.

The more constraints which are implicitly incorporated into the particle representation, the less

constraints remain which have to be enforced by other methods. Probably one of the most

important decisions to be made during algorithm development, a brief review of scheduling

representations is provided in Section 3.1.1 before a decision is made regarding the most suitable

option for the Optimatix problem.

Review of existing schedule representations

The most common particle representation for the allocation of operations uses a vector of integer

values corresponding to the unique resource index of the machine on which each operation is to

be processed (Tamaki et al., 2001). This approach can, however, result in infeasible resource

allocations in partially Flexible Job Shop Scheduling Problem (FJSSP)s, where a specific oper-

ation can not simply be processed on any available resource. Traditional scheduling constraints,

for example the constraint that ensures no two operations are processed simultaneously on the

32

same resource, may also be violated. Attempting to incorporate more constraints implicitly

into the particle representation, Tay and Wibowo (2004) discusses a representation which only

assigns operations to those resources which are available at the time of the assignment.

Bit strings indicating the satisfaction of proposed precedences between operations and sorted

vectors consisting of the correct sequence of operation indices have been used to sequence oper-

ations. Other representations make provision for the starting times of all operations or assigns

priority values (Zhang et al., 2004). However, the assignment of priorities to all operations

should be accompanied by a relatively complex scheduling heuristic which translates the parti-

cle representation into a feasible schedule.

Most scheduling algorithms, which address both allocation and sequencing, use a two-vector

particle representation, but an interesting three-vector representation can be found in Tay and

Wibowo (2004) and there are a number of authors who have used matrix representations (Hsu

et al., 2002) (Mesghouni et al., 1997).

Schedule representation selection

The final selection opts for a two-vector representation consisting of primary resource indices and

starting times of operations (Figure 3.1). Consisting of one continuous-valued and one discreet-

valued vector, both continuous and discreet optimization algorithms can be used, provided that

a discretization-mechanism is incorporated for continuous algorithms. This mechanism simply

ensures that the continuous-valued output of the metaheuristic can be converted to its associated

discreet value for interpretation as a production schedule.

5 3 1 2 10.65 hr 2.56 hr 3.23 hr 9.23 hr

Primary
resource 5

Primary
resource 1

Figure 3.1: The selected schedule representation.

Since the sequencing decision variables (ti ∀i ∈ {1, . . . , I}) are already used in the represen-

tation, the only other required conversion to decision variables is relatively simple. If we denote

33

di as the resource index of operation i, then x(di)j takes on the value of 1 ∀i ∈ {1, . . . , I} and

j ∈ {1, . . . , J}, where I denotes the total number of operations and J denotes the total number

of primary resources.

3.1.2 Constraints

In any scheduling environment, factors exist which prevent the complete optimization of the

various objectives. A number of these constraints have been identified for the Optimatix problem.

For example, precedence relationships, release dates and production calendars are just some of

the constraining factors in the Optimatix problem.

Consider the scenario illustrated in Figure 3.2. A particle p flies through a search space S,

which consists of an infeasible area I and a number of disjointed feasible areas denoted by Fi,

where i ∈ {1, . . . , 3}. The particle has to search S to find the optimal solution which can be

located in any of the feasible areas.

I

F1

F2

F3

S

X1

X2

Figure 3.2: Constrained search space.

Various approaches, which range from randomly initializing infeasible particles to repairing

infeasible particles by converting them to their associated feasible solutions, have already been

used to address constrained optimization problems. Unfortunately many of these methods are

not suitable for use in the Optimatix problem because of the highly constrained nature of the

search space.

The use of a penalty function is the most common way of addressing all constraints which

are not implicitly incorporated into the particle representation in cases where feasible solutions

34

can not be initialized easily. This approach involves calculating a penalty associated with each

particle in accordance with the number of constraints which are violated as well as the extent of

the violations. Subsequent minimization over the sum of all penalty values attracts the particles

towards feasible areas of the search space and repels them from infeasible areas. For example, if

two operations intersect on the same primary resource, the penalty is calculated as the number

of time units of unavailable capacity.

It should be noted that the inclusion of a penalty function involves an additional objective

over which the problem is to be minimized and therefore the Optimatix problem becomes a

multiobjective optimization problem. However, these multiple objectives can easily be addressed

and moreover this allows for the incorporation of additional standard production scheduling

objectives so that the schedule can be optimized simultaneously with respect to more than one

objective functions. This situation more realistically portrays reality as the “final solution” of

many real world problems is often a trade-off between multiple objectives.

3.1.3 Multiple objectives

Currently Optimatix aims to evaluate the schedules obtained by the algorithm simultaneously

in terms of three scheduling objectives: minimum makespan (Equation (3.1)), minimum late-

ness/earliness (Equation (3.2)) and minimum total queue time (Equation (3.3)). In Equa-

tions (3.1) to (3.3) fi denotes the finishing time, ti the starting time and di the due date of

operation i and L is the set containing the last operations of each job j where J denotes the

total number of jobs and Ij the number of operations in job j.

minmax
i
{fi} (3.1)

min
∑
i∈L

|di − fi| (3.2)

min
J∑

j=1

∑
i∈Ij ,i6∈L

(ti+1 − fi) (3.3)

In order to address all three objectives simultaneously, a number of concepts in Multiobjective

Optimization (MOO) theory will first be discussed.

The use of MOO somewhat complicates the concept of an “optimal” solution. The purpose

of MOO is to obtain a set of good compromises rather than a single solution. A non-dominated

solution is a good example of an appropriate compromise that will suffice as a solution to a

Multiobjective Optimization Problem (MOP). Rardin (1998) defines a non-dominated solution

to be a feasible solution to a MOP so that no other feasible solution performs at least as well in

35

all objective functions and strictly better in one. Assuming a minimization problem:

fk(x1x1x1) ≤ fk(x2x2x2) ∀k ∈ {1, 2, . . . , nk} (3.4)

and there exists a k ∈ {1, 2, . . . , nk} such that

fk(x1x1x1) < fk(x2x2x2) (3.5)

where fk(x1x1x1) denotes the objective function value of solution vector x1x1x1 with respect to the kth

objective.

The set of non-dominated solutions of a MOP, is referred to as the Pareto-optimal set and

the set of objective function values associated with each point in the Pareto-optimal set, is

referred to as the Pareto front. The estimation of the Pareto front is an integral part of MOO

and is often used to evaluate algorithm performance.

Engelbrecht (2005) discusses a number of different approaches to MOO which includes,

amongst others, the aggregation-based approch to MOO. This approach is considered to be the

most simple and involves converting all functions which are to be optimized into a single aggre-

gated objective function of the form
∑nk

k=1 wkfk(xxx), where fk(xxx) again refers to the objective

function value of solution vector x with respect to the kth objective. The weight associated with

the kth objective function is denoted by wk and nk is the total number of objectives over which

the problem is optimized.

Unfortunately, this method does have a number of drawbacks. All wk values are problem-

dependent and the algorithm needs to be solved repeatedly to obtain an estimate of the Pareto

front because in actual fact, one aggregated function is solved with a single-solution metaheuris-

tic. Furthermore, if the Pareto front is concave, in other words, if there are conflicting objectives

or if objectives are measured in incompatible units, this method is not suitable at all. In the

light of these facts, it is clear that a more suitable approach to MOO will need to be utilized.

Goal programming is intuitive, yet effective and involves the assignment of target values to

each of the objective functions (Rardin, 1998). Deficiency variables are also assigned to each

objective function value and determines the extent to which the target values are not met.

Minimizing over a weighted sum of all deficiency variables and repeated solving of the algorithm

with different target values, provides a reasonable estimate of the Pareto front.

3.2 The production scheduling framework

By being able to meet the structural requirements defined in the previous section the scheduling

framework is capable of addressing all the various classes of scheduling problems which form part

36

of the Optimatix scheduling environment, as well as a large number of additional scenarios. This

was made possible by using two different reference frames as basis for the framework: Zandieh

et al.’s scheduling classification, discussed in Section 2.2 and the variations on the job shop

scheduling problem, presented in Figure 2.4.

The actual framework developed from these two classifications is indicated in Figure 3.3.

The generic production scheduling framework consists of five interrelated components: an ini-

tialization procedure, the schedule representation, a conversion mechanism, the penalty function

and finally, the metaheuristic algorithm.

Particle
represen-

tation

Objective
function
values

Schedule

Best solution
Yes

Initialization
algorithm

Penalty
function

Conversion
mechanism

Meta-
heuristic

Stopping
criteria

satisfied?

No

Figure 3.3: The generic production scheduling framework.

The framework is structured around the schedule representation which is continuously up-

dated and improved by being moved through the search space. In order to optimize the schedule,

fitness evaluations should be performed for each of the potential solutions. The objective func-

tion value of the associated scheduling solution of each particle can be obtained by means of

the conversion mechanism between the domain of the metaheuristic and the decision space.

This mechanism also incorporates machine breakdowns, scheduled maintenance and produc-

tion downtime into the schedule and provides as output the decision variables which can be

used to evaluate the objective function values. The information obtained from this conversion

mechanism is fed back to the metaheuristic algorithm to use during the optimization process.

Completing the cycle, the standard objective function values and penalties associated with each

particle is used to intelligently update the particle representation until a stopping criteria is

satisfied.

Although the overview in the previous paragraph was helpful in describing the internal

workings of the framework, the rest of this chapter is dedicated to a more in-depth discussion

37

of each of the three remaining components of the structure.

3.2.1 The initialization procedure

During algorithm development, it became clear that PSO was unable to obtain feasible solutions

from random generated initial solutions. The rationale behind using an initialization algorithm

is to start the algorithm off with a feasible initial solution to reduce the search space which

the metaheuristic is to cover. Due to the added computational complexity, the framework was

developed to not require completely feasible initial solutions. However, experimental results

indicated that immense improvement in algorithm performance was obtained by using semi-

feasible particles when implementing the framework by means of PSO. For this framework, a

semi-feasible initial particle is defined as a particle which does not violate any of the precedence

constraints of the problem.

The procedure used to initialize the starting-time variables consists of sorting the various

operations according to the number of predecessors associated with each operation. The starting

times of all operations with the same number of predecessors are then randomly initialized within

the same interval. These initialization intervals are chronologically sequenced to ensure that the

initialized solutions satisfy all precedence constraints.

The procedure, illustrated by means of an example in Figure 3.4, reduces the optimization

problem to the problem of sequencing sets of operations independently based on the precedence

constraints between operations and jobs. However, it should be noted that the inherent struc-

ture of the optimization framework allows the metaheuristic to change the sequence of any of

the operations in any way it sees fit to obtain an improved solution. After initialization, the

penalty function is responsible throughout the rest of the optimization process for recording and

also minimizing the extent to which these subsequent sequencing changes violate the problem

constraints.

In contrast, allocation variables are initialized randomly. These random numbers are subse-

quently discretized to obtain resource indices. For each operation, unique intervals are defined

for each resource on which the operation may be scheduled, such that a resource index can be

assigned to the operation depending on where the allocation variable is initialized.

3.2.2 The conversion mechanism

The conversion mechanism produces as output the actual finishing time associated with each

operation given that the starting time of operation i processed on resource di is given by ti. The

total processing time of an operation in the Optimatix problem depends on a number of factors

38

O21 O22 O23 O41 O42 O43

O31 O32 O33

O11 O12 O13

O21

O31

O11

O22

O32

O12

O23

O33

O13

O41 O42 O43

In
iti

al
iz

at
io

n

Figure 3.4: A network diagram of the precedence constraints between operations is used as

input to the initialization procedure. The operations initialized into their respective intervals is

obtained as output.

including the resource on which it is processed, the setup-time associated with the operation and

the effect of machine breakdowns, scheduled maintenance and production calendars on available

processing time. These factors are incorporated into the processing time of the operations by

distinguishing between a proposed finishing time and an actual finishing time for each operation.

The proposed finishing time ignores the time intervals where the required resources are not

available. If we define gi to be the proposed finishing time and si to be the setup-time of

operation i

gi =ti + xidi
pidi

+ si (3.6)

and

si =


yjiuji if uji > 0.

xidi
vidi

otherwise.

where

39

xidi
=


1 if operation i is performed on resource di.

0 otherwise.

yji =


1 if operation j is performed before operation i on resource di.

0 otherwise.

and pidi
denotes the processing time and vidi

the default set-up time of operation i on resource

di and uji is the sequence-dependent setup-time of operation i if processed immediately after

operation j. Basically, Equation (3.6) allows the framework to make use of default set-up time

values when no sequence-dependent set-up times are defined in the problem data as well as for

the first operation processed on each resource.

As soon as the proposed finishing time of each operation is determined, production down time

can be taken into account to determine the actual finishing time of each operation. The inclusion

of production down time is the single most complicating factor within the Optimatix problem

and this also ensures that the problem can not be modelled analytically and can therefore not

be solved to optimality.

There are three factors which influence the available production time in the Optimatix envi-

ronment. For each unique production calendar a number of intervals are defined during which

no production on any of the auxiliary or primary resources is allowed. Scheduled maintenance

defines intervals which only affects the specified resources and for the sake of simplicity machine

breakdowns are treated as prolonged scheduled maintenance. After all production down time

intervals are defined, this data is concatenated per primary and auxiliary resource.

Incorporating the down time intervals into the production time of each operation requires

an analysis of the relationship between the current starting time of each operation to the down

time intervals associated with the primary and auxiliary resources on which it is to be scheduled.

If the starting time (qj) and the finishing time (rj) is given for each of the j production down

time intervals, the actual finishing time of operation i, denoted by fi, can be determined by the

procedure described in Algorithm 1 and the diagram provided in Figure 3.5.

3.2.3 The penalty function

The Optimatix scheduling environment is characterized by a large number of constraints, which

range from the enforcement of precedence constraints between jobs and operations within the

same job to the inclusion of release dates into the schedule. This section attempts to provide an

analysis of those constraints enforced by the penalty function as well as the calculation of the

penalty values associated with their violation.

40

Algorithm 1: The conversion mechanism for the incorporation of production down time

into the schedule.

for All operations i do0.1

for All downtime intervals j do0.2

if fi ≤ qj or ti ≥ rj then0.3

Interval j is an intersected down time interval of operation i0.4

end0.5

end0.6

for Intersected down time intervals k of operation i to K do0.7

if qk ≤ fi and ti ≤ qk then0.8

fi = fi + rk − qk0.9

end0.10

if qk < ti and ti ≤ rk then0.11

fi = fi + rk − ti0.12

end0.13

end0.14

for All downtime intervals j from k to J do0.15

if fi > qj then0.16

fi = fi + rk − qk0.17

else0.18

Break to operation i + 10.19

end0.20

end0.21

end0.22

41

Task Name

ID Task Name
Oct 2006

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Task 1

2 Task 2

ID
Oct 2006

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

Task 1

Task 2

C
on

ve
rs

io
n

m
ec

ha
ni

sm

Figure 3.5: The schedule before and after the inclusion of production down time intervals.

The penalty function makes use of two important decision variables, obtained as output

from the particle representation and the conversion mechanism, namely the starting time ti of

operation i as well as the actual finishing time fi, referred to hereafter as simply the finishing

time, of operation i. Both ti and fi may only take on positive values.

The precedence relationships are enforced by means of Constraint (3.7) where the set A

contains all precedence relationships. For each relationship, the starting time of the second

operation (operation i) in the precedence relationship has to be larger than the finishing time

of the first operation (operation j) in the precedence relationship. In case of violation of Con-

straint (3.7) a penalty corresponding to the number of time units the precedence constraint is

violated can be calculated for each operation according to Equation (3.8). These penalty values

are then summed over all precedence relationships (Equation (3.9)) to obtain the precedence

relationships penalty value (p1a) for each schedule.

fi ≤ tj ∀(i, j) ∈ A (3.7)

p1(i,j) = |min(0, (tj − fi))| ∀(i, j) ∈ A (3.8)

p1a =
∑

(i,j)∈A

p1(i,j) (3.9)

Since release dates are defined per job and not per operation, Constraint (3.10) ensures

that the first operation of job k, defined in set F, is only released on the production floor after

the arrival of the job release date rk. The release date penalty value of each schedule can be

42

calculated according to Equations (3.11) and (3.12).

tk ≥ rk ∀k ∈ F (3.10)

p2k = |min(0, (tk − rk))| ∀k ∈ F (3.11)

p2a =
∑
k∈F

p2k (3.12)

The most critical production scheduling constraints are those that prevent two operations

being scheduled at the same time on the same resource. The constraints are relatively simple

to formulate, but the calculation of the penalty, defined as the actual intersection time of two

operations on the same primary resource, is more complex. If operation i and operation j is

performed on the same finite capacity primary resource, the relationship between fi, fj , ti and

tj determines the value of the penalty assigned. The four mutually exclusive scenarios which can

occur is incorporated into the calculation of p3(i,j), where Jdi
consists of the set of all operations

performed on resource di. The total penalty value (p3a) associated with these “intersection

constraints” can be calculated according to Equation (3.14).

p3(i,j) =



fi − ti if ti ≥ tj , fi < fj and wij = 0 ∀(i, j) ∈ Jdi
.

fj − ti if ti ≥ tj , fj ≤ fi and wij = 0 ∀(i, j) ∈ Jdi
.

fj − tj if tj > ti, fj < fi and wij = 0 ∀(i, j) ∈ Jdi
.

fi − tj if tj > ti, fi ≤ fj and wij = 0 ∀(i, j) ∈ Jdi
.

where

wij =


0 if fi ≤ tj or fj ≤ tj ∀(i, j) ∈ Jdi

.

1 otherwise.

p3
(i,j) =



fi − ti if ti ≥ tj , fi < fj and wij = 0 ∀(i, j) ∈ Jdi
.

fj − ti if ti ≥ tj , fj ≤ fi and wij = 0 ∀(i, j) ∈ Jdi
.

fj − tj if tj > ti, fj < fi and wij = 0 ∀(i, j) ∈ Jdi
.

fi − tj if tj > ti, fi ≤ fj and wij = 0 ∀(i, j) ∈ Jdi
.

(3.13)

p3a =
∑

(i,j)∈Jdi

p3(i,j) (3.14)

43

The operation processing time is independent of the auxiliary resource allocation. This

results in the auxiliary resource allocation not having a direct influence on schedule optimization.

Instead the auxiliary resources is simply incorporated as constraints into the penalty function.

However, before the penalty values can be calculated, the algorithm first attempts to obtain

feasible auxiliary resource allocations for all the operations to one auxiliary resource from each

set of auxiliary resources required. An allocation is considered feasible if all the specified auxiliary

resources are available throughout the time period that the operation is scheduled on the primary

resource.

This allocation procedure, indicated in Algorithm 2, provides as output a list of operations

for which no feasible auxiliary resource allocation can be obtained. Since this implies that

insufficient capacity exist to fulfill the processing requirements for these infeasible operations,

the penalties are calculated in Equation (3.15) as the operation production times and are summed

to obtain the total penalty value associated with auxiliary resource allocation (p4a).

p4a =
∑

i

ai(fi − ti) (3.15)

where

The total penalty function value (P) for each schedule can be calculated according to Equa-

tion (3.16). It should be noted that due to the total per schedule penalty function value being

calculated as the sum of the penalty values associated with each set of constraints, the penal-

ization of the objective function is directly proportional to the extent of infeasibility.

P = p1a + p2a + p3a + p4a (3.16)

3.3 Conclusion

At this point it should be remembered that an algorithm is only as good as the results it produces

and in order for appropriate testing and benchmarking to be done, a specific metaheuristic has

to be selected within which the framework can be implemented. In compliance with the research

question, the next chapter will provide an extensive introduction into Swarm Intelligence and

more specifically PSO, before the application of PSO to the framework developed in this chapter,

is discussed.

44

ai =
1 if operation i is infeasible.

0 otherwise.

Algorithm 2: Allocation of operations to auxiliary resources.

for All operations i do1.1

for All resource sets j do1.2

if A resource is required from resource set j then1.3

for All resources k in set j do1.4

for All scheduled intervals l do1.5

if fi ≤ ql or ti ≥ rl then1.6

Operation i will overlap interval l1.7

end1.8

end1.9

if Operation i overlaps any intervals then1.10

Operation i cannot be scheduled on resource k of set j1.11

if k = Kj then1.12

Operation i is infeasible1.13

Break to operation i + 11.14

else1.15

Break to resource k + 11.16

end1.17

else1.18

Schedule operation i on resource k of set j1.19

end1.20

end1.21

end1.22

end1.23

end1.24

45

46

Chapter 4

Particle Swarm Optimization

An insect may only have a number of brain cells, but insect organizations are capable

of architectural marvels, elaborate communication systems, and terrific resistance to

the threats of nature (Kennedy et al., 2001).

4.1 Optimization through Swarm intelligence

Over the past twenty years, a number of studies have addressed the collective behaviour of

animals in a fixed social hierarchy. The more interesting cases, however, are those where no

clear leader can be identified, yet the individuals manage to self-organize in order to meet a

specified objective. This objective can range from predator avoidance to searching for food.

These early studies have led to the development of various distributive collective problem

solving strategies. More formally, Engelbrecht (2005) defines Swarm Intelligence (SI) as the

property of a system whereby the collective behaviours of unsophisticated agents, which inter-

act locally with their environment, cause coherent functional global patterns to emerge. This

definition addresses four interrelated concepts, commonly believed to be the secret behind the

success of SI as an optimization strategy. These concepts include emergence, social intelligence,

stigmergy and adaptation.

Consider the example of a flock of birds which have a single objective — finding a source of

food within a predefined solution space. The ability of the flock to find the food source can be

best explained by the concept of emergence: simple local interactions which lead to global effects.

A single bird possesses a relatively limited amount of intelligence, but the complex behaviour of

the entire flock allow the birds to settle on the food source. This flocking behaviour results from

simple social interactions between individual birds. The knowledge that a single bird obtains

from interacting with and adapting to its environment is propagated through the entire flock by

47

indirect communication or stigmergy between individuals. In other words, even though a single

bird is not aware of the location of the source of food, the local interactions and information-

exchange mechanism of the flock leads to convergence of the entire flock to the intended location.

The purpose of Computational Swarm Intelligence (CSI) is to model the simple local interac-

tions of individuals with the environment and neighbouring individuals, in order to obtain more

complex behaviours that can be used to solve optimization problems (Engelbrecht, 2005). To aid

this objective, two CSI paradigms have been developed: Ant Algorithms, which are developed

from behaviours observed in ant and termite colonies and Particle Swarm Optimization (PSO)

— the focus of this project.

4.2 Introduction to Particle Swarm Optimization (PSO)

4.2.1 Origin and applications

Many researchers trace the origins of the PSO algorithm back to Reynold’s “boid” simulations.

The initial objectives of this and the other collective behaviour studies of the late 80s was to

simulate the graceful, unpredictable choreography of collision-proof birds in a flock (Eberhart

and Shi, 2001). However, the optimization potential, of what was at that stage only a conceptual

model, soon became apparent. Simplification and parameter derivation resulted in the first

simplistic implementation by Kennedy et al. in 1995.

Since its humble beginnings, PSO has established itself as a simple and computationally

efficient optimization method in both the fields of Artificial Intelligence and Mathematical Op-

timization. Applications range from more traditional implementations like evolving artificial

neural networks and optimizing various planning and scheduling models to more specific appli-

cations, like the design of aircraft wings and the generation of interactive, improvised music.

4.2.2 Schedule-specific applications

One of the most complex production scheduling applications of PSO, was performed by Xia and

Wu (2005), who developed a Simulated Annealing-Particle Swarm Optimization (SA-PSO) based

hybrid solution strategy for the Flexible Job Shop Scheduling Problem (FJSSP). The algorithm

addresses FJSSPs with both total and partial flexibility. In this specific implementation, only

the allocation of operations to resources is done by means of PSO. The actual sequencing of

the assigned operations are performed by a Simulated Annealing (SA) algorithm. Additionally,

multiple objectives are addressed by combining the relevant objectives into a single weighted

sum objective. Finally, although the SA-PSO algorithm improved on current best known FJSSP

48

benchmark values, the algorithm found a 56 operation problem to be challenging.

The most interesting aspect of Xia and Wu’s article is the problem mapping of PSO particles

to schedules. All the machines on which a specific operation can be processed, is sorted according

to their shortest processing time. One particle is represented by a discreet value corresponding

to each operation. This value refers to the position of the machine to which the operation is

allocated, with respect to the other sorted machines. The continuous optimization problem is

converted to its corresponding discreet optimization problem by simply rounding the continuous

PSO variables to discreet resource indices.

Due to its extreme intractability, the basic job shop scheduling problem has been used a

number of times to test the performance of scheduling algorithms. A number of authors have

managed to solve basic JSSPs with hybrid PSO algorithms (Xia Weijun and Genke, 2004).

Other scheduling applications include schedule optimization in a flexible manufacturing system

(Jerald et al., 2004), various Permutation Flow Shop Scheduling Problem (PFSSP)s (Lian et al.,

2006) and a resource-constrained project scheduling problem (RCPSP) (Zhang et al., 2004).

4.3 The Basic PSO algorithm

In order to apply a PSO-based approach to the proposed problem, a working knowledge of PSO

techniques is required. A good place to start is with the simplest of the lot — the basic PSO

algorithm.

4.3.1 Algorithm structure

All Swarm Intelligence-based solution strategies, and therefore also the PSO algorithm, have

four distinct characteristics:

• A group of individuals performs space and time calculations. In the PSO algo-

rithm, each potential solution to the scheduling problem is represented by the position of

a particle in a multi-dimensional hyperspace (Figure 4.1). Velocity and displacement up-

dates are applied over time to each particle to move it to a different position and therefore

a different solution in the search space.

• The individuals respond to quality factors in the environment. Information about

the environment is stored by each particle in the form of the personal best position obtained

by each particle (pbest) and the global best position obtained by the entire swarm (gbest).

Both the pbest and gbest values are incorporated into the velocity updates and therefore

have a significant influence on particle trajectories.

49

Figure 4.1: Particle positions that represent potential solutions.

• The behaviours of the individuals should only be changed when the computa-

tional cost is justified, which implies that a minimum level of stability should

be maintained. Although the state of the swarm is changed every time the pbest and

gbest values are updated, these updates do not occur at each iteration, but only occur if

a particle happens to stray onto a better solution.

• A specific method of exploration should be incorporated into the algorithm.

Their are numerous methods of ensuring that exploration into a PSO algorithm. Due to

the importance of adequate exploration, this is discussed in more detail in Section 4.3.2.

Emergence and social intelligence is incorporated into the velocity update which is consid-

ered to be the most critical component of the PSO algorithm. Figure 4.2 illustrates that the

magnitude and direction of a particle’s velocity at time step t is considered to be the resultant of

three vectors: the particle velocity vector at time t−1, the cognitive component pbest, which is a

vector representation of the best solution found to date by the particle and the social component

gbest, which is a vector representation of the best solution found to date by all the particles in

the swarm. The velocity of particle i in dimension j at time step t + 1 is given by:

vij(t + 1) =vij(t) + c1rj(t)[yij(t)− xij(t)] + c2rj(t)[Yj(t)− xij(t)] (4.1)

where vij(t) represents the velocity of particle i in dimension j at time step t, c1 and c2 are the

cognitive and social acceleration constants, yij(t) and xij(t) respectively denotes the personal

best position (pbest) and the position of particle i in dimension j during time step t. Yj(t)

denotes the global best position (gbest) in dimension j and r(t) is a random number sampled

from a uniform distribution during time step t.

50

1

1

Vj(t+1)
Vj(t)

pbest

gbest

Figure 4.2: Particle velocity as resultant of three components.

The displacement of particle i at time t is simply derived from the calculation of vij(t + 1)

in Equation (4.6):

xi(t + 1) =xi(t) + vi(t + 1) (4.2)

For the sake of completeness a flowchart of the basic PSO algorithm is provided in Figure 4.3,

where the pbest and gbest updates referred to in Figure 4.3 are enforced by Equations (4.3)

and (4.4).

if f(xixixi) <f(yiyiyi) then

yiyiyi =xixixi ∀i ∈ {1, . . . , ns} (4.3)

if f(yiyiyi) <f(YYY) then

YYY =yiyiyi ∀i ∈ {1, . . . , ns} (4.4)

4.3.2 Algorithm requirements and limitations

A number of factors exist which results in the basic PSO algorithm not being suitable for use

in the Optimatix scheduling framework. Some of these limitations include: the algorithm has a

tendency to stagnate, has problem-dependent parameters and there exists significant potential

for improvement in the algorithm’s use of exploration and exploitation. Fortunately a number

of strategies exist to overcome these limitations and there is significant proof that a variation

on the basic PSO algorithm may be more than adequate (Engelbrecht, 2005).

51

Create and
initialize swarm

Set global best
positions using
Equation (3.4)

Update velocities
using Equation

(3.1)

Update
displacements
using Equation

(3.2)

Is stopping
condition true?

Output gbest as
optimization result

Yes

No

Set personal best
positions using
Equation (3.3)

Figure 4.3: The basic PSO algorithm.

The tendency to stagnate

The basic PSO algorithm has a potentially dangerous property. The algorithm is driven by the

fact that as a particle moves through the decision space, it is always attracted towards its pbest

value and the flock’s gbest value. However, if any of the particles reaches a position in the search

space where

yij(t) =xij(t) = Yj(t) (4.5)

there is no driving force for the particle to continue exploring the rest of the search space. This

property can result in the swarm converging to a point which cannot necessarily be classified as

a local optima. It can simply be said that the swarm has reached an equilibrium state.

Fortunately a number of different methods have been developed to force the gbest particle

out of its stagnation point. The first method, the GCPSO will be used in this project. In effect

the gbest particle is forced into a random search around the global best position. The size of

the search space is adjusted on the basis of the number of consecutive successes or failures of

the particle, where success is defined as an improvement in the objective function value.

The second approach to prevent algorithm stagnation involves the use of the Convergent

Linear Particle Swarm Optimization (CLPSO) algorithm. Originally developed to address con-

52

strained optimization problems, the algorithm requires that all particle adjustments be linear

combinations of the initial conditions (Engelbrecht, 2005).

The problem-dependent nature of input parameters

Engelbrecht (2005) states that the performance of PSO is sensitive to control parameter choices

and inadequate selection of parameter values can lead to divergent or cyclic behaviour. This

limitation is often addressed by means of comprehensive parameter derivation studies.

Exploration versus exploitation

The use of approximation algorithms results in a trade-off required between exploration and

exploitation. Where exploration refers to the algorithm’s ability to cover large areas of the

search space, exploitation refers to the refinement of a potential solution. In most applications,

exploration is called for in the initial stages of algorithm execution and exploitation is utilized

near the end, to fine-tune potential solutions. The easiest way of addressing this trade-off is

again by judicial selection of required input parameters.

4.4 Existing variations on the basic PSO

In order to address the inherent limitations and requirements of the basic PSO, a number of

variations on the PSO algorithm has been developed. These variations, indicated in Figure 4.4,

are organized into six main categories:

• Social based algorithms use different social typologies or network structures. The

three most common network structures implemented in PSO are indicated in Figure 4.5.

The black lines between particles represent the existence of a communication mechanism

between the linked particles. Algorithms using a different pbest and gbest calculations are

also classified as social based algorithms.

• Hybrid algorithms refer to all PSO variations that combine Evolutionary Algorithms

(EA)-based concepts like selection, reproduction and mutation, as well as all algorithms

which consist of more than one metaheuristic.

• Sub-swarm based algorithms are based on some explicit or implicit grouping of parti-

cles in sub-swarms and can be divided into cooperative and competitive sub-swarm based

algorithms.

53

V
ar

ia
tio

ns
 o

n
th

e
ba

si
c

P
S

O
 a

lg
or

ith
m

S
oc

ia
l-b

a
se

d
P

S
O

 a
lg

or
ith

m
s

S
oc

ia
l N

et
w

or
k

S
tr

uc
tu

re
s

G
ro

w
in

g
ne

ig
hb

ou
r-

ho
od

s

Fi
tn

es
s-

ba
se

d
sp

at
ia

l
ne

tw
or

ks

S
pa

tia
l s

oc
ia

l
ne

tw
or

ks

S
m

al
l-w

o
rld

so
ci

al
ne

tw
or

ks

H
yp

er
cu

be
st

ru
ct

ur
e

H
ie

ra
rc

hi
ca

l
so

ci
al

 n
et

w
or

k

In
fo

rm
at

io
n

sh
ar

in
g

st
ra

te
gi

es

Fi
tn

es
s-

di
st

an
ce

 r
at

io
P

S
O

Fu
lly

 in
fo

rm
ed

P
S

O

S
te

re
ot

yp
in

g

B
ar

eb
on

es
P

S
O

H
yb

ri
d

al
go

ri
th

m
s

E
vo

lu
tio

na
ry

S
tr

at
eg

y
ba

se
d

P
S

O

E
vo

lu
tio

na
ry

P
ro

gr
am

m
in

g
ba

se
d

P
S

O

G
en

et
ic

A
lg

or
ith

m
ba

se
d

P
S

O

D
iff

er
en

tia
l

E
vo

lu
tio

n
ba

se
d

P
S

O

C
ul

tu
ra

l
sw

ar
m

s

A
n

t c
ol

o
ny

ba
se

d
P

S
O

S
ub

-s
w

ar
m

ba
se

d
P

S
O

al
go

rit
hm

s

C
oo

pe
ra

ti
ve

 P
S

O
ap

pr
oa

ch
es

C
oo

pe
ra

tiv
e

sp
lit

 P
S

O

C
lu

st
er

 b
as

ed
P

S
O

M
ul

ti-
ph

as
e

P
S

O

C
om

pe
tit

iv
e

P
S

O
ap

pr
oa

ch
es

M
ul

ti-
st

ar
t P

S
O

al
go

rit
hm

s
M

em
et

ic
 P

S
O

al
go

ri
th

m
s

G
ra

di
en

t
ba

se
d

P
S

O

S
to

ch
as

tic
lo

ca
l

se
ar

ch
es

H
ill

-c
lim

bi
ng

P
S

O

R
ep

el
lin

g
m

et
ho

ds

C
ha

rg
ed

 P
S

O

P
ar

tic
le

s
w

ith
sp

at
ia

l
ex

te
ns

io
n

C
oh

er
en

ce
ve

lo
ci

ty

F
ig

ur
e

4.
4:

V
ar

ia
ti

on
s

on
th

e
ba

si
c

P
SO

al
go

ri
th

m
(E

ng
el

br
ec

ht
,
20

05
).

54

1

7

8

2

6

53

4

1

7

8

2 6

53

4

1

7

8

2 6

53

4

G
be

st
 P

S
O

 w
ith

 s
ta

r
st

ru
ct

ur
e

Lb
es

t P
S

O
 w

ith
 r

in
g

st
ru

ct
ur

e
Lb

es
t P

S
O

 w
ith

 w
he

el
 s

tr
uc

tu
re

F
ig

ur
e

4.
5:

T
he

th
re

e
m

os
t

po
pu

la
r

so
ci

al
ne

tw
or

k
st

ru
ct

ur
es

.
T

he
bl

ac
k

lin
es

be
tw

ee
n

pa
rt

ic
le

s
in

di
ca

te
th

e
pr

op
ag

at
io

n
of

in
fo

rm
at

io
n

th
ro

ug
ho

ut

th
e

sw
ar

m
(K

en
ne

dy
et

al
.,

20
01

).

55

• Memetic algorithms incorporates local search procedures between iterations of the stan-

dard PSO to enhance the exploitation ability of the algorithm.

• Multi-start algorithms inject chaos into the swarm to increase diversity through random

initialization of particles.

• Algorithms which utilize various repelling methods also has as their main objective

the diversification of the swarm. This class of algorithms include all variations where

specific mechanisms are employed to avoid particle collisions or to repel adjacent particles.

4.5 Applying PSO to the Optimatix problem

In order to apply PSO effectively to the production scheduling framework developed in the pre-

vious chapter, it is important to briefly review the context and functionality of the metaheuristic

within the framework. Basically, the framework provides the PSO algorithm with a schedule

representation to be intelligently updated. These updated schedules are continuously fed back to

the framework which in turn provides the PSO algorithm with information of the fitness of the

various solutions. This information is then used to further guide the optimization algorithm’s

search throughout the problem space.

Unfortunately the basic PSO, in its current form, is not able to meet these requirements and

the algorithm has to be adapted accordingly. This adaptation takes the form of a discretiza-

tion mechanism, the inclusion of two additional parameters and converting the basic PSO to a

GCPSO.

4.5.1 Algorithm discretization

Due to the continuous nature of displacement and velocity values, all variables obtained as

output from a PSO-based algorithm are elements of the set of real numbers. Because the particle

representation of the Optimatix production scheduling framework consists of one discreet and

one continuous-valued vector (Section 3.1.1), a discretization-mechanism has to be incorporated

into the PSO algorithm. To interpret the resource allocation obtained as output from the PSO

algorithm, the same initialization mechanism of Section 3.2.1 is used.

It should be noted that the discreet variables are converted back to their associated contin-

uous values before being used by the PSO algorithm in the velocity and displacement updates

of the next iteration.

56

4.5.2 The inclusion of inertia weight as an input parameter

In order to achieve greater control over the exploration and exploitation abilities of the swarm

and to ensure that the particle trajectories converge, an inertia weight (w) was incorporated

into the velocity update of the algorithm thereby changing it to Equation (??).

vij(t + 1) =wvij(t) + c1rj(t)[yij(t)− xij(t)] + c2rj(t)[Yj(t)− xij(t)] (4.6)

4.5.3 The Guaranteed Convergence Particle Swarm Optimization (GCPSO)

algorithm

In order to prevent algorithm stagnation, the GCPSO algorithm applies different velocity and

displacement updates, respectively indicated by Equations (4.7) and (4.8), to the global best

particle.

vτj(t + 1) =− xτj(t) + Yj(t) + wvτj(t) + ρ(t)(1− 2rj(t)) (4.7)

xτj(t + 1) =Yj(t) + wvτj(t) + ρ(t)(1− 2rj(t)) (4.8)

The GCPSO seemed to be effective to prevent algorithm stagnation as can be seen from

Figure 4.6, where the GCPSO algorithm avoids swarm stagnation at iterations 22, 52 and 93.

Iteration number

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Figure 4.6: Convergence graph of the implementation of the GCPSO algorithm on the Optimatix

problem. The plot is of the aggregated objective function which minimizes the deficiencies

between the target values for the objective functions and the actual values obtained.

57

4.6 Conclusion

This implementation of the GCPSO in the generic production scheduling algorithm is the sim-

plest algorithm structure which can be used to solve the Optimatix problem by means of PSO.

As this structure results in a relatively computationally complex algorithm, the algorithm de-

velopment process described in the next chapter serves as a detailed rationale.

The rationale also serves another purpose. After the design and coding of the basic algorithm

requirements, the results obtained are simply not good enough for the client and in order to

identify suitable strategies to improve algorithm performance, it is sometimes helpful to consider

the path that has already been walked.

58

Chapter 5

Reflection on the algorithm

development process

Algorithm development consisted of three distinct phases. The initial phase was simply con-

cerned with obtaining a feasible solution. After the feasible solution was obtained, it became

clear that the algorithm was very sensitive to the input parameter values. Subsequently the most

critical parameters were identified and used in an experimental run. After suitable parameter

values were obtained, the algorithm development process was concluded with the final phase

which involved further experimentation with different parameters and the inclusion of a local

search.

A number of performance measurements were used throughout the development process to

evaluate algorithm performance. All algorithm improvements were evaluated with respect to the

Optimatix benchmark data set, a set of benchmark data developed in Chapter 6 that requires

the schedule to be evaluated simultaneously with respect to all three objective functions.

The following performance measurement criteria largely drove the improvement process (En-

gelbrecht, 2005):

• The accuracy acc(YjYjYj) of a solution YjYjYj is defined by Equation (5.1), where xxx represents the

theoretical optimum. This was the most important measure used during the initial phase of

algorithm development. Due dates are not a binding constraint in the Optimatix problem.

This implies that a large number of feasible solutions exist for any problem modelled as

an Optimatix problem and that the global optima, when minimizing the penalty function,

is always equal to zero.

acc(YjYjYj) =|f(YjYjYj)− f(xxx)| (5.1)

59

• As soon as the algorithm started generating feasible solutions the most obvious measure-

ment, the actual objective function values of each of the three objective functions, was

used.

• Efficiency, in other words either the time taken or the number of iterations either to a

specified solution or level of accuracy, became increasingly important as the computational

complexity of the algorithm increased. As time to convergence increased it became more

and more necessary to find a good answer within as few iterations as possible.

• After the algorithm proved competent in generating feasible solutions, reliability was in-

corporated as a measurement to determine the percentage of time the algorithm produced

feasible solutions. The reliability (R) of an algorithm can be defined by Equation (5.2),

where nε is the number of feasible solutions and N is the number of times the algorithm

was executed.

R =
nε

N
× 100 (5.2)

• At the final stages of algorithm development, the robustness of the algorithm was also

measured. This measurement focuses on the stability of the solution obtained over a

number of algorithm executions. The robustness (Rb) of a performance criteria can be

calculated according to Equation (5.3), where θ denotes the average and σθ the variance

of the performance criteria over a fixed number of iterations.

Rb =[θ − σθ, θ + σθ] (5.3)

5.1 Phase 1: working towards a feasible schedule

Obtaining a feasible solution turned out to be no mean feat as the procedure followed in Fig-

ure 5.2 testifies. The figure also serves as a rationale of why the complex structure described in

Chapter 3 is required. Throughout this phase accuracy was used as the performance measure-

ment of choice and the results obtained by the algorithm upon conclusion of Phase 1 is indicated

in Table 5.1. The convergence graph of this first feasible answer of the algorithm is indicated in

Figure 5.1. The graph was obtained under the conditions stipulated in Table 5.2.

60

Table 5.1: Results obtained at completion of the first development phase.

Performance measurement Answer obtained

Makespan 10564h

Lateness/earliness 29108h

Queue time 9879h

Aggregated objective function 49100h

Penalty function 0h

Time to solution 226s

Table 5.2: Parameter values used after completion of the first development phase.

Parameter c1 c2 w δ P a b ns

Value used 1.4 1.4 0.7 0.5 35 10000 700 30

5.2 Phase 2: parameter derivation

One of the major drawbacks of PSO is that algorithm performance is dependent on the values

of a large number of input parameters. To add insult to injury the inclusion of the GCPSO

resulted in a number of additional parameters being included in the algorithm.

Both the fields of Operations Research and Computational Intelligence, is increasingly mov-

ing towards parameter-free optimization. These algorithms are capable of continuously adapting

the values of their input parameter according to information obtained about the search space and

the current state of the optimization process. Parameter-free algorithms reduce the time and

cost associated with experimental runs geared towards obtaining suitable values for all param-

eters each time a new problem is solved. Although this is the ideal situation, it is not required

for optimization in the Optimatix environment, since algorithm implementation involves a large

degree of customization which generates revenue for the company.

In order to determine the most effective input parameter values while taking into account

the complex relationships between the parameters, the optimization algorithm was repeatedly

executed and the effect of different parameter values on algorithm performance was monitored.

Table 5.3 provides information regarding the parameters tested, as well as a brief explanation of

their purpose and the values used as input to the experimental run. It should be noted that the

inertia weight, penalty function coefficient and the size of the swarm was kept constant and that

the parameter values tested complies with Clerc’s parameter selection heuristics (Equation (5.4))

which guarantee convergent particle trajectories (Engelbrecht, 2005).

61

Iteration number

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Figure 5.1: Convergence graph of the algorithm at the end of Phase 1 of the development process.

The plot is of the aggregated objective function which minimizes the deficiencies between the

target values for the objective functions and the actual values obtained.

1 >w >
1
2
(c1 + c2)− 1 ≥ 0 (5.4)

From the results of the experimental analysis illustrated in Figure 5.3, it became clear that

a definite relationship exists between the input parameter values. The data was analyzed and

suitable parameter values were selected based on three criteria: the feasibility of the schedule,

the value of the aggregated objective function and the rate of convergence of the algorithm,

where slower convergence is more desirable. Based on this analysis, the best parameter values

for the Optimatix benchmark data is indicated in Table 5.4. The results obtained from this set of

parameter values are indicated in Table 5.5 with the associated convergence graph in Figure 5.4.

5.3 Phase 3: performance improvement

The final phase of development again focused on improving the algorithm structure. From the

results obtained after parameter derivation, it became clear that algorithm performance could

be improved by incorporating a local search after the final iteration.

62

Rardin (1998) describes a local search as an algorithm that starts with a feasible solution and

advances along a search path of feasible points with ever-improving function values. Concluding

the third phase of algorithm improvement, this local search resulted in significant improvement

in algorithm performance. This improvement can be attributed to the transferring of the global

best particle to the nearest optimum in the search space.

5.4 Conclusion

After the final algorithm design and testing, the focus of performance measurement shifts from

evaluation for the sole purpose of identifying and correcting weaknesses to a more thorough

benchmark approach for algorithm evaluation against client expectations and academic stan-

dards.

63

Th
e

us
e

of
 r

ep
ai

r
m

e
th

od
s

fo
r

th
e

co
nv

er
si

on
 o

f
in

fe
as

ib
le

 to
fe

as
ib

le
 p

ar
tic

le
s

A
lg

or
ith

m
 s

ta
rt

e
d

of
f w

ith
 f

ea
si

b
le

sc
he

du
le

s

Th
e

cr
ea

tio
n

of
 a

pe
na

lty
 fu

nc
tio

n
ba

se
d

fr
am

ew
or

k

S
em

i-f
ea

si
bl

e
in

iti
al

iz
at

io
n

m
ec

ha
ni

sm

R
an

do
m

in
iti

al
iz

at
io

n
of

pa
rt

ic
le

s

In
er

tia
 w

ei
gh

t (
w

)
in

cl
u

de
d

in
to

 th
e

st
an

d
ar

d
 P

S
O

In
cl

us
io

n
of

 in
er

tia
w

ei
g

ht
 is

 o
ne

 o
f t

he
ba

si
c

re
qu

ire
m

en
ts

 fo
r

co
nv

er
ge

n
t p

ar
tic

le
tr

a
je

ct
or

ie
s

N
on

e
 o

f t
he

 6
00

ra
nd

om
ly

 g
en

er
at

ed
pa

rt
ic

le
s

w
er

e
fe

as
ib

le

P
ar

tic
le

 in
iti

al
iz

at
io

n
be

co
m

es
 a

n
im

po
rt

an
t

th
em

e
of

 th
is

 p
ha

se
 o

f
al

go
rit

hm
 d

ev
el

op
m

en
t

A
lg

or
ith

m
 s

ta
gn

at
io

n
oc

cu
rr

ed
 w

ith
in

 th
e

fir
st

ite
ra

tio
n

a
nd

 p
ar

tic
le

s
ne

ve
r

be
ca

m
e

fe
as

ib
le

P
ar

tic
le

s
at

tr
ac

te
d

 to
fe

as
ib

le
 a

re
as

 o
f t

he
se

ar
ch

 s
pa

ce
 a

nd
 fi

rs
t r

ea
l

in
di

ca
tio

n
of

 a
 w

or
ki

ng
al

go
rit

hm

A
ll

fe
as

ib
ili

ty
 lo

st
 w

ith
in

fir
st

 it
er

at
io

n;
 a

lg
or

ith
m

un
ab

le
 to

 e
qu

al
 p

re
vi

ou
s

pe
rf

o
rm

an
ce

In
se

rt
io

n
he

ur
is

tic
de

ve
lo

pe
d

fo
r

in
iti

al
iz

at
io

n
pu

rp
os

es

D
ev

el
op

m
en

t s
to

pp
ed

du
e

 to
 th

e
in

ab
ili

ty
 to

ju
st

ifi
ab

le
 th

e
ad

di
tio

na
l

co
m

pl
ex

ity

TS
-b

as
ed

in
iti

al
iz

at
io

n
al

go
rit

hm

D
ev

el
op

m
en

t s
to

pp
ed

du
e

to
 th

e
in

ab
ili

ty
 to

ju
st

ifi
ab

le
 th

e
ad

di
tio

n
al

co
m

pl
ex

ity

P
en

al
ty

 fu
nc

tio
n

re
du

ce
d

by
 1

50
 0

00

In
cl

us
io

n
of

 V
m

ax
to

 c
la

m
p

pa
rt

ic
le

ve
lo

ci
ty

R
ed

uc
tio

n
of

 le
ss

 th
an

10
 p

en
al

ty
 u

ni
ts

C
on

ve
rs

io
n

of
ba

si
c

P
S

O
 to

G
C

P
S

O

Fi
rs

t a
tte

m
pt

 a
t

ad
dr

es
si

ng
 a

lg
or

ith
m

st
ag

na
tio

n

Tr
an

sf
er

 o
f p

rim
ar

y
re

so
ur

ce
 c

on
st

ra
in

t
fr

om
 p

en
al

ty
fu

nc
tio

n
to

 p
ar

tic
le

re
pr

es
en

ta
tio

n

P
en

al
ty

 fu
nc

tio
n

re
du

ce
d

by
 1

30
 0

00
 a

nd
 fe

as
ib

le
sc

h
ed

ul
e

ob
ta

in
ed

E
nd

 o
f f

irs
t p

ha
se

 o
f d

ev
el

op
m

en
t p

ro
ce

ss

P
ro

ce
ss

R
e

su
lts

/
va

lu
e-

ad
de

d F
ig

ur
e

5.
2:

P
ro

ce
ss

flo
w

of
th

e
fir

st
ph

as
e

of
th

e
al

go
ri

th
m

de
ve

lo
pm

en
t

ph
as

e.
T

he
pr

oc
es

se
s

as
w

el
l
as

th
e

va
lu

e-
ad

de
d

is
in

di
ca

te
d.

64

T
ab

le
5.

3:
T

he
P

SO
al

go
ri

th
m

pa
ra

m
et

er
s

an
d

ex
pe

ri
m

en
ta

l
ru

n
in

fo
rm

at
io

n.

P
ar

am
et

er
Sy

m
bo

l
D

es
cr

ip
ti

on
Su

it
ab

le
va

lu
es

E
xp

er
im

en
ta

l
ru

n
i

ut
s

(a
s

st
at

ed
in

lit
er

at
ur

e)

Sw
ar

m
si

ze
n

s
T

he
nu

m
be

r
of

pa
rt

ic
le

s
in

th
e

sw
ar

m
n

s
∈

[1
0,

30
]

n
s

=
30

N
ei

gh
bo

ur
ho

od
si

ze
n
N

i
C

on
tr

ol
s

th
e

ex
te

nt
of

so
ci

al
in

te
ra

ct
io

n
n
N

=
1

fo
r

gb
es

t
P

SO
n
N

=
1

N
um

be
r

of
it

er
at

io
ns

F
E

T
he

nu
m

be
r

of
ti

m
es

th
e

al
go

ri
th

m
is

ex
ec

ut
ed

P
ro

bl
em

de
pe

nd
en

t
O

bt
ai

ne
d

as
ou

tp
ut

C
og

ni
ti

ve
ac

ce
le

ra
ti

on
co

ns
ta

nt
c 1

C
on

tr
ol

s
th

e
de

gr
ee

of
co

gn
it

iv
e

st
oc

ha
st

ic
in

flu
en

ce
c 1

=
1.

4
c 1

=
{4

,2
,1

.4
}

So
ci

al
ac

ce
le

ra
ti

on
co

ns
ta

nt
c 2

C
on

tr
ol

s
th

e
de

gr
ee

of
so

ci
al

st
oc

ha
st

ic
in

flu
en

ce
c 2

=
1.

4
c 2

=
{0

,2
,1

.4
}

In
er

ti
a

w
ei

gh
t

w
C

on
tr

ol
s

th
e

ex
pl

or
at

io
n

an
d

ex
pl

oi
ta

ti
on

ab
ili

ti
es

w
=

0.
7

w
=

1.
1

V
el

oc
it
y

cl
am

pi
ng

th
re

sh
ol

d
V

m
a
x

C
on

tr
ol

s
gr

an
ul

ar
it
y

of
se

ar
ch

V
m

a
x

=
δ(

x
m

a
x
−

x
m

in
),

δ
=
{0

.2
5,

0.
5,

1}

w
he

re
δ
∈

[0
,1

]

A
llo

ca
ti

on
in

it
ia

liz
at

io
n

pa
ra

m
et

er
a

In
te

rv
al

si
ze

in
w

hi
ch

al
lo

ca
ti

on
va

ri
ab

le
s

ar
e

in
it

ia
liz

ed
U

nk
no

w
n

a
=
{2

00
00

,1
50

00
,1

00
00
}

St
ar

ti
ng

ti
m

es
in

it
ia

liz
at

io
n

b
In

te
rv

al
si

ze
in

w
hi

ch
st

ar
ti

ng
ti

m
es

ar
e

in
it

ia
liz

ed
U

nk
no

w
n

b
=
{5

00
,7

00
,1

00
0}

pa
ra

m
et

er

T
hr

es
ho

ld
pa

ra
m

et
er

1
ε s

G
C

P
SO

pa
ra

m
et

er
de

te
rm

in
in

g
in

flu
en

ce
of

ε s
=

15
ε s

=
15

al
go

ri
th

m
su

cc
es

s
on

si
ze

of
se

ar
ch

sp
ac

e

T
hr

es
ho

ld
pa

ra
m

et
er

2
ε c

G
C

P
SO

pa
ra

m
et

er
de

te
rm

in
in

g
in

flu
en

ce
of

ε c
=

5
ε c

=
5

al
go

ri
th

m
fa

ilu
re

on
si

ze
of

se
ar

ch
sp

ac
e

P
en

al
ty

fu
nc

ti
on

co
effi

ci
en

t
P

T
he

im
po

rt
an

ce
w

ei
gh

ti
ng

of
th

e
pe

na
lt
y

fu
nc

ti
on

U
nk

no
w

n
P

=
20

w
it

h
re

sp
ec

t
to

th
e

ot
he

r
th

re
e

ob
je

ct
iv

e
fu

nc
ti

on
s

65

P
ar

am
et

er
 d

er
iv

at
io

n

0.
00

20
00

0.
00

40
00

0.
00

60
00

0.
00

80
00

0.
00

10
00

00
.0

0

12
00

00
.0

0

1
10

19
28

37
46

55
64

73
82

91
10

0
10

9
11

8
12

7
13

6
14

5
15

4
16

3
17

2
18

1
19

0
19

9
20

8
21

7
22

6
23

5

N
u

m
b

er
 o

f
al

g
o

ri
th

m
 e

xe
cu

ti
o

n
s

Objective function values

S
ol

1

S
ol

2

S
ol

3

S
ol

m

P
en

al
ty

F
ig

ur
e

5.
3:

T
he

re
la

ti
on

sh
ip

be
tw

ee
n

th
e

va
ri

ou
s

in
pu

t
da

ta
pa

ra
m

et
er

s.

66

Table 5.4: Parameter values used after completion of the first development phase.

Parameter c1 c2 w δ P a b ns

Value used 2 2 0.9 0.25 20 20000 700 30

Table 5.5: Results obtained at completion of the first development phase.

Performance measurement Answer obtained

Makespan 10229h

Lateness/earliness 27849h

Queue time 9304h

Aggregated objective function 46930h

Penalty function 0h

Time to solution 117.29s

Iteration number

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Figure 5.4: Convergence graph of the algorithm after parameter derivation. The plot is of the

aggregated objective function which minimizes the deficiencies between the target values for the

objective functions and the actual values obtained.

67

Chapter 6

Performance evaluation

Testing and validation makes up an integral part of the algorithm design process. The algorithm

which was developed in Chapter 4 and improved in Chapter 5 has to be thoroughly verified and

validated. Since the validation process was addressed in Chapter 2 this chapter will only focus

on algorithm verification and evaluation with respect to both academic standards and client

expectations. Unless otherwise specified, the final Guaranteed Convergence Particle Swarm

Optimization (GCPSO) algorithm developed in the previous chapter is used under the conditions

indicated in Table 5.4.

6.1 Algorithm verification

Verification can simply be defined as the process of evaluating the algorithm output against the

expectations created by the conceptual model. In other words verification simply addresses the

question: “Does this answer make sense?”

In order to facilitate algorithm verification the schedule was drawn in Excel. The schedule

generated for the Optimatix benchmark data set does not have any serious anomalies, all the

constraints are satisfied and in general, it appeared to be a good scheduling effort.

6.2 Benchmarking against industry standards

The easiest way to evaluate the academic significance of an algorithm is to test its performance

with respect to standard benchmark problems provided in literature for this very purpose.

Unfortunately, not a lot of benchmarking problems exist in literature for production scheduling

algorithms which address both allocation and sequencing and those problems that do exist focus

mainly on very small sized problems.

68

The most commonly used Flexible Job Shop Scheduling Problem (FJSSP) benchmark prob-

lem sets are the two sets developed by Kacem et al. (2002). The T-FJSP problem set requires

the scheduling of 30 operations, each one on any one of 10 primary resources. The P-FJSP prob-

lem set consists of 27 operations to be scheduled on 8 primary resources. The second problem

set falls within the class of Partial Flexible Job Shop Scheduling Problems, where all opera-

tions may not be processed on all resources. These problems are not as severely constrained as

the Optimatix problem and are therefore in a completely different class to the problems which

Optimatix deals with. Instead of spending a lot of time benchmarking against these industry

standards this phase of the project will rather focus on the development of a benchmark data

set catered specifically for the needs of Optimatix.

6.3 Design of a customized benchmark problem

The benchmark problem sets found in literature are clearly inadequate in evaluating the proposed

algorithm. In order to overcome this problem a benchmark problem set was derived specifically

for the Optimatix environment. Containing all constraints and features of the problems ad-

dressed by this project, a much better indication of algorithm performance can be obtained.

Additionally, future production scheduling research can benefit from meaningful performance

comparisons enabled by the existence of a benchmark data set which is generic enough to be

applicable to a large number of scheduling scenarios.

The Optimatix benchmark problem is the same size as the problems which Kacem et al.

(2002) describes to be great sized: namely 56 operations are to be scheduled on any operation

from a resource set differing in size from one to 10 primary resources, selected from a total of

216 resources.

The benchmark data is based on real world production data sourced from one of the Op-

timatix data sets. However, the data set had to be extended to include sequence-dependent

set-up times and resource-dependent processing and resource-dependent default set-up times.

To ensure that this extension is based on realistic assumptions, the variation σ2
B of all operation

process times processed on different resources were calculated from the Kacem et al. (2002)

benchmark data set. Subsequently the Optimatix benchmark problem data was randomly gen-

erated within the interval [µB − σB, µB + σB], where µB denotes the operation dependent data

point, for example the resource-dependent default setup-time value (sidi
) for operation i on

resource di. For the sake of simplicity half of the sequence-dependent setup-times data was

initialized to zero.

An analysis of algorithm performance with respect to the Optimatix benchmark problem is

69

provided in Table 6.1. The results are significantly better than those obtained earlier in the

development process. The best indication that a schedule is sub-optimal is if operations have

to wait on the production floor due to resources not being available. Therefore, the fact that

the PSO algorithm is able to obtain a queue time of zero hours suggests that no room for

improvement exists in terms of the sequencing of operations on resources. Further improvement

efforts will therefore focus on minimizing the makespan and lateness/earliness functions through

addressing the allocation decision.

Table 6.1: Final algorithm results.

Performance measurement Answer obtained

Makespan 2352h

Lateness/earliness 3895h

Queue time 0h

Aggregated objective function 5753h

Penalty function 0h

Time to solution 231s

Unfortunately the data structures do not yet exist to evaluate these benchmark results

against other algorithms currently in use by Optimatix, but this data set provides a solid basis

for the extension of the algorithm to address larger and more complex problems.

6.4 Conclusion

This chapter was instrumental in showing that Particle Swarm Optimization (PSO) can defi-

nitely add value in the production scheduling environment. Obviously room for improvement

does exist but the results that have been obtained thus far are very promising.

70

Chapter 7

Final remarks

7.1 Results and value added

This project achieved what it set out to do: to investigate the optimization potential of Particle

Swarm Optimization (PSO) in complex job shop environments. A complex variation on the

basic Job Shop Scheduling Problem (JSSP), now known as the Optimatix problem, has been

analyzed extensively in terms of its position in existing production scheduling structures. This

analysis resulted in the single most important contribution of this project: the development of

a production scheduling framework generic to all common metaheuristics. Useful in solving a

large number of variations on the Job Shop Scheduling Problem (JSSP), the framework also has

important implications for evaluation of alternative metaheuristic-based strategies.

Important work was also done in the field of constrained and multiobjective optimization.

Not many algorithms exist in the field of Computation Intelligence which are able to simulta-

neously address both these important aspects.

A number of important conclusions regarding the implementation of PSO to complex opti-

mization problems and more specifically to production scheduling problems, was reached during

the development process.

In problems where feasible solutions can not be obtained easily, the use of initialization

algorithms or semi-feasible initialization procedures is of critical importance. Throughout the

optimization process, a penalty function is required to allow particles to move through infeasible

regions of the search space to obtain better solutions.

The uniform initialization of particles throughout the search space is absolutely critical for

the implementation of PSO-based algorithms. This results in especially rules-based algorithms

not always being suitable for initializing complex problems.

Finally, the judicial selection and incorporation of problem constraints have to be considered

71

very carefully during algorithm development to ensure acceptable performance.

7.2 Future research opportunities

The first thing that comes to mind, in terms of future research, is the implementation of al-

ternative metaheuristics on the generic production scheduling framework. Tabu Search (TS)

is commonly considered to be the best suited to complex production scheduling problems and

could also prove to be less computationally expensive.

In terms of the actual problem formulation, it could potentially be valuable to determine

how the structure of the problem could be exploited for optimization purposes. This project

followed a more generic variable-based approach, but considering optimization in terms of, for

example, swopping operations on the same resource to move from one iteration to the next could

potentially add value and should be considered in the future.

Another option would be to adapt the disjunctive graph formulation to take production down

time, scheduled maintenance and machine breakdowns into account. A binary optimization

algorithm would be sufficient to solve this problem and the tradeoff between shorter execution

time and computational complexity would definitely make for interesting research.

More specifically, a number of alternatives exist to address the structural requirements of

the scheduling framework. Mostly considered to be too complex for the scope of this project

they are prime candidates for future research in the field of Swarm Intelligence and production

scheduling.

A more complex approach to algorithm discretization exists in the form of derivation of

arithmetic operators. The standard operators, for example addition and multiplication, which

forms the basis of PSO, is redefined to facilitate the solution process of various constraint

satisfaction problems, amongst which the Travelling Salesperson Problem (TSP).

Another approach consists of addressing particle representations consisting of both discreet

and continuous variables, by means of a Particle Swarm Optimization-Genetic Algorithm (PSO-

GA) hybrid. Genetic Algorithms (GA)s are inherently discreet optimization techniques and

could potentially add value where the continuous-valued PSO could not.

In terms of addressing constraints, Pareto-ranking methods uses concepts of MOO to rank

solutions based on their degree of violation. These methods, along with conversion of the

constrained problem into an unconstrained problem by means of La Grange multipliers was not

investigated in this project due to the added complexity.

Multiobjective optimization is one of the fastest growing subject areas in the field of opti-

mization. Dominance-based methods are the most complicated but also the most powerful class

72

of PSO MOO algorithms. Utilizing complex archiving mechanisms to store all non-dominated

solutions, the distance to the true Pareto front can be minimized while sufficient diversification

of the Pareto front is maintained. Due to the severe complexity and computational expensive-

ness of this class of algorithms, they were also not considered to fall within the scope of this

project.

The production scheduling environment is notorious for its dynamic nature. There exists

numerous approaches to incorporating stability between successive schedule generations. These

range from the inclusion of an additional objective function to the use of Dynamic Job Shop

Scheduling, where rescheduling is performed subject to certain predefined criteria. One of PSO’s

most important claims to fame is its tracking and optimizing ability of dynamic systems. Re-

search showed that PSO converges faster and obtains a higher fitness value than any of the other

evolutionary algorithms which were tested (Eberhart and Shi, 2001).

7.3 Conclusion

The concept of social learning and adaptation is responsible for a large number of natural

phenomena ranging from the multiplication bacteria to the complex schooling behaviour of

fish. This project discussed the significant potential for implementation of Particle Swarm

Optimization (PSO) to production scheduling. In short, this project is all about the application

of Particle Swarm Optimization — a simple algorithm with big implications.

73

Bibliography

Asano, M. and Ohta, H. (1991). Scheduling with shutdowns and sequence dependent set-up

times. International Journal of Production Research, 37(7):1661–1676.

Blazewicz, J., Domschke, W., and Pesch, E. (1996). The job shop scheduling problem: Conven-

tional and new solution techniques. European Journal of Operational Research, 93:1–33.

Brucker, P. (2004). Scheduling Algorithms. Springer, 4th edition.

Dauzre-Prs, S. and Paulli, J. (1997). An integrated approach for modeling and solving the

general multiprocessor job-shop scheduling problem using tabu search. Annals of Operations

Research, 70:281–306.

Eberhart, R. and Shi, Y. (2001). Particle swarm optimization: developments, applications and

resources. IEEE, pages 81–86.

Engelbrecht, A. (2005). Fundamentals of computational swarm intelligence. Wiley.

Gargeya, V. and Deane, R. (1996). Scheduling research in multiple resource constrained job

shops: a review and critique. International Journal of Production Research, 34(8):2077–2097.

Gongalves, J., de Magalh aes Mendes, J., and M.G.C., R. (2005). A hybrid genetic algorithm

for the job shop scheduling problem. European Journal of Operational Research, 167:77–95.

Graham, R., Lawler, E., Lenstra, J., and Rinnooy Kan, A. (1979). Optimization and approxi-

mation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics,

5:287–326.

Graves, S. C. (1981). A review of production scheduling. Operations Research, 29(4):646–675.

Hoitomt, D. J., Luh, P. B., and Pattipati, K. R. (1993). A practical approach to job-shop

scheduling problems. IEEE Transactions on Robotics and Automation, 9(1):1–13.

Hsu, T., Dupas, R., Jolly, D., and Goncalves, G. (2002). Evaluation of mutation heuristics for

the solving of multiobjective flexible job shop by an evolutionary algorithm. IEEE.

74

BIBLIOGRAPHY BIBLIOGRAPHY

Ivens, P. and Lambrecht, M. (1996). Extending the shifting bottleneck procedure to real-life

applications. European Journal of Operational Research, 90:252–268.

Jain, A. and Meeran, S. (1999). Deterministic job-shop scheduling: Past, present and future.

European Journal of Operational Research, 113:390–434.

Jerald, J., Asokan, P., Prabaharan, G., and Saravanan, R. (2004). Scheduling optimisation of

flexible manufacturing systems using particle swarm optimisation algorithm. Springer-Verlag,

pages 964–971.

Kacem, I., Hammadi, S., and Borne, P. (2002). Approach by localization and multiobjective

evolutionary optimization for flexible job-shop scheduling problems. IEEE transactions on

systems, man and cybernetics - part C: applications and reviews, 32(1).

Kennedy, J., Eberhart, R., and Shi, Y. (2001). Swarm Intelligence. Morgan Kaufmann Publish-

ers.

Lian, Z., Gu, X., and Jiao, B. (2006). A similar particle swarm optimization algorithm for per-

mutation flowshop scheduling to minmize makespan. Applied Mathematics and Computation,

175(1):773–785.

Lockett, A. and Muhlemann, A. (1972). A scheduling problem involving sequence dependent

changeover times. Operations Research, 20(4):895–902.

Mesghouni, K., Hammadi, S., and Borne, P. (1997). Evolution programs for job-shop scheduling.

IEEE, pages 720–725.

Moutton, J. (2001). Succeeding in your Master’s and Doctoral Studies A South African Guide

and Resource Book. Van Schaik Publishers, Pretoria, South Africa.

Noivo, J. and Ramalhinho-Loureno, H. (2006). Solving two production schedul-

ing problems with sequence-dependent set-up times. Available online from

http://www.econ.upf.es/deenome/what/wpapers/postscripts/338.pdf.

Pan, J. and Chen, J. (2005). Mixed binary integer programming formulations for the reentrant

job shop scheduling problem. Computers and Operations Research, 32:1197–1212.

Patel, V., ElMaraghy, H., and Ben-Abdallah, I. (1999). Scheduling in dual-resource constrained

manufacturing systems using genetic algorithms. Emerging technologies and factory automa-

tion, 2:1131–1139.

Rardin, R. L. (1998). Optimization in Operations Research. Prentice Hall.

75

BIBLIOGRAPHY BIBLIOGRAPHY

Tamaki, H., Ono, T., Murao, H., and Kitamura, S. (2001). Modelling and genetic solution

of a class of flexible job shop scheduling problems. Proceedings of the IEEE international

conference on emerging technologies and factory automation, 2:343–350.

Tay, J. and Wibowo, D. (2004). An effective chromosome representation for evolving flexible

job shop schedules. GECCO, pages 210–221.

White, K. and Rogers, R. (1990). Job-shop scheduling: Limits of the binary disjunctive formu-

lation. International Journal of Production Research, 28(12):2187–2200.

Xia, W. and Wu, Z. (2005). An effective hybrid optimization approach for multi-objective flexible

job-shop scheduling problems. Computers and Industrial Engineering, 48:409–425.

Xia Weijun, Wu Zhiming, Z. W. and Genke, Y. (2004). A new hybrid optimization algorithm

for the job-shop scheduling problem. Proceeding of the 2004 American Control Conference,

pages 5552–5557.

Yu, H. and Liang, W. (2001). Neural network and genetic algorithm-based approach to expanded

job-shop scheduling. Computers and Industrial Engineering, 39:337–356.

Zandieh, M., Ghomi, S., and Husseini, S. (2006). An immune algorithm approach to hybrid flow

shops scheduling with sequence-dependent setup times. Applied Mathematics and Computa-

tion. Forthcoming.

Zhang, C., Li, P., Guan, Z., and Rao, Y. (2006). A tabu search algorithm with a new neigh-

borhood structure for the job shop scheduling problem. Computers and Operations Research.

Forthcoming.

Zhang, H., Li, X., Li, H., and Huang, F. (2004). Particle swarm optimization-based schemes for

resource-constrained project scheduling. Automation in Construction, 14(2005):393–404.

76

	Acronyms
	Contents
	List of Figures
	Introduction
	Background and rationale
	Problem definition
	Research design

	The Optimatix problem --- a literature review
	Introduction to production scheduling
	Definition of production scheduling
	Generic classification of production scheduling models

	Zandieh's classification of scheduling models
	The classical job shop scheduling problem
	Problem formulation
	Problem representation
	Assumptions

	Variations on the classical job shop scheduling problem
	The JSSP with precedence constraints
	The JSSP with opening inventory
	The JSSP with sequence-dependent set-up times
	The JSSP with machine availability constraints
	The flexible job shop scheduling problem
	Multiple resource constrained job shop scheduling
	The reentrant job shop scheduling problem
	The expanded job shop scheduling problem
	Selection of suitable variations

	Objective function variations on the classical job shop scheduling problem
	Solution strategies
	Optimal solution strategies
	Heuristic methods
	Metaheuristics

	Conclusion

	A generic production scheduling framework
	Structural requirements of the framework
	The schedule representation
	Constraints
	Multiple objectives

	The production scheduling framework
	The initialization procedure
	The conversion mechanism
	The penalty function

	Conclusion

	Particle Swarm Optimization
	Optimization through Swarm intelligence
	Introduction to Particle Swarm Optimization (PSO)
	Origin and applications
	Schedule-specific applications

	The Basic PSO algorithm
	Algorithm structure
	Algorithm requirements and limitations

	Existing variations on the basic PSO
	Applying PSO to the Optimatix problem
	Algorithm discretization
	The inclusion of inertia weight as an input parameter
	The Guaranteed Convergence Particle Swarm Optimization (GCPSO) algorithm

	Conclusion

	Reflection on the algorithm development process
	Phase 1: working towards a feasible schedule
	Phase 2: parameter derivation
	Phase 3: performance improvement
	Conclusion

	Performance evaluation
	Algorithm verification
	Benchmarking against industry standards
	Design of a customized benchmark problem
	Conclusion

	Final remarks
	Results and value added
	Future research opportunities
	Conclusion

	Bibliography

