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Abstract

A typical activity in the supply chain of retail organisations that is not visible to the consumers,
but essential for ensuring the availability of a variety of products at a competitive price, is called
vehicle routing. This activity consists of the transportation of commodities from a distribution
center, often also referred to as a depot, to stores using a fleet of delivery vehicles. The industry
partner attached to this project often encounters challenges when it comes to the practical
implementation of planned delivery routes, which cannot be addressed efficiently by standard
and commercially available routing software. Unfavourable traffic conditions, unanticipated road
works, and drivers who travel on roads that are not suited for the operated delivery vehicles
are some of the problems reported by the industry partner. These challenges often lead to an
increase in travel times and a subequent degradation in the operational efficiency with which
deliveries are performed. A possible solution aimed at improving the practical implementation
of planned delivery routes is to increase driver-route familiarity.

The goal of this project is to design and implement computerised decision support to provide
high-quality routing solutions for retail organisations, which attempts to improve the practical
implementation of planned delivery routes by increasing driver-route familiarity (allowing drivers
to travel on routes with which they are familiar). In pursuit of this goal, a multi-attribute vehicle
routing problem for increased driver-route familiarity is derived in the form of a mixed-integer
programming problem. The model is concerned with computing a set of high-quality routing
solutions with the objective of minimising transportation cost.

The proposed model accounts for common operational constraints encountered by retail or-
ganisations, such as the limited capacity of delivery vehicles, time-windows associated with
customers, split deliveries, and a heterogenous fleet of delivery vehicles that are available to ser-
vice customers. The model is implemented in IBM ILOG’s CPLEX Optimisation Studio 20.1.0,
a cutting-edge software suite that solves mixed-integer programming problems exactly by em-
ploying the branch-and-cut method. The implementation of the model is verified and validated
according to a well-researched strategy to ensure the reliability and credibility of the model.
The model and its implementation is embedded within a user-friendly decision support tool and
applied to a case study involving real-world data to demonstrate its practical applicability.
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CHAPTER 1

Introduction

Contents

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Project objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Project scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Project timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Report organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Background

A supply chain may be defined as a system of organisations, people, activities, information,
and resources involved in fulfilling a customer request [11]. A supply chain encapsulates all
activities involved to deliver goods or services to the consumer, including, but not limited to,
new product development, marketing operations, distribution, finance, and customer service.
The supply chain of retail organisations usually consists of multiple of these activities, including
sales, distribution, and finance [5]. The effectiveness and success of a retail organisation depends,
to a large extent, on the organisation’s ability to effectively manage and reduce cost across all
activities forming part of its supply chain [56]. It is therefore important to maintain efficiency
within each activity constituting the supply chain, in order to remain competitive in the emerging
retail market conditions. Retail organisations are required to satisfy the demand of consumers
who value high-quality products, prefer a wide assortment of these products, as well as demand
timeous delivery thereof — all at a competitive price.

A key element in the supply chain of any retail organisation is its transportation system, which
acts as the link between, and often the backbone of many other supply chain activities. It is
therefore crucial for retail organisations to focus their attention on developing and improving
transportation systems in order to lower transportation cost. In the current emerging compet-
itive business landscape, it is required for organisations to address changes in the market and
customer requirements promptly and properly. The competitive environment of the retail sector
in South Africa demands that organisations exhibit thorough planning and delivery routing to
minimise transportation time.

1



2 Chapter 1. Introduction

Naudé and Mathee [42] describe transport cost, in a broad sense, as the costs involved with
the movement of people and goods. Transportation cost occupies one-third of the total logistics
costs of an organisation and is largely influenced by the formulation of transportation systems
used in practice [60]. Transportation systems allows the moveability of goods and products
and provides timely efficacy. A well developed transportation system could provide improved
efficiency in logistics, reduce operational cost, and increase the quality of service quality [60]. The
transportation cost associated with retail organisations in South Africa are significantly higher
compared to other regions of the world [42]. An important factor contributing to this increase in
transportation cost compared to other countries is the travel distance over which commodities
have to be transported. A study performed by Mart́ınez-Zarzoso et al. [37] reported that a 1%
increase in travel distance translates to an approximate 0.25% increase in transportation cost.
This implication emphasises the importance of transportation systems within the supply chain
of retail organisations.

South African retailers may experience significant cost-savings by improving on their routing
solutions. A typical activity in the supply chain of retail organisations that is not visible to the
consumers, but essential in ensuring variety and availability of products at a competitive price,
is called vehicle routing. This activity consist of the storage of products in a distribution centre,
often referred to as a depot in the literature, and the transportation thereof from the depot to
stores using a fleet of delivery vehicles that travels along a transportation network, as illustrated
graphically in Figure 1.1. Each delivery vehicle must be presented with a schedule specifying
the sequence of customers to be visited, and the commodities to be delivered to each store.

Figure 1.1: A graphical illustration of the vehicle routing activity in the supply chain of a retail
organisation.

The vehicle routing problem (VRP) is one of the most studied and important combinatorial op-
timisation problems in the literature. The VRP is used to formulate the problem of distributing
goods between depots and customers and it is employed within the operational decision making
process of a supply chain. In a retail distribution system, products are delivered from a depot
to multiple retail stores which are scattered geographically. The routing requirements of retail
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organisations may therefore be modelled as a VRP to provide computerised decision support
for route planning. The use of computerised vehicle routing and scheduling decision support
has resulted in cost savings ranging from 5% to 20% of the cost associated with distribution
planning activities in the supply chain [58]. Dantzig and Ramser [16] were the first to introduce
the VRP more than 60 years ago, which led to major developments in variations on the basic
VRP, as well as exact and approximate solution methodologies for solving VRP instances. The
classical VRP is concerned with determining delivery routes from a depot to a set of customers
at minimal cost [34]. A solution to the classical VRP is a set of routes in which each delivery
vehicle starts and ends at the depot, and the demand of each customer is satisfied by exactly one
delivery vehicle, while minimising the total distance travelled by all delivery vehicles [19]. The
problem is central to distribution management, however, the growing cardinality and underlying
complexity of modern day VRP instances render it impossible for modern day route planners
to compute optimal solutions to VRP instances by hand.

The nature of the transported commodities, service level requirements, the characteristics of
customers, and the fleet of delivery vehicles stationed at the depot are a few of the factors influ-
encing the VRP formulation used to model the routing requirements of retail organisations [33].
Many variants exist on the basic notion of a VRP, each motivated by real-world applications.
Furthermore, VRP variants may differ based on their objective functions. These objectives are
often to either minimise the total distance travelled by all delivery vehicles, to minimise the
travel time of all delivery vehicles, or to minimise the total transportation cost. Retail organisa-
tions, however, require a more complex VRP formulation than that of the basic VRP, in order
to account for additional operational constraints.

A widely researched and employed VRP variant is the capacitated VRP (CVRP). In the CVRP,
each customer exhibits a certain demand to be satisfied by a single delivery vehicle, and a
homogeneous fleet of delivery vehicles with a limited capacity are available to service customers.
Another popular VRP variant is the VRP with time windows (VRPTW) in which the service
at each customer may only start within a specified time interval, known as a time-window. The
VRPTW is often applied in the retail sector, due to stores being able to specify time intervals
during which they prefer to receive deliveries. Another VRP variant is called the split delivery
VRP (SDVRP), in which the demand of each customer may be satisfied by more than one
delivery vehicle. Other practical variants make provision for a heterogeneous fleet of delivery
vehicles, where different insurance, maintenance, and operating costs may be associated with
each distinct delivery vehicle [55]. This practical consideration gives rise to the Heterogeneous
Fixed Fleet VRP (HFVRP). Other popular variants that resulted from real-world problems
include the multiple depot VRP, the periodic VRP, the stochastic VRP, the VRP with backhauls,
and the VRP with pickup and delivering [19]. When multiple VRP attributes are combined into
a single VRP formulation, it is called a multi-attribute VRP (MAVRP). MAVRPs are typically
used in specific applications and may include any of the above mentioned variants, as well as
others. The complexity of solving MAVRP instances increase significantly due to the combined
complexities of the underlying VRP extensions.

The industry partner attached to this project is a large South African clothing retailer that
seeks to improve the practical implementation of the routes stemming from solving their VRP
instances, in order to increase the efficiency of activities in their supply chain. The industry
partner has reported numerous challenges when attempting to implement the solutions provided
by existing standard and commercial software when attempting solve their VRP instances. Many
real-world problems, such as unanticipated traffic conditions and drivers travelling on roads that
are not suitable for the operated delivery vehicles, result in degraded operational efficiency and
increased transportation costs. These challenges may then result in a delivery vehicle driver
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missing the time-window of a customer and may ultimately render the rest of the planned route
infeasible. A possible solution aimed at improving the practical implementations of planned
delivery routes is to improve driver-route familiarity [54]. Intini et al. [27] investigated the
influence of route familiarity on driver behaviour. Driver-route familiarity does not only influence
the road and traffic behavioural-based safety aspects, but also the travel time of drivers. A study
regarding the influence of memory on driving behaviour found that an increase in the number
of times a driver travels a certain route, ultimately results in a decrease in travel time [13].
Delivery vehicle drivers that are familiar with the routes on which they travel, will therefore be
able to better anticipate unplanned external events and avoid driving on routes that are not
suitable for the operated delivery vehicles.

A proposed method for creating driver-route familiarity proposed by King et al. [30], is to
compute a set of standard routes, called master routes, for a given depot and its assigned
customers. The master routes are a set of routes visiting each customer a specified number
of times along different approaches. The master routes may then be used as blueprints when
computing actual delivery routes. If actual delivery routes are not too dissimilar from the
master routes, delivery vehicle drivers will be granted the opportunity to become familiar with
travelling on theses master routes. By travelling on routes with which they are familiar with,
delivery vehicle drivers will be able to increase the efficiency with which they perform deliveries.
Furthermore, by continuing to drive on the master routes, the driver-route familiarity of delivery
vehicle drivers with the master routes will increase, further increasing the efficiency with which
they may perform deliveries. The objective of creating driver-route familiarity, however, may
come at a cost. The total travel distance of delivery vehicles may increase when trying to compute
actual delivery routes that are not too dissimilar from the master routes. Creating driver-
route familiarity may therefore lead to additional transportation cost, however, the increase in
efficiency across all activities in the supply chain resulting from the improved implementation
of planned delivery routes are expected to result in an overall decrease in cost across these
activities. The extent to which a retail organisation enforces driver-route familiarity is unique
to each organisation and its supply chain. An organisation should therefore be able to specify
a threshold, the familiarity percentage, which represents the extent to which they would like to
enforce driver-route familiarity. Delivery routes will be assigned to drivers in such a way that the
portion of the total distance travelled on the master routes by all delivery vehicles are a minimum
of the familiarity threshold, while minimising the total transportation cost. Furthermore, the
logistical operations of organisations should be taken into account by considering multiple VRP
attributes, such as time-windows, split deliveries, and a heterogeneous fleet. Such an MAVRP
which includes driver-route familiarity may exhibit numerous advantages that may lead to a
more efficient implementation of routing solutions, ultimately guiding cost savings across the
entire supply chain.

1.2 Problem statement

The aim in this project is to design and implement a computerised decision support tool (DST)
for improved delivery routing, which allows for driver-route familiarity to be created in solutions,
based on the preference of a user. The working of the DST is to be based on a combinatorial
optimisation model, in the form of a mixed-integer programming (MIP) problem, which takes
the following as input:

• the travel times and travel distances between all customers and the depot,

• a set of master routes with which delivery vehicle drivers are assumed to be familiar,
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• a familiarity threshold specified by the user which governs the minimum percentage of
distance to be travelled on these master routes,

• the time-window start and end times, and the demand volume associated with each cus-
tomer, and

• information associated with the available fleet of delivery vehicles stationed at the depot.

The working of the DST will aid the user in making decisions regarding the delivery routes and
schedules to be assigned to delivery vehicle drivers by producing as output a set of high-quality
delivery routing solutions, capable of creating driver-route familiarity, whilst adhering to all
operational constraints and minimising transportation cost.

1.3 Project objectives

The following objectives are pursued in this project:

I To conduct a thorough study of the literature related to:

(a) the characteristics of VRPs in general,

(b) the formulation of VRPs in the form of MIP problems,

(c) exact methods for solving MIP problems,

(d) methods and guidelines for the design, verification, and validation of computerised
mathematical models.

II To derive, based on the guidelines of the literature reviewed in Objectives I(a)–(b), an
MAVRP formulation in the form of an MIP problem, in support of high-quality deliv-
ery routing solutions capable of creating driver-route familiarity in solutions. The model
takes as input a set of master routes with which delivery vehicle drivers are assumed to
be familiar with, a specified familiarity threshold, the travel times and travel distances
between customers and the depot, the time-windows and demands specified by each store,
and information regarding the available fleet of delivery vehicles stationed at the depot.
The model produces as output a set of delivery routes that creates driver-route familiarity,
and adheres to all operational constraints, whilst minimising the total transportation cost.

III To implement and verify an exact solution methodology for problem instances of the model
formulated in Objective II, based on the knowledge gained in pursuit of Objective I(c).

IV To design a user-friendly conceptual DST that is capable of computing delivery routes
and ensuring driver-route familiarity according to the guidelines researched in pursuit of
Objective I(b)–(c). The working of the DST should be based on the MIP model and
corresponding exact solution methodology of Objectives II and III.

V To verify and validate the DST of Objective IV according to the guidelines researched in
pursuit of Objective I(d) and generally accepted modelling guidelines.

VI To conduct a case study based on real-world data obtained from the industry partner, by
applying the DST of Objective IV to these data.

VII To evaluate the ability of the concept demonstrator of Objectives II and its proposed
solution approache of Objective III to compute high-quality delivery routes that creates
driver-route familiarity.
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VIII To recommend sensible follow-up work related to the work in this project which may be
pursued in the future.

1.4 Project scope

Models based on real-world scenarios have a complex set of rules and constraints that govern
and direct the model. Due to numerous factors that could potentially influence the successful
implementation of such models, the following simplifying and unifying assumptions are made:

Heterogenoues vehicle fleet. A heterogeneous fleet of delivery vehicles is stationed at the
depot and available to service customers. Each delivery vehicle may differ in terms of its
capacity, fixed cost, and travel times and travel costs between locations.

Vehicle capacity. When constructing solutions, the maximum volumetric loading capabilities
of delivery vehicles are considered.

A single depot. Multiple depots may be considered at once, however, this project consid-
ers depots individually.

Expected travel times and distances. The travel times and distances between vertices in
the transportation network are assumed to be pre-determined and are based on average
values. The model assists users to plan routes and schedules in advance and dynamic
traffic conditions are therefore not taken into account.

Master routes. A set of predetermined master routes, with which delivery vehicle drivers are
assumed to be familiar with, is provided as input to the MIP model and the DST. The
calculation of these routes do not form part of this project, but are based on methods
proposed by other researchers.

Familiarity threshold. A familiarity threshold, as a percentage, may be specified by the user
and represents the extent to which driver-route familiarity are enforced in solutions.

Time-windows. Customers may specify time-windows during which service may take place.
Vehicles are allowed to arrive before the start of a time-window, but must wait until the
onset of the time-window before starting service at a customer.

Split deliveries. The demand volumes exhibited by customers may be satisfied by more than
one delivery vehicle.

Unload time. The service time at a customer is dependent on the volume of goods that must
be delivered to that customer.

Exact methods. Only exact solution methodologies will be considered for solving MIP prob-
lems.

1.5 Research methodology

A description of the methodology adopted in pursuit of the objectives listed in §1.3 is presented
in this section. The research of this project is carried out in five distinct phases.

The first phase entails the execution of a literature review in pursuit of Objective I. A fundamen-
tal understanding of the characteristics of the basic VRP and the VRP variants applicable to
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the work done in this project is obtained in fulfilment of Objective I(a). Furthermore, different
existing attributes and variations of VRPs are explored to obtain a better understanding of how
these models are formulated and how an MAVRP is derived. This includes conducting research
on the CVRP, the VRPTW, the SDVRP, and the HFVRP because of the applicability of these
variants to this project. Next, VRP formulations in the form of MIP problems are researched
in pursuit of Objective I(b). There have been a vast number of attempts to formulate solution
methodologies for solving VRP instances in the literature. A fundamental understanding of the
most prolific and widely used exact methods for solving MIP problems are therefore studied, in
fulfilment of Objective I(c). A study on the guidelines and methods for designing, verifying, and
validating a DST follows in pursuit of Objective I(d), and in support of Objectives IV and V.
The first phase furthermore includes the acquisition of technical skills required for the success-
ful completion of this project, such as proficiency in IBM ILOG’s CPLEX Optimisation Studio
20.1.0 (CPLEX) accessed via its Python programming language interface.

The second phase of the research is carried out in pursuit of Objective II and is based on the
guidelines of the literature reviewed in the previous phase. A mathematical formulation for
the MAVRP proposed in this project, aimed at creating driver-route familiarity in solutions,
is derived in fulfilment of Objective II. Instances of the model is to be solved using an exact
solution methodology in pursuit of Objective III.

During the third phase of the research, a computerised mathematical model is implemented to
verify and validate the MAVRP in fulfilment of Objective III, based on the guidelines researched
in fulfilment of Objective I(d). The third stage is iterative in nature, since the verification and
validation of the computerised mathematical model provide feedback for further refinement re-
sulting in a new and improved implementation. Furthermore, this phase also includes the devel-
opment of a user-friendly DST, capable of computing and solving real-world problem instances
specified by a user, in fulfilment of Objective IV. A generic verification and validation procedure,
in line with the general practices and recommendations studied in fulfilment of Objective I(d),
is employed to ensure the credibility and reliability of the DST in pursuit of Objective V.

The fourth phase of the research carried out in this project is devoted to applying the DST of
Objective IV to a real-world case study to demonstrate and validate its practical application
in fulfilment of Objectives VI and VII. The case study is used to evaluate real-world data and
deliver numerical results in the form of delivery routes assigned to drivers. The effectiveness of
the DST proposed in this report is critically assessed in terms of its ability to identify a set of
high-quality delivery routes while ensuring driver-route familiarity.

The final phase exhibits recommendations made in pursuit of Objective VIII, by proposing
sensible follow-up work related to the work in this project. A summary of the work documented
in this project is provided, as well as suggestions for future work.

1.6 Project timeline

A Gantt chart illustrating the timeline followed in this project is provided in Figure A.1 of
Appendix A. This timeline indicates the amount of time spent on each phase of the project.

1.7 Report organisation

The remainder of this report is partitioned into four parts, and are organised as follows. A
review of the literature, in pursuit of Objective I, is documented in Chapter 2. The guidelines
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and research reviewed in Chapter 2 serve as a basis for the remainder of this project and
as guidelines for the design, development and implementation of the proposed MIP model.
Chapter 3 follows with the derivation of an MAVRP mathematical model in the form of a
MIP problem, capable of creating driver-route familiarity, as specified in Objectives II and III.
Problem instances are solved by invoking CPLEX, which is an exact solution approach based
on the branch-and-cut method. A number of test problem instances are solved to verify and
validate the computerised mathematical implementation of the model in Chapter 3, in pursuit
of Objective IV. Thereafter, as a final validation activity and in pursuit of Objectives V–VII, a
DST is designed and executed using real-world data obtained from the industry partner attached
to this project in Chapter 4. A final reflection and conclusion is delivered in Chapter 5. The
report closes with a brief summary of the work done in this project, a critical evaluation of the
contributions made by the project, and a discussion on what the author has learnt during the
execution of this project. Sensible recommendations and follow-up work related to the research
conducted in this project is also described in this chapter.
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In this chapter, a literature review is conducted in pursuit of Objective I. The literature review
comprises three sections. The first part is presented in §2.1 and contains an in-depth discus-
sion on the classical VRP and other VRP variants related to the work done in this project.
Thereafter, exact solution methodologies for solving MIP problems are discussed in §2.2. A
review of the verification and validation of linear programming problems and the computerised
implementation thereof is conducted in §2.3. The chapter closes with a condensed summary of
its contents in §2.4.

2.1 VRP formulations

In this section, exact formulations of the CVRP, the VRPTW, the HFVRP, and the SDVRP in
the form of MIP problems are discussed in §2.1.1, §2.1.2, §2.1.3, and §2.1.4, respectively. The
basic VRP is a generalisation of the travelling salesman problem (TSP). The TSP is concerned
with determining the shortest route to visit a set of locations exactly once and then return to
the starting location, whereas the basic VRP is concerned with determining a set of routes to
perform transportation requests with a given fleet of delivery vehicles, at a minimum cost [35].
The VRP and its associated variants have grown in popularity, not only due to their wide
range of real-world applications and practical relevance, but also due to the notorious difficulty
associated with solving these combinatorial optimisation problems [59]. Variants of the VRP

9
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also appear frequently in real-world applications that are not directly related to the delivery of
goods, but some other transportation request, for example, the collection of mail from mailboxes
and the scheduling of bus routes [12].

2.1.1 The CVRP

The most studied variant of the VRP, having primarily academic relevance, is the CVRP [59]. In
the CVRP identical delivery vehicles are available to service customers, resulting in an increase
in complexity compared to that of a TSP instance containing the same number of vertices [35].
Furthermore, each delivery vehicle is stationed at a single depot from which it departs to service
customers, after which it returns to the depot. The increased complexity of the CVRP when
compared to that of the TSP is not only due to the requirement of assigning customers to
delivery vehicles, but also due to the need of proper sequencing of the customers visited along
the route of each delivery vehicle.

The CVRP serves as a basis for understanding and describing other VRP variants, which in
many instances is an extension of the CVRP. A MIP formulation of the CVRP proposed by van
Vuuren [62] is described and verified by conducting small example instance in the remainder of
this section. Let C = {1, . . . , n} index the set of customers to be serviced. The depot is included
in the additional supplemented set of vertices, V = C ∪ {0, n + 1}, where 0 denotes the depot
upon departure and n + 1 denotes the depot upon return. Let qi denote the volume or weight
of commodities that must be delivered to customer i ∈ C, called the customer’s demand. Each
customer is assumed to exhibit a demand qi ≥ 0. Furthermore, let the set A denote the set of
directed road network links, called arcs, along which delivery vehicles may travel. Let G(V,A)
represent the directed travel graph on which the CVRP is defined, with V as the vertex set
and A as the arc set. Furthermore, let δ−(i) denote the subset of vertices from which arcs are
directed towards vertex i ∈ V \ {0}, and let δ+(i) denote the subset of vertices to which arcs are
directed, from vertex i ∈ V \ {n+ 1} in the travel graph G. Let the set K = {1, . . . , |K|} index
the set of identical delivery vehicles stationed at the depot and available to service customers,
each having a capacity of Q > 0. Furthermore, let dij denote the distance associated with a
delivery vehicle travelling from vertex i ∈ V to vertex j ∈ V.

The binary decision variables

xijk =

{
1 if delivery vehicle k ∈ K travels from vertex i ∈ V \ {n+ 1} to vertex j ∈ V \ {0},
0 otherwise,

capture all vehicle flows and are stored in row i and column j of slice k in a three-dimensional
(n+ 1)× (n+ 1)× |K| flow matrix X. Furthermore, continuous auxiliary variables uik, where
i ∈ V and k ∈ K, denote the lower bound on the commodity load of vehicle k before reaching
customer i. In the basic CVRP, the objective is to

minimise z =
∑
k∈K

∑
(i,j)∈A

dijxijk, (2.1)

subject to the constraints ∑
k∈K

∑
j∈δ+(i)

xijk = 1, i ∈ C, (2.2)

∑
j∈δ+(0)

x0jk = 1, k ∈ K, (2.3)

∑
i∈δ−(j)

xijk −
∑

i∈δ+(j)

xjik = 0, j ∈ V, k ∈ K, (2.4)
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∑
i∈δ−(n+1)

xi,n+1,k = 1, k ∈ K, (2.5)

uik − ujk +Qxijk ≤ Q− qj , (i, j) ∈ A, k ∈ K, (2.6)

qi ≤ uik ≤ Q, i ∈ V, k ∈ K, (2.7)

xijk ∈ {0, 1}, (i, j) ∈ A, k ∈ K. (2.8)

The objective function in (2.1) represents the total distance travelled by all delivery vehicles.
The constraint set in (2.2) ensures that each customer is serviced exactly once. Furthermore, the
constraint set in (2.3) ensures that each delivery vehicle departs from the depot exactly once,
whereas the constraint set in (2.5) ensures that each delivery vehicle returns to the depot after
having serviced the customers along its route. Moreover, the constraint set in (2.4) ensures that
if a delivery vehicle arrives at a customer, it also departs from that customer. A delivery vehicle
is said to have performed a tour if its route begins and ends at the depot and it visits each
customer along its assigned route once. A subtour, on the other hand, is present if a delivery
vehicle does not start and end at the depot [63]. It is therefore required to include constraint sets
(2.6) and (2.7), which prevents subtour formation, and simultaneously ensures that the capacity
of any delivery vehicle is not exceeded. Constraints that ensure adherence to delivery vehicle
capacities are classified as the most basic type of constraint, since they can simply be imposed
as an overall bound on the sum of the volume or weight of goods delivered at each customer in
the route assigned to each delivery vehicle [59]. Finally, the constraint set in (2.8) restricts the
decision variables in the matrix X so that these decision variables only assume binary variables.

An example of a CVRP instance and a corresponding optimal solution is illustrated on a Carte-
sian plane in Figure 2.1. In this figure, the volume of demand in cubic metres associated with
each customer is indicated next to its vertex. In an optimal solution to this instance, three
delivery vehicle are required to satisfy the demand of all the customers without exceeding the
capacity of any delivery vehicle.
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Figure 2.1: A CVRP instance containing eleven customers and a single depot (on the left), and a
corresponding optimal solution (on the right). The volume of commodities, qi, in cubic metres to be
delivered to each customer i is indicated next to its vertex.
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2.1.2 The VRPTW

The VRPTW is an extension of the CVRP. In the VRPTW, a time-window is specified for each
customer during which service at the customer may start [14]. Delivery vehicles are permitted to
arrive early at a customer, but must wait until the beginning of a customer’s time-window before
commencing to unload commodities. Arriving later than the specified time-window is prohibited.
Furthermore, time-windows may be classified as either soft or hard. A soft time-window may
be violated at a specified cost, whereas a hard time-window prohibits a vehicle from arriving at
a customer after the end of its time-window [18]. The use of hard time-windows has been the
most popular implementation, and is therefore considered in this project. Time-windows may
further be classified as either tight or loose, and as either narrow or wide. A loose time-window
does not influence the solution, and therefore serves as an inactive constraint, whereas a tight
time-window influences and restricts the solution [18]. A time-window is classified as narrow
or wide based on the significance of its duration compared to the duration of the planning
horizon, for example, ten minutes would be considered narrow compared to a planning horizon
of twelve hours, whereas six hours would be considered wide. A VRPTW reduces to a CVRP
if the duration of all the time-windows are at least as large as the duration of the planning
horizon [18]. Due to the VRPTW being an extension of the CVRP, similarities exist between
the formulation of these two problems. Since the formulation of the VRPTW (in the form of
an MIP problem) is based on the formulation of the CVRP, only the additional parameters,
decision variables, and constraints required for the formulation of the VRPTW is described, as
proposed by Desaulniers et al. [18].

The previously defined decision variables, xijk, are still applicable and capture all vehicle flows,
stored in row i and column j of slice k in a three-dimensional (n+1)× (n+1)×|K| flow matrix
X. Let cij denote the travel cost associated with a delivery vehicle travelling from vertex i
to vertex j where (i, j) ∈ A. A new parameter, the service duration, si, denotes the duration
in minutes that it takes for a delivery vehicle to service customer i ∈ C. A service time of
zero minutes is associated with the depot (i.e. s0 = sn+1 = 0). Furthermore, let ai and bi
denote the start and end of the time-window at vertex i ∈ V, respectively, measured in minutes
from the start of the planning horizon. The time-window of the depot, denoted by [a0, b0] and
[an+1, bn+1], represent the earliest possible departure time and the latest possible return time at
the depot. Furthermore, the expected travel time from vertex i ∈ V to vertex j ∈ V is denoted
by tij .

The continuous decision variable Tik denotes the service start time at vertex i ∈ V if serviced by
delivery vehicle k ∈ K. Note that the auxiliary decision variable uik defined in the mathematical
formulation of the CVRP is no longer required. The objective function of the VRPTW is
the same as that of the CVRP in (2.1). The vehicle flow constraint sets in (2.2)–(2.5) are also
enforced in the VRPTW. Additional constraints are introduced to ensure feasibility with respect
to customer time-windows. The constraint set in (2.6) is replaced with the linearised constraint
set

Tik + si + tij − Tjk ≤ (1− xijk)Mij , k ∈ K, (i, j) ∈ A, (2.9)

where Mij denotes a large constant which may be set to max{bi + si + tij − aj , 0}, to ensure
that the service start times at customers are correctly recorded and also to prevent subtour
formation. The constraint set

ai ≤ Tik ≤ bi, k ∈ K, i ∈ V, (2.10)

ensures that the service at each customer starts during its specified time-window. Furthermore,
to guarantee feasibility with respect to delivery vehicle capacity, the constraint set in (2.7) is
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replaced with the constraint set∑
i∈C

(qi
∑

j∈δ+(i)

xijk) ≤ Q, k ∈ K. (2.11)

Finally, the constraint sets

xijk ∈ {0, 1}, (i, j) ∈ A, k ∈ K, (2.12)

Tik ≥ 0, i ∈ V, k ∈ K, (2.13)

enforce the binary and real-valued nature of the decision variables, respectively.

An optimal solution to a VRPTW instance is shown in Figure 2.2. This instance corresponds
to the same problem instance considered in Figure 2.1, with the introduction of time-windows.
Upon comparison of Figures 2.1 and 2.2, the effect of the addition of time-windows to the
CVRP is evident. A different optimal solution was obtained in which the sequence of customers
visited has changed. The time-window constraints contribute largely to the complexity of the
problem due to routes being governed by either the capacity constraints or by the time-window
constraints. This complexity stems from the underlying complexity of the spatial aspect of
routing and the temporal aspect of scheduling, both of which must be performed to ensure
adherence to time-windows [52]. The computation of a solution to a VRPTW instance by hand
becomes increasingly difficult as the number of customers in the problem instance increase, as
was also the case in a CVRP. Computerised solution methods therefore provide clear advantages
for instances of the VRPTW that contain a large number of customers [41].
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Figure 2.2: An optimal solution to a VRPTW instance. The volume of commodities, qi, in cubic
metres and the time-window start and end times, [ai, bi] in minutes from the start of the planning
horizon associated with each customer are shown.

2.1.3 The HFVRP

VRPs may be classified according to the fleet of delivery vehicles stationed at the depot and
available to service customers. A homogeneous fleet consists of identical delivery vehicles that
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have the same capacity and costs associated with each delivery vehicle. In real-world problems,
however, retail organisations predominantly have a variety of delivery vehicles ranging in size
available to service customers, partly due to the fact that some loading bays at stores may
only be serviced by delivery vehicles of a certain size. Fleet dimensioning and composition
selection is an important problem in industry, where retail organisations encounter a complex
decision between owning and maintaining a fleet or hiring delivery vehicles from an external
party [25]. As a result, a retail organisation must make an important decision concerning how
many delivery vehicles of a particular type to acquire or rent. The problem may be modelled as
the so-called Fleet Size and Mix VRP (FSM-VRP), which entails deciding on the composition
of delivery vehicles to be utilised. This decision is influenced by several factors, including the
delivery vehicle capacities and costs associated with utilising these delivery vehicles, as well as
the expected demand to be exhibited by customers [31].

The FSM-VRP may be generalised as the HFVRP, according to the naming convention adopted
by Irnich et al. [28]. In the HFVRP, the number of delivery vehicles available to service customers
are limited. The FSM-VRP is typically employed during the strategic decision-making process
of acquiring a fleet of delivery vehicles, whereas the HFVRP is concerned with the operational
process of routing an available fleet of delivery vehicles, while minimising transportation cost
or the total distance travelled [53]. In this project, emphasis is placed on the HFVRP, where a
limited number of delivery vehicles are available to service customers.

In comparison with the previously defined CVRP, new parameters, decision variables, and con-
straints are introduced for the HFVRP, as proposed by Beldacci et al [7]. Let the set of delivery
vehicle types to which each delivery vehicle may belong be indexed by H = {1, . . . , |K|}. Fur-
thermore, let mh denote the number of delivery vehicles of type h ∈ H available to service
customers. The objective of VRPs employed by retail organisations often aim to minimise the
number of delivery vehicles utilised. It is therefore required to impose a fixed cost associated
with utilising each delivery vehicle. This fixed cost accounts for wear and tear costs encountered
in the case of owning the delivery vehicle, or the cost associated with renting the delivery vehi-
cle in the case of hiring from an external organisation. The fixed cost associated with delivery
vehicle type h is denoted Fh. Let cijh denote the cost associated with a vehicle of type h ∈ H
travelling from vertex i ∈ V to vertex j ∈ V. Both the routing cost and delivery vehicle capacity
vary according to the type of delivery vehicle utilised. The capacity associated with delivery ve-
hicle type h is therefore denoted by Qh. As mentioned previously, in some practical applications
customers have accessibility restrictions, with the implication that some customers are not able
to be serviced by certain types of delivery vehicle. This is taken into consideration by simply
assigning a very large value to the travel cost cijh of a delivery vehicle of type h travelling from
customer i to a restricted customer j.

The decision variable yijh denotes the amount of goods carried by a delivery vehicle of type
h ∈ H when travelling from vertex i to vertex j. Furthermore, the three-index binary decision
variables

xijh =

{
1 if delivery vehicle h ∈ H travels from vertex i ∈ V \ {n+ 1} to vertex j ∈ V \ {0},
0 otherwise.

In the single-commodity flow formulation of the HFVRP, the objective is to

minimise z =
∑
h∈H

∑
j∈C

x0jhFh +
∑
h∈H

∑
i,j∈V
i ̸=j

cijhxijh, (2.14)
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subject to the constraints

∑
h∈H

∑
i∈V

xijh = 1, j ∈ C, (2.15)∑
i∈V

xiph −
∑
j∈V

xpjh = 0, p ∈ C, h ∈ H, (2.16)

∑
j∈C

x0jh ≤ mh, h ∈ H, (2.17)

∑
h∈H

∑
i∈V

yijh −
∑
h∈H

∑
i∈V

yjih = qj , j ∈ C, (2.18)

qjxijh ≤ yijh ≤ (Qh − qi)xijh, i, j ∈ V, i ̸= j, h ∈ H, (2.19)

xijh ∈ {0, 1}, i, j ∈ V, i ̸= j, h ∈ H, (2.20)

yijh ≥ 0, i, j ∈ V, i ̸= j. (2.21)

In the objective function in (2.14), the fixed cost associated with utilising delivery vehicles (the
first term) and the total variable cost associated with each delivery vehicle’s route (the second
term) are minimised. The constraint set in (2.15) ensures that each customer is visited exactly
once. Furthermore, the vehicle-flow constraint set in (2.16) ensures that if a delivery vehicle
arrives at a customer, it must also depart from that customer. A route is considered feasible
if the cumulative demand of customers included in the route does not exceed the capacity of
the delivery vehicle utilised. The constraint set in (2.17) ensures that the number of delivery
vehicles of a type utilised is no more than the number of delivery vehicles of that type stationed
at the depot. The constraint sets in (2.18) and (2.19) are commodity flow constraint sets which
ensure that the volume of commodities transported by each delivery vehicle across each arc does
not exceed the capacity of the delivery vehicle utilised. Finally, the constraint sets in (2.20) and
(2.21) enforce the real-valued and binary nature of decision variables, respectively.

An optimal solution to the instance considered in Figure 2.1, with the addition of a heterogeneous
fleet of delivery vehicles available to service customers, is graphically illustrated in Figure 2.3.
Information about the available fleet of delivery vehicles is presented in Table 2.1. Only four
delivery vehicles were utilised in the optimal solution, two small delivery vehicles, one medium
delivery vehicle, and one large delivery vehicle. Both of the small vehicles utilised 90% of their
available capacities, whereas the medium and large delivery vehicles were fully utilised (100%
of its available capacity was occupied). In comparison with the solution to the original CVRP
instance in Figure2.1, the HFVRP returns a different set of recommended routes. This solution
yields a fixed cost of R12 750.00 and a variable cost of R3 356.35, resulting in a objective function
value of R16 106.00.

Table 2.1: Input data related to the available fleet of delivery vehicles stationed at the depot. The
number of delivery vehicles available, the capacity in cubic metres, and the fixed cost in Rand associated
with each type of delivery vehicle are listed.

Type, h Number of vehicles, mh Fixed cost, Fh Capacity, Qh

Small 2 3 000 10
Medium 3 3 250 15
Large 1 3 500 18
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Figure 2.3: An optimal solution to a HFVRP instance. The volume of commodities, qi in cubic metres
associated with each customer i is shown, as well as the type of delivery vehicles utilised for each route.

2.1.4 The SDVRP

In the SDVRP, customers may be serviced by more than one delivery vehicle. The SDVRP is
a relaxation of the CVRP in which the demand exhibited by each customer may be satisfied
by split deliveries [28]. The CVRP and SDVRP share a common goal, which is to satisfy the
demand of customers, while minimising the total transportation cost. The allowance of split
deliveries may result in significant cost savings compared to the CVRP, by requiring possibly
fewer delivery vehicles and, consequently, reducing the fixed cost associated with the delivery
vehicles utilised [10]. Since customers may receive multiple visits, a feasible solution may be
returned in the case of a customer’s demand being greater than the capacity of the largest
delivery vehicle, contrary to the CVRP discussed in §2.1.1 [3]. In the case of each customer
being visited only once, the SDVRP reduces to the CVRP. In the SDVRP, an unlimited and
homogeneous fleet of delivery vehicles is assumed to be available. The SDVRP is a complex
problem that, until recently, could only be solved optimally in a systematic manner for instances
with fewer than 30 customers, and is therefore mostly motivated by real-world applications [3].

In the SDVRP formulation proposed by Archetti et al. [4] the set of customers is denoted as
C = {1, . . . , n}. The depot is included in the additional supplemented set of vertices, V = C ∪ 0,
as opposed to the CVRP formulation where the vertex is accounted for separately concerning
the departure and return of delivery vehicles. As previously defined, qi denotes the demand
exhibited by vertex i ∈ V, with q0 = 0. Furthermore, Q denotes the capacity of each delivery
vehicle that belong to the homogeneous fleet of delivery vehicles, K = {1, . . . , |K|}, stationed
at the depot. A slight change in the constraints of the CVRP is required to allow for qi > Q,
which accounts for the fact that the SDVRP may return feasible solutions to instances in which
customers exhibit larger demand volumes than the capacity of delivery vehicles. Furthermore,
dij denotes the distance associated with a delivery vehicle travelling from vertex i ∈ V to vertex
j ∈ V.
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The demand volume exhibited by customer i ∈ C and delivered by delivery vehicle k ∈ K is
denoted by the decision variable rik. Once again, the binary decision variables

xijk =

{
1 if delivery vehicle k ∈ K travels from vertex i ∈ V to vertex j ∈ V,
0 otherwise,

capture all vehicle flows, stored in row i and column j of slice k in a three-dimensional (n+1)×
(n+ 1)× |K| flow matrix X. In the SDVRP, the objective is to

minimise z =
∑
i∈V

∑
j∈V

∑
k∈K

dijxijk, (2.22)

subject to the constraints∑
i∈V

∑
k∈K

xijk ≥ 1, j ∈ V, (2.23)∑
i∈V

xipk −
∑
j∈V

xpjk = 0, p ∈ V, k ∈ K, (2.24)

∑
i∈C

∑
j∈C

xijk ≤ |C| − 1, k ∈ K, (2.25)

rik ≤ qi
∑
j∈V

xijk, i ∈ C, k ∈ K, (2.26)

∑
k∈K

rik = qi, i ∈ C, (2.27)∑
i∈V

rik ≤ Q, k ∈ K, (2.28)

xijk ∈ {0, 1}, i ∈ V, j ∈ V, k ∈ K, (2.29)

rik ≥ 0, i ∈ C, k ∈ K. (2.30)

In the objective function in (2.22), the distance travelled by the delivery vehicles are minimised.
The constraint sets in (2.23)–(2.25) serve as classical flow conservation constraint sets and ensure
that each vertex is visited at least once, a delivery vehicle departs from a customer if it arrives at
that customer, and that any subtours are eliminated, respectively. The constraint set in (2.26)
imposes that a customer may only receive commodities from a delivery vehicle if it is, in fact,
visited by that delivery vehicle. The constraint sets in (2.27) and (2.28) is concerned with the
allocation of demand among the delivery vehicles. The constraint set in (2.27) ensures that
each customer’s demand is fully satisfied, whereas the constraint set in (2.28) restricts delivery
vehicle capacities from being exceeded. Finally, the nature of the decision variables is enforced
by the constraint sets in (2.29) and (2.30).

An optimal solution to an SDVRP instance, which relates to the same problem instance consid-
ered in Figure 2.1, is shown in Figure 2.4, but in this instance split deliveries are allowed. An
example of a split delivery in this solution is the demand of Customer 10 that is satisfied by
visits from Vehicles 2 and 3. Vehicle 2 delivers commodities with a volume of 4m3, and Vehicle 3
delivers commodities with a volume of 2m3. Together, these delivery vehicles fulfil the entire
demand exhibited by Customer 10.

2.2 Exact solution methods

This section is devoted to a discussion on exact methods for solving MIP problems that are
relevant to this project. The working of each of the discussed methods are illustrated by means
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Figure 2.4: An optimal solution to an SDVRP instance. The volume of commodities, qi, exhibited by
customers is shown in cubic metres next to the index of each vertex, i.

of a small example problem instance. The section opens in §2.2.1 with a prerequisite discussion
on the simplex algorithm for solving LP problems, upon which all of the methods discussed
thereafter are based. Three exact solution methodologies for solving MIP problems are discussed,
namely the branch-and-bound method in §2.2.2, the cutting plane method in §2.2.3, and the
branch-and-cut method in §2.2.4. The example problem used to illustrate the working of each of
the discussed methods is a two-variable example, as illustrated by Winston and Goldberg [63],
in which the objective is to

maximise z = 8x1 + 5x2, (2.31)

subject to constraints

x1 + x2 ≤ 6, (2.32)

9x1 + 5x2 ≤ 45, (2.33)

x1, x2 ∈ N. (2.34)

2.2.1 The simplex algorithm for linear programming

Linear programming (LP) is an important tool in the field of Operations Research and may be
described as an instrument for modelling optimisation problems [63]. LP was first introduced
by Dantzig [17] in 1947, shortly after World War II, for solving optimisation problems related to
military planning activities. Formally, LP is concerned with the maximisation or minimisation
of a linear objective function, subject to linear equality and inequality constraints [17]. More
recently, LP problems have been used widely to solve optimisation problems in a diverse range
of industries. Although good approximate solution methodologies perform satisfactory in many
applications, some scenarios require exact solution approaches. The simplex algorithm is an
efficient method for solving LP instances to optimality [2]. Although it is possible to solve LP
models graphically, most real-life LP problems have many decision variables making a graphical
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representation of the decision space difficult, or impossible. The simplex algorithm is able to
solve very large LP problems, with up to thousands of constraints and decision variables [63].

In LP problem instances, decision variables are allowed to be fractional. An integer program-
ming (IP) problem, on the other hand, is an LP problem in which all of the decision variables
are required to assume non-negative integer values [63]. In real-life applications, it is often the
case that decision variables may only adopt integer values, and the problem must therefore be
formulated as an IP problem. The classes of problems that are often referred to as sequencing,
scheduling, and routing, are inherently modelled as IP problems [9]. Furthermore, an IP problem
in which only some of the variables are required to have integer values, is an MIP problem [32].
In some cases, decision variables in an IP problem may only assume the values zero or one in
which case it is referred to as a binary IP problem. The LP model obtained by relaxing all
integer or binary constraints for decision variables is called the LP relaxation of the IP problem
instance [63].

LP problems may contain both equality and inequality constraints, and may also consist of
decision variables that are unrestricted in sign. The simplex algorithm requires LP problems to
be in standard form. Standard form requires the equivalent problem to only consist of equality
constraints and non-negative variables. A maximisation LP problem with m constraints and n
variables, denoted by x1, . . . , xn, may be written in standard form, which is to

maximise z = c1x1 + . . . + cnxn

subject to the constraints

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm,

xi ≥ 0, i = 1, . . . , n.

The constraints of the standard form of an LP may be written as a system of equations Ax=b,
where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


and

x =


x1
x2
...

xn,

 b =


b1
b2
...

bm.


The system contains m linear equations and n decision variables. If n ≥ m, a basic solution to
the system Ax=b may be obtained by assigning n−m variables, called the non-basic variables,
a value of zero. Upon solving for the remaining m variables, called the basic variables, a unique
solution may be obtained that satisfy Ax=b, called a basic solution. The different combinations
of non-basic variables assigned the value zero will yield a set of different solutions. Any solution
from this set of basic solutions in which all variables are non-negative, is called a basic feasible
solution. This is an important notion, because if an LP problem instance has an optimal
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solution, then the solution has to form part of the set of basic feasible solutions. Accordingly,
the search space for an optimal solution is greatly simplified and the solution may be found
by searching for only a finite number of points [63]. By making use of simplex tableaus, a set
of basic feasible solutions may be produced iteratively by the simplex algorithm. During each
iteration, the information of a neighbouring basic feasible solution is summarised in tableau
format, illustrated in Figure 2.5. Each neighbouring basic feasible solution corresponds to an
objective function value that is strictly better than the objective function value of the previous
basic feasible solution, until the objective function cannot improve any further, and an optimal
basic feasible solution has been reached. The detailed workings of the Simplex Algorithm is
summarised in pseudo-code form in Algorithm 2.1.

Objective
Function
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o
effi
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en
ts

B
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ic

V
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b
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s

RHS

Figure 2.5: The general format of a simplex tableau.

Algorithm 2.1: Simplex algorithm (maximisation) [61]

Input : An LP problem in standard form.
Output: An optimal solution to the LP problem (if one exists).

Construct a simplex tableau from the standard form of the LP problem instance.1

Compute the j-th entries of the g-row and z-row as gj =
∑m

i=1 ciaij and zj = gj − cj for2

all j = 1, . . . , n.
if zj ≥ 0 for all j then3

An optimal solution has been found, stop.4

else if zj < 0 for at least one j, then5

Continue.6

Select the basic variable which should enter the basis (the variable, in column q,7

corresponding to the most negative value in the zj-row). Column q is called the pivot
column.
if aiq ≤ 0 for all i then8

The objective function is unbounded, stop.9

Select the basic variable which should leave the basis (the variable in row i = p,10

corresponding to the smallest ratio θi = bi/aiq when only considering positive values of
aiq). Row p is called the pivot row.
Perform a simplex iteration:11

(a) Divide the values in the pivot row by apq (the pivot element).

(b) Compute the values of the new non-pivot row entries as:
new non-pivot rowi = old non-pivot rowi − aiq× new pivot row.

Return to Step 2.12
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Upon applying Algorithm 2.1 to the LP problem instance formulated in (2.31)–(2.34), the prob-
lem instance is required to be in standard form before constructing a simplex tableau. The
problem instance may be rewritten in standard form by introducing slack variables s1 and s2 so
that the objective is to

maximise z = 8x1 + 5x2, (2.35)

subject to the constraints

x1 + x2 + s1 = 6, (2.36)

9x1 + 5x2 + s2 = 45, (2.37)

x1, x2, s1, s2 ≥ 0. (2.38)

The feasible region of the LP problem instance in (2.31)–(2.34) is illustrated graphically by the
grey area in Figure 2.6. The simplex tableau may now be constructed from the standard form
of the LP problem instance. The initial simplex tableau constructed according to Step 1 of
Algorithm 2.1 is

8 5 0 0
x1 x2 s1 s2 RHS θ

0 s1 1 1 1 0 6 6
0 s2 9 5 0 1 45 5 ←

g 0 0 0 0 0 .
z −8 −5 0 0

↑

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

A B

C

D

IP feasible point
IP relaxation’s feasible region

Figure 2.6: The feasible region of the IP problem instance in (2.31)–(2.34).

The first iteration of the simplex tableau shown above has obtained a feasible solution in which
x1 = 0, x2 = 0, s1 = 6 and s2 = 45, with an objective function value of z = 0. According to
the condition in Steps 3–4, an optimal solution has not been reached since not all zj values are
non-negative. Furthermore, upon consideration of Steps 5–6, it is found that the z-row contains
two negative entries. During the execution of Step 7, it is found that the column associated
with variable x1 corresponds to the most negative entry in the z-row. Accordingly, the pivot
column is identified as the column associated with the non-basic variable x1. Upon execution
of Steps 8–9, it is evident that the objective function is bounded and the algorithm is therefore
continued. According to Step 10, the row associated with the basic variable s2 is considered as
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the pivot row. Another simplex iteration is performed according to Step 11 of the algorithm.
During the next iteration, the simplex tableau

8 5 0 0
x1 x2 s1 s2 RHS θ

0 s1 0 4
9 1 −1

9 1 9
4 ←

8 x1 1 5
9 0 1

9 5 9

g 8 40
9 0 8

9 40

z 0 −5
9 0 8

9
↑

is obtained. The basic feasible solution corresponding to this tableau, x1 = 5, x2 = 0, s1 = 1
and s2 = 0, yields an objective function value of z = 40. The solution obtained is once again
considered to not be optimal, according to Steps 3–6 of the algorithm. Continuing, the pivot
column is identified as the column associated with the non-basic variable x2. According to Step
10, the pivot row is the row associated with the basic variable s1. Another simplex iteration is
performed and the simplex tableau

8 5 0 0
x1 x2 s1 s2 RHS

5 x2 0 1 9
4 −1

4
9
4

8 x1 1 0 −5
4

1
4

15
4

g 8 5 5
4

3
4 41.25

z 0 0 5
4

3
4

is obtained. The new basic feasible solution found is x1 = 15
4 , x2 = 9

4 , s1 = 0 and s2 = 0,
and corresponds to an objective function value of z = 41.25. Upon consideration of Steps 3–4,
this solution is an optimal solution to the LP problem instance, since the z-row consists of only
non-negative entries. Points A, B and C in Figure 2.6 correspond to the solutions found in
the three simplex tableaus above (in the order in which they were uncovered). The simplex
algorithm is an efficient and reliable method for solving LP problem instances to optimality.
Instead of considering each feasible point in the feasible region, it traverses the search space in
a much more efficient manner.

2.2.2 The branch-and-bound method

If the set of feasible solutions to the related LP problem of a MIP problem is bounded, then the
integer valued variables in the feasible region can only take on a finite number of values [32].
The branch-and-bound method is a technique of implicit enumeration, where a list of some of
the feasible integral solutions are generated and the solution corresponding to the best objective
function value is kept in memory for comparison with the objective function values of succeeding
solutions generated. If all decision variables in an optimal solution to the LP relaxation of a pure
IP problem instance assume integer values, then the optimal solution to the LP relaxation is also
an optimal solution to the corresponding IP problem instance [63]. Furthermore, in for example
a maximisation problem instance, the objective function value corresponding to an optimal
solution to the LP relaxation serves as an upper bound to the optimal objective function value
of the corresponding IP problem instance. The branch-and-bound method, proposed by Dakin in
1966 [15], is a popular method for solving IP problem instances. The branch-and-bound method
systematically divides the feasible region of the LP relaxation corresponding to the IP problem
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instance being solved, into subproblems. The goal is to divide the set of feasible solutions into
several subsets and then reject many of these subsets because they are implicitly enumerated.
The creation of subproblems may be represented by an enumeration tree diagram, as shown in
Figure 2.7. Each subproblem is referred to as a node, and the lines connecting the nodes of the
tree is referred to as arcs. The constraints associated with the subproblem corresponding to a
node are the constraints for the LP relaxation and all the constraints associated with the arcs
leading from the initial subproblem to the node [63].

Subproblem 1

z = 165
4

x1 = 15
4

x2 = 9
4

t = 1

Subproblem 3

z = 39
x1 = 3

x2 = 3

LB = 40

t = 7

x1 ≤ 3 x1 ≥ 4

Subproblem 2
z = 41

x1 = 4

x2 = 9
5

t = 2

x2 ≤ 1 x2 ≥ 2

Subproblem 5

z = 365
9

x1 = 40
9

x2 = 1

t = 4
Subproblem 4

Infeasible
(fathomed)

x1 ≥ 5 x1 ≤ 4

Subproblem 6
z = 40

x1 = 5

x2 = 0
Candidate solution

t = 6

Subproblem 7
z = 37

x1 = 4

x2 = 1
Candidate solution

t = 5

t = 3

Figure 2.7: The branch-and-bound tree obtained when solving the IP problem instance in (2.31)–(2.34)
by means of following the LIFO rule. The order in which subproblems are considered is indicated by the
t-values next to each node.

The branch-and-bound method consists of two main phases, called branching and bounding [43].
When subproblems are formulated by adding constraints, the procedure is referred to as branch-
ing. After constructing a rooted binary tree where each node represents an LP problem and its
corresponding solution, branching occurs on a fractional variable value in the parent problem.
If, for example, an integer decision variable x assumes a non-integer value having an integer
part a and a fractional part b, the constraints x ≤ a and x ≥ a + 1 are imposed in the two
subproblems, respectively. Bounding occurs when a solution that is worse than the best solution
found thus far is encountered, in which case the entire branch of descendants of such an inferior
solution is ignored without loss. A solution to a subproblem may be considered to be a candidate
solution if all integer variables do in fact assume integer values. There exists the possibility that
a candidate solution may be an optimal solution to the IP problem instance, therefore requiring
that the candidate solution be kept in memory until a better candidate solution (if any exist)
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is found. The value of the best candidate solution found while branching on a problem may be
considered to be a lower bound on the optimal objective function value for the corresponding
IP problem instance [9]. A node can not be further branched if either

1. the subproblem is infeasible,

2. the subproblem yields an optimal solution in which all variables assume integer values, or

3. the optimal objective function value of the subproblem does not exceed the current lower
bound, in the case of a maximisation problem instance.

In any of these three cases, the node under consideration is deemed to be fathomed [63]. When
all nodes in the branch-and-bound tree is fathomed, the integer solution of the subproblem
corresponding to the current best (largest) lower bound is the optimal solution to the original
IP problem instance. During the bounding procedure, a subproblem and all of its descendants
may be eliminated from the process if

1. the subproblem is infeasible, or

2. the lower bound is at least as large as the objective function value of the solution to the
subproblem (if maximising).

A minimisation IP problem instance may be solved with the same approach by simply mul-
tiplying the objective function with the value −1 and solving it as a maximisation problem
instance.

Two general approaches commonly employed for governing the order in which subproblems
should be visited, is the backtracking and jumptracking approaches. The approach chosen may
influence the number of steps (which directly affects the computational time) required to find
an optimal solution. The efficiency of each technique is dependent on the type of problem being
solved. The last-in, first-out (LIFO) rule is the most widely adopted approach, and is referred
to as backtracking in the literature. In this approach, the most recently created subproblem is
solved next. One side of the branch-and-bound tree is considered first, whereafter it requires
backtracking, where nodes in other branches are traversed. In the jumptracking approach, all
subproblems are created and the node corresponding to the best objective function value is
branched on next. As a result, consecutive nodes on opposite sides of the branch-and-bound
tree may be considered. The jumptracking approach aims to produce an optimal solution relative
quickly, but may create more subproblems and is more memory intensive than the backtracking
approach [63].

The working of the branch-and-bound method when adopting the LIFO approach is demon-
strated for the example problem instance in (2.31)–(2.34). The branch-and-bound tree obtained
when solving this problem instance is illustrated graphically in Figure 2.7. Subproblem 1, repre-
sented by the first node, corresponds to an optimal solution to the LP relaxation of the original
IP problem instance which is obtained by invoking the simplex algorithm discussed in §2.2.1.
The optimal objective function value of this subproblem (which is z = 165

4 ) serves as an upper
bound to the original IP problem instance. The variable x1 assumes a non-integer value and
is associated with the largest coefficient in the objective function, and is therefore chosen to
branch on. Two new constraints are imposed to restrict the variable x1 and are added as two
new branches to the node representing Subproblem 1.

Subproblem 2 is arbitrarily chosen to be solved next. The optimal solution to Subproblem 2
does not yield an all-integer solution. It is therefore required to continue branching on the
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current node. The variable x2 (assuming a non-integer value), is branched on to create two
new subproblems, Subproblem 4 and Subproblem 5. The annotations t = 1, t = 2, . . . indicate
the order in which the tree is traversed. Subproblem 4 is chosen arbitrarily to be solved next.
Subproblem 4 is infeasible and considered to be fathomed. A cross next to the subproblem
indicates the abandonment of a candidate solution due to one of the aforementioned reasons.
Subproblem 5 is solved and yields a solution corresponding to x1 =

40
9 , x2 = 1 and an objective

function value of z = 365
9 . The variable x1, which assumes a non-integer value, is branched on

next to create Subproblem 6 and Subproblem 7.

Subproblem 7 is chosen to be solved first, and results in a candidate solution with and objective
function value of z = 37. This solution is kept in memory as the current best feasible solution.
Subproblem 6 is considered next, and results in a feasible objective function value of z = 40.
The solution is better than the previously obtained objective function value of Subproblem 7,
and is considered to be the current best feasible solution. The optimal objective function value
of Subproblem 7 does not exceed the current lower bound, and a cross next to the subproblem
indicates that it does not need to be considered further. Finally, Subproblem 3 is considered
when backtracking up the tree. Subproblem 3 yields an objective function value of z = 39,
which does not exceed the current best feasible solution in memory. Since all subproblems have
been considered, an optimal solution corresponding to x1 = 5, x2 = 0 and z = 40 is returned by
the algorithm, which correspond to the solution obtained upon solving Subproblem 6.

2.2.3 The cutting plane method

Methods for solving IP problem instances are not as general in their application as methods
for solving LP problem instances, since there is no single algorithm that works well for all IP
problem instances [32]. Furthermore, the difficulty of solving these problems are mainly due to
the methods’ inefficiency for solving even medium-sized problems. An approach that aims to
address this problem by efficiently solving IP problem instances, is the cutting plane method,
proposed by Ralph Gomory [23] in 1958. The cutting plane method has had a significant role
in the evolution of IP solution methods. It is the first IP solution method that was proven to
converge to an optimal solution within a finite number of steps. Furthermore, it has provided
significant insights into the field of IP solution methods that have led to other, more efficient,
methods [9].

The workings of the cutting plane algorithm relies on invoking the simplex algorithm for solving
the LP relaxation of IP problem instances. If all variables in an optimal solution to an LP relax-
ation assumes integer values, an optimal solution has been found and the process is terminated,
otherwise, a new constraint is added which eliminates some of the non-integral solutions obtained
previously by the simplex algorithm. The newly imposed constraint should be constructed so
as to not eliminate any feasible integer solutions. The cutting-plane algorithm does not divide
the feasible region into subdivisions, as in the branch-and-bound approach, but rather considers
a single LP problem instance that is refined by iteratively imposing new constraints, which are
solved by invoking the simplex algorithm. The constraints are added incrementally reduce the
feasible region of the LP relaxation until an optimal solution is found in which all required
variables assume integer values [9].

The cutting plane method comprises three high-level steps, which is to

1. find the optimal simplex tableau for the LP relaxation of the IP problem instance,

2. formulate an additional constraint to form a cutting plane, and
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3. construct a dual simplex tableau with the cutting plane inserted as an additional constraint
to find an optimal solution to the LP relaxation.

The method invoked for generating the cutting plane constraint is called the Glomory fractional
cut [36]. A cut generated according to this method has an important characteristic – any
feasible point for the IP problem instance will satisfy the cut, whereas the current optimal
solution to the LP relaxation does not satisfy the cut. This implies that the cut will eliminate
the current optimal solution to the LP relaxation, but not any feasible solutions to the IP
problem instance [63]. If the solution to the LP relaxation does not consist of only integer
valued variables, then at least one of the rows of the simplex tableau contains a non-integer
value. A row containing a non-integer value may be chosen arbitrarily to deduce the next cut
from. By convention, the row with a binding constraint and with the closest fractional value to 1

2
is chosen, which may result in faster convergence to an optimal solution. To formulate the cutting
constraint, the chosen equation is split into an integer part and a non-negative decimal part. The
equation is rewritten so that the fractional values are represented by the summation of an integer
value and a non-negative decimal portion, for example 2.25x = 2x + 0.25x, while − 2.75x =
−3x+ 0.25x. The cut is formulated by rearranging the resulting equation to have all the terms
with integer coefficients on the left-hand side of the equality and all the terms with fractional
coefficients on the right-hand side. Set the right-hand side (all the fractional coefficients) less
than or equal to zero. This ensures that all the feasible points of the IP problem instance satisfies
the cut, whereas the current optimal solution to the LP relaxation does not.

A pseudo-code description of the cutting plane algorithm is provided in Algorithm 2.2, and it
is illustrated by means of the example IP problem instance in (2.31)–(2.34). After rewriting
the original problem instance in standard form (as in (2.35)–(2.38)), the simplex algorithm is
invoked to obtain an optimal tableau for the LP relaxation of the problem instance. Following
Steps 2–3 of the cutting plane algorithm, the second constraint, corresponding to the equality
equation x1 − 1.25s1 + 0.25s2 = 3.75, is chosen to construct a cutting plane from. Steps 4–5
of the algorithm instructs rearranging the equation in the manner explained above, where the
fractional values are written as the summation of the integer value and a non-negative decimal
portion. The corresponding equality is

x1 − 2s1 + 0.75s1 + 0.25s2 = 3 + 0.75. (2.39)

To generate the cut, according to Step 5, the terms with integer coefficients are separated from
the terms with fractional coefficients. Consequently, the constraint in (2.39) is rearranged as

x1 − 2s1 − 3 = 0.75− 0.75s1 − 0.25s2. (2.40)

Finally, the cut is generated, according to Step 6 of the algorithm, by setting the right-hand
side of (2.40) smaller or equal to zero, so that

0.75− 0.75s1 − 0.25s2 ≤ 0. (2.41)

This cut successfully eliminates the current optimal solution to the LP relaxation while main-
taining all feasible solutions to the IP problem instance. The cut may be depicted graphically by
removing the slack variables and rewriting the cut in terms of x1 and x2. The constraints in (2.36)
and (2.37) may be used to replace s1 and s2 in (2.41). The cut is rewritten as 3x1+2x2 ≤ 15, as
shown in Figure 2.8. Continuing with Step 7 of the algorithm, the inequality constraint in (2.41)
is rewritten in standard form and slack variable s3 is introduced. The formulated cut,

−0.75s1 − 0.25s2 + s3 = −0.75, (2.42)
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Algorithm 2.2: The cutting plane algorithm (maximisation) [63]

Input : An IP problem instance in standard form.
Output: An optimal solution to the IP problem instance.

Find the optimal solution to the corresponding LP relaxation.1

If all variables in the optimal solution assume integer values, then an optimal solution to2

the IP problem has been found. Stop.
Else, pick a binding constraint in the LP relaxation optimal tableau with a fractional3

valued right-hand side which will be used to generate a cut. For possible faster
convergence, generate the cut by using the binding constraint with a right-hand side
closest to 1

2 .
Rewrite the each variable’s coefficient as an integer part and non-negative part.4

Rewrite the constraint used to generate the cut as5

all terms with integer coefficients = all terms with fractional coefficients.

The cut is formulated by setting6

all terms with fractional coefficients ≤ 0.

With the cut as an additional constraint, employ the dual simplex algorithm to find an7

optimal solution to the LP relaxation.
If all variables assume integer values, an optimal solution to the IP problem has been8

found. Stop.
Else, return to step 3.9

is added as an additional constraint. The simplex tableau is updated and solved as

8 5 0 0 0
x1 x2 s1 s2 s3 RHS

5 x2 0 1 9
4 −1

4 0 9
4

8 x1 1 0 −5
4

1
4 0 15

4

0 s3 0 0 −3
4 −1

4 1 −3
4 ←

g 8 5 5
4

3
4 0 41.25 .

z 0 0 5
4

3
4 0

θ′ − − 5
9 3 −
↑

Upon imposing the new constraint in (2.42), the resulting simplex tableau corresponds to the
infeasible region, and an iteration of the dual simplex algorithm is required to obtain feasibility,
according to Step 7. In the dual simplex algorithm, the pivot row is identified first, in contrast
to the simplex method explained in Algorithm 2.1. The pivot row corresponds to the row
containing the basic variable assuming the most negative value in the right-hand side column
(therefore, the row associated with the variable s3 in the tableau above) [63]. After the pivot
row is identified, the ratio

θ′ =
coefficient of xj in the z-row

coefficient of xj in the pivot row
(2.43)

is calculated for each column in the tableau. The column resulting in the smallest absolute
value of θ′ is identified as the pivot column (the column associated with the variable s1 above).
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Figure 2.8: A cutting plane (represented by the blue line) inserted to reduce the feasible region for an
IP problem instance.

Finally, Gauss-Jordan elimination is invoked to obtain feasibility. Upon assessment the tableau,
according to Steps 8–9, an optimal solution to the IP problem instance has not been found
and the tableau contains variables x1 = 15

4 , x2 = 9
4 and s3 = −3

4 assuming non-integer values.
According to the dual simplex algorithm, the variable s3 is associated with the resulting pivot
row (since it is the only variable that consists of a negative right-hand side entry) and s1 is
associated with the resulting pivot column (since it is associated with the smallest entry in the
z-row). Another iteration of the simplex algorithm is performed, and the resulting tableau is

8 5 0 0 0
x1 x2 s1 s2 s3 RHS

5 x2 0 1 0 −1 3 0

8 x1 1 0 0 2
3 −5

3 5

0 s1 0 0 1 1
3 −4

3 1

g 8 5 0 1
3

5
3 40.

z 0 0 0 1
3

5
3

There are no negative values in the z-row, all decision variables assume integer values, and
feasibility has been regained, indicating that the tableau has resulted in an optimal solution to
the IP problem instance. The optimal solution is x1 = 5 and x2 = 0, which yields an objective
function value of z = 40. This optimal solution corresponds to point B in Figure 2.8. Note that
if the first cut does not produce an optimal solution, more cuts are inserted until an optimal
tableau emerges.

Although the cutting plane method returns an optimal solution, it has several drawbacks. Firstly,
the integral solution does not appear until the very last step, and if the algorithm is stopped
before the end, no integral solution will be provided (unlike the branch-and-bound method which
returns feasible solutions through iteratively solving different subproblems). Furthermore, since
fractional parts of the coefficients are used to generate the cutting planes, rounding errors may
cause the method to converge slowly [32]. Another drawback of the cutting plane method is that
the algorithm may involve very lengthy computations. These problems and difficulties presented
by the cutting plane method may be avoided by employing the branch-and-cut method discussed
next in §2.2.4.
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2.2.4 The branch-and-cut method

The branch-and-cut method for solving IP problem instances was first introduced in 1991 by
Padberg and Rinaldi [46]. The algorithm was applied to the TSP to propose the notion of
generating cutting planes at the nodes of a branch-and-bound tree. The branch-and-cut method
proves to be a robust procedure, and is significantly more efficient than both the branch-and-
bound and cutting plane methods discussed previously [6]. As the name implies, the branch-and-
cut method is a combination of the branch-and-bound method and the cutting plane method.
The combined efforts of the two approaches has the ability to solve far larger instances of IP
problems to optimality than other methods [38]. The branch-and-cut method is generally able
to obtain an optimal solution to an IP problem instance while producing a smaller branch-and-
bound tree.

The first step, as with both of the previous aforementioned methods, is to solve the LP relaxation
using the simplex algorithm. An important decision that should be addressed is deciding on
whether to proceed by adding a cutting plane to the current node or to rather branch on
a decision variable. The computational cost of inserting cutting planes may be prohibitively
expensive. As a result, it is common practice not to insert cutting planes at every node of the
tree. Multiple alternative approaches exist, such as inserting a cutting plane at every eighth
node, or at every node at a depth of a multiple of eight in the tree [38]. An alternative approach
is to generate cuts only to tighten the initial LP relaxation, and cutting planes are added only at
the root node of the tree. Generally, the branch-and-cut method branches on a decision variable
to create multiple nodes, solves the LP relaxation at each node, generates cutting planes, and
adds the constraint imposing the cutting plane to the node.

The algorithm is applied to the problem instance in (2.31)–(2.34) to demonstrate its working.
Similar to the branch-and-bound method in §2.2.2, the algorithm starts off by solving the LP re-
laxation of the original IP problem instance by invoking the simplex algorithm. An enumeration
tree depicts the different subproblems considered. As discussed in §2.2.2, the simplex algorithm
may be invoked to obtain an optimal solution to the LP relaxation which corresponds to Sub-
problem 1 (illustrated graphically in Figure 2.9(a)). The solution to Subproblem 1 consists of
the fractional variables x1 = 15

4 and x2 = 9
4 , corresponding to an objective function value of

z = 41.25. Branching is applied to the subproblem according to the LIFO rule, resulting in
Subproblems 2 and 3. By following the branch-and-bound method described in §2.2.2, branch-
ing occurs on the decision variable assuming a non-integer value having the largest coefficient
in the objective function. Therefore, the constraints x1 ≥ 4 and x1 ≤ 3 are imposed, resulting
in Subproblems 2 and 3, respectively. In the solution to Subproblem 3, all decision variables
assume integer values (x1 = 3 and x2 = 3) which yields a candidate solution with an objective
function value of z = 39. As can be seen from the formulated tree in Figure 2.9(a), Subproblem 2
is considered next. Subproblem 2 is solved by invoking the simplex algorithm, resulting in the
simplex tableau

8 5 0 0 0
x1 x2 s1 s2 s3 RHS

0 s1 0 0 1 −1
5 −4

5
1
5

5 x2 0 1 0 1
5

9
5

9
5

8 x1 1 0 0 0 −1 4

g 8 5 0 1 1 41 .

z 0 0 0 1 1
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In this solution, x1 = 4 and x2 = 9
5 , which yields an objective function value of z = 41.

Subproblem 2 is therefore not feasible, since it contains a non-integer decision variable. Contrary
to the working of the branch-and-bound method, a Glomory fractional cut is inserted according
to the methodology described in §2.2.3. The second constraint (corresponding to the equality
equation x2 + 0.2s2 + 1.8s3 = 1.8) is selected to generate the cutting plane from. The equation
is rearranged so that the non-integer values are written as a summation of the integer values
and a non-negative decimal portion. The equality is rearranged by writing all the terms with
integer coefficients on one side, and the terms with fractional coefficients on the other, such as

x2 + s1 + 1 = 0.8− 0.2s2 − 0.8s3. (2.44)

To formulate the cut, the fractional coefficients should be less than or equal to zero, that is

0.8− 0.2s2 − 0.8s3 ≤ 0. (2.45)

The inequality in (2.45) may be rewritten in terms of x1 and x2 as x1+x2 ≤ 5. The cut is applied
to the decision space, as illustrated graphically in Figure 2.9(b). The cutting plane is inserted as
an additional constraint into the simplex tableau to perform a single iteration of the dual simplex
algorithm, in order to regain feasibility. The resulting optimal solution is x1 = 5 and x2 = 0,
yielding an overall objective function value of z = 40. This solution corresponds to the integer
point B in Figure 2.9(b). The solution obtained is greater than that of Subproblem 3. Since all
branches are fathomed, an optimal solution has been found and the algorithm is terminated.

Subproblem 1

t = 1

Subproblem 3

z = 39

x1 = 3

x2 = 3

Candidate solution

t = 2

x1 ≤ 3 x1 ≥ 4

Subproblem 2

z = 41

x1 = 4

x2 = 9
5

t = 3

Subproblem 4

z = 40

x1 = 5

x2 = 0

Candidate solution

t = 4

x1 + x2 ≤ 5

z = 165
4

x1 = 15
4

x2 = 9
4

(a) A branch-and-cut tree

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

A B

C

D

IP feasible point
IP relaxation’s feasible region

(b) The feasible regions of subproblems

Figure 2.9: A graphical representation of the branch-and-cut tree formulated for an IP problem instance
in (a), and the corresponding feasible region in (b).

CPLEX utilises the branch-and-cut method when solving IP and MIP problem instances [26].
CPLEX also manages the search space by invoking a tree, consisting of nodes (subproblems). A
node is processed by solving the subproblem without integrality constraints, which corresponds
to the relaxation of the IP problem. Active nodes are nodes which have not yet been solved,
whereas already processed nodes are no longer considered to be active. Branching in CPLEX
works similarly to branching explained in the branch-and-cut method. Branching therefore
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modifies the bounds on a single variable, which will result in the creation of two new nodes from
the parent node. Cuts are also formulated similarly to the branch-and-cut method explained
previously, where the purpose of adding a cutting plane is to limit the size of the solution search
space [26].

CPLEX starts by initialising the branch-and-cut tree to contain the root node as the only active
node. Potential cuts are then generated for the root node, but not all cuts are applied to the
problem immediately in order to maintain a reasonable problem size. If possible, an incumbent
solution (the best known solution that satisfies all the integrality constraints) is established
for comparison with other candidate solutions which might arise later in the algorithm. When
processing a node, CPLEX solves the LP relaxation of the node. If the solution violates any cuts,
CPLEX may add some of them, or all of them, to the node problem and solve it again. This
procedure is repeated until no more violated cuts are detected. If the node becomes infeasible at
any point during the addition of cuts, it is removed from the tree, otherwise, CPLEX determines
whether the solution to the subproblem satisfies the integrality constraints. If this is the case,
and if its objective function value exceeds that of the current incumbent solution, the solution
of the subproblem is used as the new current best solution. If the solution does not satisfy the
integrality constraints, branching is performed. Branching is applied to a variable that does not
assume an integer value in the current solution, but should. Two new nodes are added to the
tree as a result of this procedure.

After solving the LP relaxation at each node, a new objective function value is found. The
node corresponding to an objective function value superior to that of all nodes at any point in
the algorithm, may be compared to the incumbent solution’s objective function. The process
is repeated until all nodes are traversed and an optimal solution is found. The optimality
gap, which is the percentage difference between the best lower bound and upper bound found
throughout execution of the algorithm, is reported by CPLEX. The optimality gap is defined
as an indicator of comparison between these solution values and serves as a measure of progress
toward finding an optimal solution. In the situation when all nodes are fathomed, and the
upper and lower bound have converged, an optimality gap of zero indicates that the incumbent
solution is optimal. It is possible to instruct CPLEX to end the branch-and-cut process before
optimality has been reached via specifying a run time limit or a memory limit, after which the
best solution found throughout the search is returned [26].

2.3 The verification and validation of mathematical models

An important activity in ensuring the correctness of mathematical models and their correspond-
ing computerised implementations, is the systematic and thorough testing of the designed system
before releasing the system to users. Failure to perform this step may result in the user relying
on a system that delivers outputs of questionable quality. The need for thorough systems and
software testing is motivated by the necessity to verify that the system meets the design require-
ments specified, to build confidence in the modelling approach adopted, and to find discrepancies
between the desired and observed behaviour of a system [48]. Furthermore, the developers of
mathematical models and corresponding solution method implementations should critically as-
sess the computational science and engineering tools utilised [44]. The output obtained from
mathematical models should be credible and ascertain confidence in the user. Obtaining such
confidence necessitates a well-planned and implemented verification and validation (V&V) pro-
gram. The output of a verified and validated mathematical model is intended to provide a
technically acceptable basis to support decisions based on the obtained results [57].
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The process of ensuring that a model implementation accurately represents the developer’s
conceptual description of the model and the solutions to instances of the model is termed ver-
ification [57]. The goal of verification is to find and eliminate errors in the model by ensuring
the model is implemented correctly and performs as expected. In contrast, validation is defined
as the process of determining the extent to which a model accurately represents the real world
from the perspective of the intended uses of the model [57]. The validation phase is concerned
with quantifying the model’s accuracy by comparing numerical solutions obtained by the model
to experimental data.

It is important to note that V&V processes verify a model’s accuracy and quality with regard
to specific scenarios, and it does not necessarily prove that a model is correct for all possible
instances (except for trivial models, which are not of interest). Furthermore, the V&V process is
a continuous process that does not have a clearly defined point of completion. Since the correct-
ness and accuracy of a model cannot be calculated for all possible instances, practical concerns
such as cost limitations and the intended use complexity of the model generally govern com-
pletion or sufficiency of the V&V process. The V&V processes may, however, provide evidence
that a model is sufficiently accurate [45][49][57]. Intuitively, a model may be valid for a set of
experimental conditions and may be invalid for another. A model’s validity is determined by
it’s accuracy within an acceptable range, which is dependent on the model’s intended purpose
and should be determined early in the developmental process of the model [50].

An adapted version of the well known Sargent Circle, constructed by the Society for Computer
Simulation [51] in 1979, is shown in Figure 2.10. The Sargent Circle is a simplistic model used to
illustrate the V&V process. The model differentiates between modelling and simulation activi-
ties (black solid lines), and assessment activities (red dashed lines). Furthermore, the Sargent
Circle differentiates between three different components that comprise the model, which are the
reality of interest, the mathematical model and the computer model. The reality of interest
component represents the physical system, the particular problem, or the real-life process that
is of importance and for which data are being collected. The mathematical model component is
composed of mathematical expressions, equations, and the conceptual model which describe the
reality of interest or physical system. The computerised model component is the implementation
of the mathematical and conceptualised model or code, which may comprise, but is not limited
to, the computer program, the conceptual and mathematical modelling assumptions and code
inputs [57].

The modelling activity is concerned with extracting important features and mathematical ex-
pressions that represent the reality of interest best in the mathematical model. Confirmation
involves assessing whether the modelling activity was correctly performed. Furthermore, the
software implementation in the computer model is assessed by the verification activity. Identi-
fication, quantification, and reduction of errors in the computational model and its numerical
solutions constitute the fundamental verification strategy [45]. Moreover, the verification activ-
ity may be divided into two activities, called code verification and calculation verification [47].
The goal of code verification is to identify and solve problems in the computer programming
code, whereas calculation verification is concerned with quantifying errors introduced by the
application of the code to a specific problem instance.

Experimental data form the reference against which competing model solutions are compared
during the validation process [39]. Experimental data includes data from the target system,
whether from historical sources or from experiments that were specifically designed, that may
offer important information which may be used to validate a mathematical model’s formula-
tion. The validation activity aims to measure the model’s accuracy by means of comparing
experimental data with solution generated by the computer model. Validation is a continuous
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Figure 2.10: The Sargent Circle used to model the V&V process (adapted from [51]).

process that occurs as operations are improved and/or parameter ranges of input parameters
are expanded. The fundamental steps in the validation process are to identify and quantify
the errors and uncertainties in the conceptual and computational models, to quantify numerical
errors in the computational solution, to estimate the uncertainties in the experimental data,
and to compare the computational results with the experimental data [45]. Application of the
validation strategy, however, does not assume that the experimental data are more accurate
than the computational results, but rather, it suggests that the experimental results are a bet-
ter representation of reality for the purposes of validation. A widely recommended validation
method is to employ a building-block approach, due to the infeasibility and impracticality of
conducting actual validation studies on complex or large scale systems [45]. The aforementioned
approach suggests that the complex system be divided into (at least three) progressively sim-
pler tiers, where each tier’s computational results are compared with experimental data. It is
recommended that the complete system be decomposed into subsystem cases, benchmark cases,
and unit problems [57].

A testing process, suggested by Kendall and Kendall [29], supports this approach by recom-
mending that systems testing should be done throughout the system’s development and not
subsequent to its completion. The testing process suggests that testing is performed on subsys-
tems, modules, and unit problems as modelling progresses. Four tiers of testing is recommended,
namely:

1. Program testing with test data,

2. Link testing with test data,

3. Full systems testing with test data, and

4. Full systems testing with live data.

The first step, program testing with test data, directs the programmer to desk check the al-
gorithm or program logic before executing the program. Desk checking is executed by the
developer, wherein each step in the program on paper is followed to check whether the model
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logic makes sense, and the algorithm works as it is written [29]. Furthermore, both valid and
invalid test data are generated and used to detect errors. Link testing with test data is used to
verify whether the interdependent programs, modules, and units communicate and cooperate
properly. When the individual programs and links perform satisfactorily, the system as a com-
plete entity is tested with valid and invalid test data. Finally, the full system is tested using live
data (data that have been successfully processed through the existing system). Completion of
this step serves as validation, since it requires the accurate comparison of the created system’s
output with what is considered to be the output known to be correctly processed.

2.4 Chapter summary

A comprehensive literature review on topics relevant to this project was discussed in this chapter.
The chapter opened in §2.1 with concise descriptions and exact mathematical formulations of
the VRP variants related to the work done in this project. Differences between the CVRP, the
VRPTW, the HFVRP, and the SDVRP were elucidated by means of a small example instance
which was solved for each problem. Exact solution approaches for solving VRP instances were
considered next in §2.2. A methodology for solving LP problem instances, called the Simplex
Algorithm, was described. Furthermore, three solution methodologies to solving IP problem
instances were considered, namely the branch-and-bound method, the cutting plane method,
and the branch-and-cut method. Finally, the chapter closed in §2.3 with a brief discussion
on guidelines for verifying, validating, and testing mathematical models and its computerised
implementations.
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This chapter is devoted to the formulation of a computerised mathematical model in the form
of a MIP problem for the MAVRP considered in this project. The MAVRP must be able
to facilitate a heterogeneous fleet of delivery vehicles stationed at the depot and available to
service customers, which is allowed to perform split deliveries, while adhering to the time-
windows associated with customers. Furthermore, the routes assigned to delivery vehicles must
adhere to a specified familiarity threshold, thereby increasing driver-route familiarity. The routes
with which delivery vehicle drivers are familiar with, or the so-called master routes, must be
provided as input to the model. A derivation of the model is provided in §3.1. Thereafter, the
exact solution approach and the implementation thereof in CPLEX is described in §3.2, which
facilitates the verification of the MAVRP. Further verification and validation of the computerised
mathematical model is initiated next in §3.3. A description of a graphical user interface (GUI),
which allows the computerised mathematical model to be utilised as a DST, is provided in §3.4.
The chapter closes in §3.5 with a brief summary of its contents.

3.1 Model derivation

AnMAVRPmodel for increased driver-route familiarity is derived in this section. First, in §3.1.1,
the required input data are described in terms of the model parameters. These parameters are
used to configure an instance of the MAVRP. The decision variables of the model are declared
in §3.1.2, followed by a derivation and discussion on the constraints of the model in §3.1.3. The
objective function is finally derived in §3.1.4.

35
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3.1.1 Model parameters

Let C = {1, . . . , n} index the set of customers to be serviced. The depot is included in the
additional supplemented set of vertices, V = C ∪ {0, n + 1}, where 0 denotes the depot upon
departure and n+1 denotes the depot upon return. Let G(V,A) denote the directed travel graph
on which the MAVRP is defined, where the arc set, denoted by A, represents the directed road
network links which delivery vehicles may traverse, and V denotes the vertex set. Furthermore,
let δ−(i) denote the subset of vertices from which arcs are directed towards vertex i ∈ V \ {0},
and let δ+(i) denote the subset of vertices to which arcs are directed from vertex i ∈ V \{n+1}
in the travel graph G.

Let ai and bi denote the earliest and latest possible service start time (measured in minutes after
some fixed reference time) allowed at customer i ∈ C, respectively. The time-window associated
with the depot, denoted by [a0, b0] and [an+1, bn+1], represents the earliest possible departure
time and the latest possible return time at the depot. The average demand volume (measured in
cubic metres) exhibited by customer i ∈ C is denoted by qi. The average service time duration
at customer i ∈ C (measured in minutes), is denoted by si. The average service time duration
is derived as a function based on the average demand volume per planning period associated
with each customer, and includes a fixed service setup time. The service time associated with
the depot is s0 = sn+1 = 0.

The various types of delivery vehicles to which each delivery vehicle may belong are indexed by
H = {1, . . . , |H|}. Accordingly, let mh denote the number of delivery vehicles of type h ∈ H
available for service. Moreover, delivery vehicles of the same type h ∈ H are indexed successively
in the set of (heterogeneous) delivery vehicles that are available at the depot to service customers,
denoted by K = {1, . . . , |K|}. Intuitively, it can be shown that

∑
h∈Hmh = |K|. Let Qk and

Fk denote the loading capacity (measured in cubic metres) and fixed cost (measured in Rand)
associated with utilising delivery vehicle k ∈ K, respectively. To account for delivery vehicle size
restrictions which may prohibit the visitation of certain delivery vehicles at certain customers,
the binary parameter

gik =

{
1 if delivery vehicle k ∈ K is able to visit customer i ∈ C,
0 otherwise,

is defined. Different types of delivery vehicle may have different travel costs and travel times
associated with them. Let cijk and tijk denote the cost (in Rand) and expected travel time (in
minutes), respectively, associated with delivery vehicle k ∈ K travelling from vertex i ∈ V to
vertex j ∈ V. These travel costs and travel times associated with each delivery vehicle k ∈ K
may be determined by multiplying the travel cost matrix and travel time matrix with a variable
cost factor vk and speed factor σk, respectively. Furthermore, let αk denote the cost of increasing
the travel duration of delivery vehicle k ∈ K by one minute.

The model takes as input a set of master route arcs which represents a set of arcs with which
delivery vehicle drivers are assumed to be familiar with. A user-specified familiarity threshold,
denoted by β, represents the minimum percentage of distance that must be travelled on these
master routes. The set of master route arcs are represented by the binary parameter

mij =

{
1 if the arc (i, j) forms part of the set of master route arcs,
0 otherwise.
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3.1.2 Model variables

The binary decision variables

xijk =

{
1 if delivery vehicle k ∈ K travels from vertex i ∈ V \ {n+ 1} to vertex j ∈ V \ {0},
0 otherwise,

capture all vehicle flows and are stored in row i and column j of slice k in a three-dimensional
(n + 1) × (n + 1) × |K| flow matrix X. The decision variable yik records the volume (in cubic
metres) of goods delivered to customer i by delivery vehicle k. Furthermore, define the binary
decision variable

rk =

{
1 if delivery vehicle k ∈ K is used,
0 otherwise.

The continuous decision variable Tik is defined as the time (measured in minutes since some
reference time) that delivery commences at vertex i ∈ V, by delivery vehicle k ∈ K. Intuitively,
T0k denotes a delivery vehicle’s departure time from the depot and Tn+1,k denotes the time that
the delivery vehicle will return to the depot upon completing its assigned route. A delivery
vehicle’s total time in spent away from the depot (if utilised) may therefore be calculated as
Tn+1,k − T0k.

3.1.3 Model constraints

A number of constraints are imposed on the model to guarantee that solutions are practically
feasible. The constraints are formulated based on those imposed in the CVRP, the VRPTW,
the HFVRP, and the SDVRP, discussed in §2.1. To ensure that each customer is visited at least
once, the constraint set ∑

k∈K

∑
j∈δ+(i)

xijk ≥ 1, i ∈ C, (3.1)

is imposed. The constraint sets ∑
j∈δ+(0)

x0jk = rk, k ∈ K, (3.2)

∑
i∈δ−(n+1)

xi,n+1,k = rk, k ∈ K, (3.3)

are imposed to ensure that each delivery vehicle utilised departs from the depot and returns
to the depot after completing its assigned route. In order to ensure that each delivery vehicle
departs from a customer if it arrives at that customer, the constraint set∑

i∈δ−(j)

xijk −
∑

i∈δ+(j)

xjik = 0, j ∈ V, k ∈ K, (3.4)

is imposed. The constraint set ∑
j∈δ+(i)

xijk ≤ gik, i ∈ C, k ∈ K, (3.5)

ensures that customers are only serviced by delivery vehicles that are, in fact, able to visit them,
based on size restrictions. Delivery vehicles must adhere to the time-windows that are associated
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with customers. The constraint sets

Tik + si + tijk − Tjk ≤ (1− xijk)Mijk, k ∈ K, (i, j) ∈ A, (3.6)

ai
∑

j∈δ+(i)

xijk ≤ Tik ≤ bi
∑

j∈δ+(i)

xijk, k ∈ K, i ∈ V\{n+ 1}, (3.7)

an+1

∑
i∈δ−(n+1)

xi,n+1,k ≤ Tn+1,k ≤ bn+1

∑
j∈δ−(n+1)

xj,n+1,k, k ∈ K, (3.8)

are therefore imposed. The constraint set in (3.6) implicitly prevents subtour formation, where
Mij denotes a large constant which may be set to max{bi + si + tijk − aj , 0}, as well as ensures
correct bookkeeping of the time that delivery vehicles commence at vertices. Imposition of the
constraint set in (3.7) enforces that the service at each customer starts within its specified time-
window. The constraint set in (3.8) ensures that each utilised delivery vehicle departs from and
arrives back at the depot within its specified time-window. In order to ensure that the capacity
of any delivery vehicle is not exceeded, the commodity flow constraint sets∑

k∈K
yik = qi, i ∈ C, (3.9)∑

i∈C
yik ≤ Qkrk, k ∈ K, (3.10)

are imposed. The constraint set in (3.9) ensures that the total volume of commodities delivered
to a customer corresponds to the demand exhibited by the customer. Moreover, the constraint
in (3.10) restricts the volume of commodities carried by a utilised delivery vehicle to not exceed
its capacity. Furthermore, imposition of the constraint set∑

(i,j)∈A

xijk ≤ (n+ 1)rk, k ∈ K, (3.11)

ensures that a vehicle is considered to be utilised if it services at least one customer. To ensure
that a delivery only takes place at a customer if a delivery vehicle actually visits that customer,
the constraint set

yjk ≤ Ok

∑
i∈δ−(j)

xijk, j ∈ C, k ∈ K, (3.12)

is imposed, where Ok is a large integer (at least as large as the largest delivery vehicle type’s
capacity Qk). Furthermore, the constraint set

β ≤
∑

k∈K
∑

(i,j)∈A xijkmijdij∑
k∈K

∑
(i,j)∈A xijkdij

, (3.13)

is imposed to ensure that the portion of the total distance which is travelled on the master route
arcs is more than the specified familiarity threshold β. To enforce the binary and real-valued
nature of the decision variables, the domain constraints

xijk ∈ {0, 1}, (i, j) ∈ A, k ∈ K, (3.14)

rk ∈ {0, 1}, k ∈ K, (3.15)

Tik ≥ 0, i ∈ V, k ∈ K, (3.16)

yik ≥ 0, i ∈ C, k ∈ K, (3.17)

are imposed.
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3.1.4 Objective function

The model objective is to

minimise z =
∑
k∈K

rkFk +
∑
k∈K

∑
i,j∈A

cijkxijk +
∑
k∈K

αk(Tn+1,k − T0,k). (3.18)

The first term represents the fixed cost associated with utilising a delivery vehicle, the second
term represents the variable cost associated with the arcs traversed, whereas the third term
represents the total duration of each delivery vehicle’s trip.

The first term only makes a contribution to the objective function value if the delivery vehicle
is in fact utilised (i.e. if rk = 1). In the second term, a contribution is made to the objective
function value only if delivery vehicle k travels from vertex i to vertex j (i.e. if xijk = 1). As
previously mentioned in §3.1.2, a delivery vehicle’s total travel time (if utilised) may be calculated
as Tn+1,k − T0k. In the third term the trip duration of each delivery vehicle is multiplied with
its cost coefficient αk in order to compact routes.

3.2 Model implementation

This section is devoted to an implementation of the MAVRP derived in §3.1 in CPLEX via its
Python programming language interface for verification and validation purposes. As discussed
in §2.2.4, CPLEX applies the branch-and-cut method to solve MIP problem instances. The
model implementation comprises three sections.

In the first section inputs specified by the user are stored as a set of parameters to the model.
These parameters configure the model instance and may be imported via an Microsoft Office
Excel (Excel) file comprising multiple Excel spreadsheets. The data in the Excel file should
be organised according to eight different spreadsheets. The first spreadsheet contains general
information about the problem instance, including the number of customers, the variable service
rate and the fixed service rate for deliveries. The second spreadsheet lists the longitude and
latitude coordinates of the depot and its customers. Furthermore, the third spreadsheet contains
the vehicle-customer compatibility lists. If a customer may not be visited by a certain delivery
vehicle type, the delivery vehicle type is not included in the list of compatible delivery vehicle
types for that specific customer. The fourth spreadsheet contains the time-window associated
with each customer, whereas the fifth spreadsheet contains the demand volume specified by each
customer. The sixth and seventh spreadsheets contain matrices of travel distances and expected
travel times between the customers and the depot, respectively. Details about the available fleet
and each type of delivery vehicle is captured in the final spreadsheet.

In the second section of the model implementation, the master route arcs are computed for a
given depot and its customers. King et al. [30] proposed a master route generator for computing
suitable routes for delivery vehicle drivers to become familiar with in the context of a given depot
and its customers. This master route generator was made available to the author to generate
master route arcs to be given as input to the MAVRP model. Any set of master route arcs,
however, may be provided as input to the model.

The final section of the model implementation comprises the MAVRP model derived in §3.1. In
this section, the model is encoded in CPLEX, accessed via its Python interface. The implemen-
tation of the model derived in (3.1)–(3.18) is shown in Listing 3.1. The decision variables are
defined first, followed by the declaration of the objective function, and then the implementation
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of the constraints. The final two lines of the model implementation provide the command for
the problem instance to be solved, and then prints the solution returned by CPLEX.

1 mdl = Model("MAVRP")

2 # Decision variable declaration

3 # Equations (3.14) -(3.17)

4 keys_x = [(i,j,k) for (i,j) in A for k in vehicles]

5 x = mdl.binary_var_dict(keys_x , name = ’x’)

6 keys_y = [(i,k) for i in C for k in vehicles]

7 y = mdl.continuous_var_dict(keys_y , lb = 0, name = ’y’)

8 keys_r = [k for k in vehicles]

9 r = mdl.binary_var_dict(keys_r , name = ’r’)

10 keys_T = [(i,k) for i in V for k in vehicles]

11 T = mdl.continuous_var_dict(keys_T , lb = 0, name = ’T’)

12

13 # Equation (3.18) Objective function

14 mdl.minimize(mdl.sum(r[k]*F[k] for k in vehicles)+mdl.sum(c[i,j,k]*x[i,j,k]

for i,j in A for k in vehicles)+mdl.sum(alpha[k]*(T[n+1,k]-T[0,k]) for k in

vehicles))

15

16 # Constraints

17 # Equation (3.1)

18 mdl.add_constraints(mdl.sum(x[i,j,k] for j in delta_plus[i] for k in vehicles)

>= 1 for i in C)

19 # Equation (3.2)

20 mdl.add_constraints(mdl.sum(x[0,j,k] for j in delta_plus [0]) == r[k] for k in

vehicles)

21 # Equation (3.3)

22 mdl.add_constraints(mdl.sum(x[i,n+1,k] for i in delta_minus[n+1]) == r[k] for

k in vehicles)

23 # Equation (3.4)

24 mdl.add_constraints(mdl.sum(x[i,j,k] for i in delta_minus[j]) - mdl.sum(x[j,i,

k] for i in delta_plus[j]) == 0 for j in C for k in vehicles)

25 # Equation (3.5)

26 mdl.add_constraints(mdl.sum(x[i,j,k] for j in delta_plus[i]) <= g[i,k] for i

in C for k in vehicles)

27 # Equation (3.6)

28 mdl.add_constraints(T[i,k] + s[i] + t[i,j,k] - T[j,k] <= M[i,j,k]*(1-x[i,j,k])

for i,j in A for k in vehicles)

29 # Equation (3.7)

30 mdl.add_constraints(a[i]*mdl.sum(x[i,j,k] for j in delta_plus[i]) <= T[i,k]

for k in vehicles for i in V if i!=n+1)

31 mdl.add_constraints(T[i,k] <= b[i]*mdl.sum(x[i,j,k] for j in delta_plus[i])

for k in vehicles for i in V if i!=n+1)

32 # Equation (3.8)

33 mdl.add_constraints(a[n+1]* mdl.sum(x[i,n+1,k] for i in delta_minus[n+1]) <= T[

n+1,k] for k in vehicles)

34 mdl.add_constraints(T[n+1,k] <= b[n+1]* mdl.sum(x[j,n+1,k] for j in delta_minus

[n+1]) for k in vehicles)

35 # Equation (3.9)

36 mdl.add_constraints(mdl.sum(y[i,k] for k in vehicles) == q[i] for i in C)

37 # Equation (3.10)

38 mdl.add_constraints(mdl.sum(y[i,k] for i in C) <= Q[k]*r[k] for k in vehicles)

39 # Equation (3.11)

40 mdl.add_constraints(mdl.sum(x[i,j,k] for i,j in A) <= (n+1)*r[k] for k in

vehicles)

41 # Equation (3.12)

42 mdl.add_constraints(y[j,k] <= O[k]*mdl.sum(x[i,j,k] for i in delta_minus[j])

for j in C for k in vehicles)

43 # Equation (3.13)
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44 mdl.add_constraint(beta*(mdl.sum(x[i,j,k]*d[i,j] for i,j in A for k in

vehicles)) <= mdl.sum(x[i,j,k]*m[i,j]*d[i,j] for i,j in A for k in vehicles)

)

45 solution = mdl.solve(log_output = True)

46 print(solution)

Listing 3.1: An implementation of the MAVRP model derived in (3.1)–(3.18) in CPLEX via its
Python interface.

The remainder of this section is dedicated towards describing a small hypothetical problem
instance containing ten customers to illustrate the input parameters and output of the MAVRP
model derived in §3.1. A random problem instance may be generated by randomly assigning
demand volumes and locations (in the form of coordinates) to customers. Information about
the fleet of available delivery vehicles stationed at the depot is listed in Table 3.1. Eight delivery
vehicles are available, comprising two small delivery vehicles, three medium delivery vehicles, and
three large delivery vehicles which may be utilised. Details about each type of delivery vehicle
is stipulated in the rows accordingly. The input data corresponding to the customers and the
depot is shown in Table 3.2. The horizontal and vertical coordinates are used to calculate the
Euclidean distances between the vertices, which represent the travel distances between vertices.
Multiplication of these distances by the speed parameter of the relevant delivery vehicle results
in a travel time matrix calculated for each delivery vehicle. The delivery vehicle compatibility
depicts which delivery vehicles are able to service a specific customer, in order to account for
possible size restrictions at customers. Furthermore, each customer’s time-window start and end
times are indicated in minutes since 08:00. The demand volume exhibited by each customer in
cubic metres is listed in the final column.

Table 3.1: Input data related to the available fleet of delivery vehicles in a small hypothetical problem
instance.

Type, k
Number of
vehicles, mh

Fixed cost,
Fk

Capacity,
Qk

Variable
cost, vk

Speed factor,
σk

Small 2 3 000 40 5.850 0.900
Medium 3 3 250 55 6.175 1.045
Large 3 3 500 65 6.500 1.200

The master routes computed for the small hypothetical problem instance by invoking the master
route generator proposed by King et al. [30] are illustrated graphically in Figure 3.1(a). A
corresponding optimal solution based on a minimum familiarity threshold of 60% is shown
in Figure 3.1(b). The model constraints may be validated by recording the model’s decision
variables in tabular format, as shown in Table 3.3. The sequence of customers to be visited, the
service start times at these customers, and the volume of commodities delivered to each customer
for each utilised delivery vehicle are shown for validation purposes. In the solution returned,
only three delivery vehicles are utilised. Two small delivery vehicles were utilised, whereas the
other is a larger delivery vehicle. Upon analysis of the solution returned, it is clear that each
customer’s demand is satisfied and no delivery vehicle’s capacity is exceeded. Furthermore, the
service at each customer starts within its specified time-window. Customer 3 is visited twice,
which serves as an example of a split delivery taking place. The actual familiarity percentage
obtained by the solution is 72.04%, which is more than the minimum threshold of 60% that was
specified. Furthermore, the objective function value and the values of its comprised terms (in
Rand) of the solution returned are summarised in Table 3.4. The objective function value of
the returned solution is R13 583.00. Upon inspection of these output values, it is confirmed that
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the solution returned by CPLEX satisfies every constraint of the model derived in §3.1, and is
therefore feasible.

Table 3.2: Input data related to the small hypothetical problem instance. For each vertex, the coordi-
nates, vehicle-compatibilities, time-window start and end times (measured in minutes since the start of
the day), and demand volumes in cubic metres are tabulated.

Vertex, i Coordinates Vehicle compatibility, gik Time-window, [ai, bi] Demand, qi
0 (60,40) N/A [0, 600] N/A
1 (59,95) 3 [0, 540] 18
2 (14,80) 1,2,3 [0, 540] 16
3 (44,9) 1 [270, 540] 12
4 (97,30) 1,2,3 [270, 540] 13
5 (81,12) 1,2,3 [270, 540] 17
6 (18,50) 1,2,3 [0, 270] 12
7 (33,22) 1,2,3 [0, 270] 11
8 (85,58) 2,3 [0, 540] 15
9 (17,37) 1,2,3 [0, 540] 14

10 (40,82) 1,2,3 [0, 540] 13
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Figure 3.1: An example problem instance consisting of ten customers and a single depot. The master
routes are shown on the left in (a), and an optimal solution to the corresponding problem instance, based
on a minimum familiarity threshold of 60%, is shown on the right-hand side in (b). The volume of demand
exhibited by each customer in cubic metres is indicated next to its vertex, as well as the time-window
associated with each customer underneath its vertex.

3.3 Model verification

Similar to the verification strategy followed for the small hypothetical problem instance in §3.2, the
implementation of the MAVRP derived in §3.1 is verified in this section by following the same process
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Table 3.3: An optimal solution to the example problem instance. The delivery vehicle type, its cor-
responding index, delivery vehicle visitation sequence, volume of demand delivered, service start times,
and arrival times back at the depot are given.

Vehicle type Index, k From i To j Volume delivered, yik Start time, Tik Return time, Tjk

Small 1 0 6 12 43.344
6 9 14 82.200
9 7 11 139.935
7 3 2 211.674
3 0 0 270.000 347.397

Small 2 0 4 13 235.505
4 5 17 270.000
5 3 10 340.675
3 0 0 435.084 512.481

Large 7 0 2 16 0.000
2 10 13 73.151

10 1 18 162.443
1 8 15 239.069
8 0 0 357.335 449.302

Table 3.4: The objective function value and its comprising terms of the solution returned for the small
hypothetical problem instance in Rand.

Fixed cost R9 500.00
Variable cost R2 756.74
Service cost R1 326.26

Total cost R13 583.00

for multiple randomly generated problem instances. Model verification includes the assessment of the
implementation of the computer model, as discussed in §2.3. The verification activity was initiated by
performing code verification, in which any problems encountered throughout the model’s development
were addressed. This included technical errors made, errors in the input data, and data formatting issues.
Once these problems were addressed and the implementation of the model in CPLEX was able to return
solutions successfully, the calculation verification was completed.

Further model verification and validation is performed in this section by following the testing methodology
suggested by Kendall and Kendall [29], which is described in §2.3. The model implementation is invoked
to solve randomly generated test instances. The test instances contain both valid and invalid data
to detect errors or unusual behaviour. Once an infeasible problem instance is incurred, the problem
instance is discarded and the next problem instance is considered. The input parameters for instances of
the MAVRP derived in §3.1 are randomised according to the following rules:

• A dataset number is provided as the seed number to ensure that each test instance can be replicated
in the future.

• The number of customers in each problem instance is assigned an integer-valued number from eight
to twelve. This range was chosen so as to limit the solution duration of each instance, while not
over simplifying the instance.

• The coordinates of customers and the depot are drawn from a uniform distribution with values
ranging from zero to a hundred in the Cartesian plane.

• Customers having an even numbered index are assigned a morning time-window [0,270], whereas
the remainder of the customers are assigned a latter time-window [270,540]. The time-window
associated with the depot is [0,600].



44 Chapter 3. Mathematical Model

• The three types of delivery vehicles described in Table 3.1 are stationed at the depot and available
to service customers.

• Each customer is allowed to be serviced by any type of delivery vehicle (to simplify the model for
testing purposes).

• The master routes provided as input to the model are generated by invoking the master route
generator proposed by King et al. [30]. A minimum familiarity threshold of 40% is specified for
each instance.

Five problem instances were generated for each number of customers, n = 8, . . . , 12, resulting in a total
of 5×5 = 25 testing problem instances. For each problem instance, the objective function value, required
run time, and resulting optimality gap obtained when invoking CPLEX are summarised in Table 3.5. In
order to confirm the feasibility of each solution, the following was validated:

• Each delivery vehicle’s assigned route departs from and returns to the depot.

• The sum of all the delivery quantities assigned to a delivery vehicle does not exceed its capacity.

• The cumulative volume of commodities delivered to a customer is equal to the demand exhibited
by that customer.

• The volume of commodities transported by a delivery vehicle decreases according to the corre-
sponding delivered volume as deliveries are made to each customer along its route.

• The service at each customer starts within its specified time-window.

• The service start time at each customer is later than the departure time from the depot if it is the
first customer along the route, or later than the service start time at the previous customer visited
by the corresponding delivery vehicle.

All solutions returned for the testing problem instances satisfied the constraints and were validated
according to the above mentioned criteria. The testing problem instances also provide some valuable
insight. The run time of the model is clearly dependent on the problem instance size, and an increasing
number of customers results in an increase in run time. If the number of customers in a VRP instance
is increased, the number of possible arcs which may form part of a feasible solution also increases. The
mathematical formulation is verified through the successful implementation thereof in CPLEX.

3.4 Decision support tool

This section is devoted to a detailed description of a DST that encapsulates the MAVRP derived in §3.1
and its exact solution approach implemented in §3.2. The DST is made accessible to users by developing
a user-friendly graphical user interface (GUI) for users to interact with. The GUI was developed in
Python by invoking the Tkinter package. Tkinter is a framework that is built into the Python standard
library, resulting in several advantages, such as the development of cross-platform GUI frameworks that
use visual elements from native operating system elements to blend in with the platform on which it is
being operated [1]. The GUI serves as a toolkit within the DST for users with varying technical skills to
employ the computerised mathematical model proposed in this project to their use-cases. Four functional
requirements that are fulfilled by the DST is that (1) it is able to import a given dataset from an Excel file
to generate a problem instance, (2) it is capable of generating a set of high-quality routing solutions from
the problem instance provided, (3) it has the ability to display and export the routing solutions computed,
and (4) it is able to generate and solve random problem instances to demonstrate the capabilities of the
MAVRP model.

The GUI is comprised of two main pages, namely the Import Instance page, which is shown in Figure 3.2,
and the Random Instance page shown in Figure 3.3. Both pages consist of a standard layout, which
consists of a Navigation panel, an Input panel and a Solution panel. The Import Instance page is displayed
when the tool is launched and the frame on the left-hand side (the Navigation panel) enables navigation
between the Import Instance or Random Instance page, or enables the user to terminate the program. The



3.4. Decision support tool 45

Table 3.5: The instance number, number of customers (n), seed number, objective function value (z)
in Rands, run time in seconds, and remaining optimality gap returned for each testing instance solved.

Instance n Seed number z Time Gap

1 8 1 10 714.88 6.33 0.00
2 8 2 12 755.41 13.81 0.00
3 8 3 15 915.22 2.59 0.00
4 8 4 13 961.90 4.63 0.00
5 8 5 10 267.45 2.44 0.00
6 9 1 13 673.87 62.16 0.00
7 9 2 13 480.13 38.00 0.00
8 9 3 13 495.88 237.44 0.00
9 9 4 14 276.97 157.34 0.00

10 9 5 14 538.24 34.52 0.00
11 10 1 14 890.86 66.55 0.00
12 10 2 13 466.96 53.56 0.00
13 10 3 14 557.02 128.99 0.00
14 10 4 16 590.04 156.41 0.00
15 10 5 13 885.57 49.31 0.00
16 11 1 17 114.26 6 178.69 0.00
17 11 2 14 205.28 259.52 0.00
18 11 3 17 072.29 9 540.97 0.00
19 11 4 17 291.26 754.52 0.00
20 11 5 16 028.46 99.69 0.00
21 12 1 17 849.16 6 786.67 0.00
22 12 2 17 083.68 39 491.13 0.00
23 12 3 17 662.69 3 974.59 0.00
24 12 4 19 402.31 2 249.08 0.00
25 12 5 17 780.68 1 141.75 0.00

DST allows for the importation of previously formulated master routes, or it is able to generate completely
new master routes by invoking the master route generator proposed by King et al. [30]. Furthermore, the
DST invokes the computerised mathematical model (which employs CPLEX) to compute high-quality
routing solutions. The remainder of this section is devoted to a high-level overview of how the user may
interact with the DST through its GUI by providing inputs.

The Import Instance page enables the user to generate a new set of routing solutions based on a problem
instance they have specified as an Excel file, with each sheet arranged according to the standard format
described in §3.2. The input panel (the frame on the bottom right-hand side), allows the user to specify
additional parameters to the DST, such as the familiarity threshold and run time. The first input textbox
serves two purposes: it allows the user to specify the name of a previously formulated set of master route
arcs which may then be imported, or to specify the name of an Excel file containing information about the
instance, based on which the master routes should be generated. If the user generates a new set of master
routes, the master routes are automatically stored within the current working directory and the user must
load the file before executing the problem instance. The user must next specify the familiarity threshold
and solution run time. Both of these parameters have default values that may be used. The final textbox
requires the user to specify the problem instance issued from a location on their computer, which is in
the standard Excel file format. Once the execution button is selected, a loading bar appears while routes
are being generated in the background. Following successful execution, the user can access the routes
and information about the solution in the Solution panel. This includes a basic visualisation of the top
view of the transportation network, the computed routes, the solution run time, the obtained familiarity
percentage, the resulting optimality gap, and the objective function values. The display of a solution
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Navigation panel
Solution panel

Input panel

Figure 3.2: The Import Instance page illustrating a solution obtained by solving an example problem
instance.

returned for a small problem instance is depicted in Figure 3.2. Finally, the user may export the solution
to an Excel file if they would like to save the solution and its associated decision variables.

The Random Instance page is dedicated towards generating and solving a random problem instance in
order to experiment with the MAVRP proposed in this project. In the Input panel, the user may adapt
and specify some of the parameters to the random problem instance. The first input textbox requires the
user to provide a name for the problem instance specified. If the Export to Excel file option is selected, the
exported file containing the routing solutions and decision variables is named after the problem instance’s
specified name and stored within the current working directory. In contrast to the Import page previously
discussed, the user able to specify whether they would like to include or exclude time-windows. When
time-windows are included, random time-windows are assigned to customers, whereas if it is excluded, all
customers assume a large time-window. After the required parameters have been provided, the problem
instance may be solved and a loading bar appears in order to indicate that the problem is being solved.
The execution includes the calculation of new master routes, based on the master generator proposed by
King et al. [30], which is then provided as an input to the MAVRP model and solved using CPLEX. Once
the instance is solved, the loading bar disappears and the user is able to visualise the solution returned by
selecting the Show solution button. This process may be iterated by clearing the solution and generating
a new problem instance by specifying different input parameters.

The verification process of the tool includes determining whether the DST is implemented correctly. To
ensure the DST’s credibility and reliability, the development of the tool was documented using commented
sections within the implementation code as well as the descriptions and diagrams presented in this chapter.
This also allows future users to improve or expand on the functionality of the DST. Logic errors are
often difficult to detect, which is why the testing procedure, which was previously discussed in §2.3, was
invoked. The DST was successfully verified after performing program testing with test data, link testing
with test data, and full systems testing with test data.
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Figure 3.3: The Random Instance page illustrating a solution to a randomly generated example problem
instance.

3.5 Chapter summary

In this chapter, a mathematical model was derived for increased driver-route familiarity. The model’s
parameters, decision variables, constraints, and objective function were discussed in §3.1. A computer
implementation of the model in CPLEX served as a verification of the mathematical model. The validation
of an example problem instance was performed in §3.2 for further verification purposes of the computerised
mathematical model and solution implementation. The model was also successfully verified based on the
solutions returned for 25 testing problem instances in §3.3. A DST was proposed in §3.4, which acts as
a user-friendly tool for users to invoke the MAVRP model.
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This chapter is devoted to the execution of a case study by providing real-world data as input parameters
to the DST developed in Chapter 3, in an effort to showcase its practical applicability. The input
data include historic demand data of stores, provided by the industry partner attached to this project.
The execution of this case study also attempts to confirm that the computerised mathematical model
accurately addresses the real-world problem that it is attempting to model, and serves as a final validation
in accordance with the validation strategy described in §2.3. To provide context for the data employed
in the case study, a discussion on the background of the industry partner associated with this project
is presented in §4.1. The case study is conducted in §4.2 by providing the data obtained from the
industry partner as input to the DST. A detailed discussion on the results and the interpretation thereof
is presented in §4.3, whereafter the chapter closes in §4.4 with a brief summary of its contents.

4.1 Industry partner background

The industry partner attached to this project is a large South African clothing retailer that owns 5 470
stores located across ten African countries. The industry partner reports an annual revenue of R77.3
billion and the competitiveness of its supply chain is largely dependent on its ability to distribute retail
commodities from its depots to its stores efficiently. The industry partner reported numerous chal-
lenges when implementing the solutions stemming from invoking standard commercial vehicle routing
and scheduling software for the computation of routing schedules for delivery vehicles. When daily de-
livery routes differ significantly from one schedule to the next, drivers tend to get lost or travel on roads
that are not suitable for the delivery vehicles [54]. These problems often lead to a degradation in the
supply chain operational efficiency, which may ultimately increase the costs of activities across the entire
supply chain. Furthermore, unanticipated increase in travel times may result in delivery vehicle drivers
missing the time-windows of certain stores, which may consequently cause the next delivery to also fall
behind schedule, ultimately rendering the rest of the planned schedule infeasible. As a result of these
practical issues with the implementation of planned delivery routes, the industry partner is interested
in increasing driver-route familiarity in their planned delivery routes. Delivery vehicle drivers should be
afforded the opportunity to become familiar with the routes along which they travel, which is anticipated
to increase the efficiency with which they perform deliveries.

49
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Each store of the industry partner is serviced by a single depot and commodities are distributed by road
using delivery vehicles. The industry partner does not own a fleet of delivery vehicles, but hires them
from a third party logistics provider. It may therefore be assumed that an fleet of unlimited delivery
vehicles is available to service stores, and that the number of delivery vehicles required for each planning
period must be minimised. The industry partner has two types of delivery vehicles available, each having
a different size and volumetric capacity associated with it. Each store may receive deliveries from any
type of delivery vehicle, resulting in no vehicle-customer compatibilities to be adhered to. Stores may
be modelled as customers that exhibit a certain quantity of demand and the service at stores must start
within specified time-windows. Deliveries at stores are only allowed to take place between 09:00–17:00
on weekdays, while the depot operates between 08:00–18:00. As a result, the industry partner’s scenario
may be modelled as a problem instance of the MAVRP derived in §3.1. The solution returned for the
case study should adhere to the aforementioned operational constraints, while minimising the overall
transportation cost and adhering to a familiarity threshold specified. Permitting split deliveries may
result in a reduction in the number of delivery vehicles required, as the demand of stores may be split
among multiple delivery vehicles, allowing an increase in the utilisation of delivery vehicle capacities.
Moreover, by ensuring that planned routes adhere to a familiarity threshold, the efficiency with which
deliveries are carried out may be increased.

4.2 Input data

The case study performed in this chapter is based on a depot of the industry partner, the Oshakati
hub (OSK), located close to the northern border of Namibia and servicing 25 stores. Unlike the ge-
ographical locations of customers in the testing problem instances implemented in §3.2 and §3.3, the
locations of stores are not uniformly distributed. A map indicating the OSK depot and its assigned
stores is shown in Figure 4.1. The Google Maps application programming interface was invoked to de-
termine the travel distances and expected travel times between all pairs of coordinates and was stored
in a distance matrix and travel time matrix, respectively. Each value in the travel time matrix and
distance matrix is multiplied by the speed factor and cost factor of the corresponding delivery vehicle
to produce a travel time matrix and cost matrix for each type of delivery vehicle, respectively. Another

Figure 4.1: The locations of the OSK depot (red vertex) and its assigned stores (blue flags).

important difference between the case study data set and the previously implemented test instances is
the magnitude of the travel distances and travel times between customers and the depot. The distances
and travel times between vertices in the testing instances is much smaller than that of the case study.
In the case study, the largest travel distance between a store and the depot is 226.4km, corresponding
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to a travel time of 155 minutes, which is much further than the maximum travel distance of 102km and
travel time of 102 minutes assumed in the test data sets. Furthermore, the ratio of the demand volumes
exhibited by customers to the capacities of the delivery vehicles are also much larger when compared to
the test instances. The maximum volume of demand exhibited by a store in the case study compared
to the capacities of the two types of delivery vehicles available are 3.20 and 1.60, whereas the maximum
demand exhibited by a customer in the test instances compared to the capacities of the three types of
delivery vehicles available are 0.50, 0.36 and 0.33. Furthermore, due to the large number of stores and
available delivery vehicles in the case study, a larger specified run time and computer memory is required
for the instance to be solved exactly.

Information about the fleet of delivery vehicles available is summarised in Table 4.1, whereas information
pertaining to the depot and its stores is provided in Table 4.2. In particular, the latitude and longitude
coordinates, the average demand volumes, the demand volumes for the period under consideration, and
the time-window start and end times of each store are provided. The average demand volumes for stores
are based on the demand volumes exhibited for the 16-week period of 13/09/2021–27/12/2021, and are
given as input to the master route generator proposed by King et al. [30]. The actual demand column
contains the demand volumes exhibited by each store that must be satisfied during the period for which
delivery routes are computed (for the week of 13/12/2021) and are given as input to the MAVRP proposed
in Chapter 3.

Table 4.1: Information about the types of delivery vehicles available to rent by the industry partner.
The number of delivery vehicles are assumed to be unlimited since a third party logistics provider is used.
The fixed cost in Rand, the capacity in cubic metres, the variable cost in Rand per kilometre travelled,
and the speed factor associated with each type of delivery vehicle is shown.

Type, k
Number of
vehicles, mh

Fixed cost,
Fk

Capacity,
Qk

Variable
cost, vk

Speed factor,
σk

Small Unlimited 2 600 25 14 0.9
Large Unlimited 3 600 50 20 1.0

The master routes were generated using the master route generator mentioned previously. The master
routes returned are provided in Table 4.3, and illustrated graphically in Figure 4.2. These master routes
are to be provided as input to the MAVRP model.

4.3 Results

The case study was executed on a computer with an Intel Core i7 CPU operating at 2.90GHz with 16GB
of memory, and a run time limit of 90 000 seconds (25 hours) were specified. The DST discussed in §4.2
was invoked by specifying varying familiarity thresholds to observe the effect thereof on the solutions and
corresponding objective function values returned. A familiarity threshold of 100% was specified first to
return a solution in which delivery vehicle drivers only travel along routes with which they are familiar
(the master routes generated in §4.2). Thereafter, the familiarity threshold was gradually reduced in
increments of 0.1 (10%) to generate multiple trade-off solutions that may be considered when deciding
on a familiarity threshold.

Information about the solutions returned when specifying each familiarity threshold is presented in Ta-
ble 4.4. In particular, a brief comparison between the costs, solution run times and optimality gaps
that resulted from solving each problem instance is provided. The information provided in Table 4.4 is
illustrated graphically in Figure 4.3, which highlights the trends resulting from the solutions returned. It
is evident that as the familiarity threshold is decreased, the objective function value of each solution also
decreases (since there are less restriction on the routes that may be travelled). This may be ascribed to
the fact that the total distances travelled by delivery vehicles increase when computing actual delivery
routes that are not too dissimilar from the master routes. Although the optimality gap resulting from
the solution found when a familiarity threshold of 90% was specified is much larger than that result-
ing when specifying a familiarity threshold of 100%, the solution returned corresponds to a significantly
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Table 4.2: Information about the OSK depot (denoted by vertex zero) and its assigned stores. The
exact coordinates, the average demand volumes in cubic metres associated with stores over the period
of 13/09/2021–27/12/2021, actual demand volume exhibited by these stores for the week of 13/12/2021,
and the time-windows start and end times, measured in minutes from 08:00, are given.

Coordinates Time-windows
Vertex, i Longitude Latitude Average demand Actual demand, qi Start, ai End, bi

0 -17.787085 15.720548 - - 0 600
1 -17.772491 15.696698 16.41 17.89 60 540
2 -17.914604 15.972792 12.69 9.19 60 540
3 -18.060008 13.841303 28.90 16.88 60 540
4 -17.914436 15.972232 40.58 22.51 60 540
5 -17.771891 15.696894 48.08 68.46 60 540
6 -18.360067 16.579870 29.61 36.77 60 540
7 -17.507285 14.990581 59.40 80.86 60 540
8 -17.776238 15.694143 32.91 47.88 60 540
9 -17.469609 15.896958 16.52 26.39 60 540

10 -17.480208 16.333409 37.84 49.24 60 540
11 -17.897854 15.965865 19.61 28.31 60 540
12 -17.787026 15.708539 38.02 48.07 60 540
13 -17.918119 15.991506 41.05 56.43 60 540
14 -17.744961 14.891141 20.51 27.15 60 540
15 -17.653872 15.465963 25.05 29.08 60 540
16 -17.780009 15.762075 21.95 32.19 60 540
17 -17.935591 16.031504 20.77 25.62 60 540
18 -17.885739 15.064255 23.69 31.11 60 540
19 -17.579456 17.223150 29.55 39.53 60 540
20 -17.784844 15.753508 15.13 18.46 60 540
21 -17.434280 14.430490 20.32 27.29 60 540
22 -17.517048 16.074027 10.79 14.50 60 540
23 -17.399487 15.890360 35.80 51.73 60 540
24 -17.961166 16.414084 9.70 16.09 60 540
25 -18.356879 16.575624 12.95 10.49 60 540

Table 4.3: The master routes returned for the OSK depot of the industry partner. The visitation
sequence of stores in each route is provided. The depot upon departure is indexed by 0, and the depot
upon return is indexed by 26.

Route Store visitation sequence Route Store visitation sequence

1 (0, 23, 9, 2, 26) 9 (0, 22, 10, 23, 26)
2 (0, 5, 1, 26) 10 (0, 6, 25, 17, 26)
3 (0, 3, 21, 20, 26) 11 (0, 3, 7, 15, 26)
4 (0, 10, 19, 6, 26) 12 (0, 18, 7, 26)
5 (0, 11, 4, 26) 13 (0, 13, 4, 26)
6 (0, 15, 12, 8, 26) 14 (0, 16, 26)
7 (0, 7, 14, 26) 15 (0, 19, 24, 26)
8 (0, 8, 5, 26) 16 (0, 13, 26)

better objective function value. Since the routes along which delivery vehicles may travel are restricted
less as the familiarity threshold is decreased, there exists the possibility that a solution corresponding to
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Figure 4.2: The master routes generated for the OSK depot of the industry partner. The index of each
store is shown next to its location, and the depot is represented by a red dot. Two enlarged figures reveal
the clustered stores within the blue circles.

a lower objective function value may be found. The subsequent improvement in the objective function
values as the familiarity threshold is decreased further (smaller than 90%) are not as significant as the
initial improvement, as observed in Figure 4.3. Furthermore, the number of delivery vehicles utilised also
decreased as the familiarity threshold decreased (from 22 delivery vehicles when the familiarity thresh-
old specified was 100% to 17 delivery vehicles when a familiarity threshold of 60% was specified) which
also contributed to the decrease in objective function values. Consequently, there exists a clear trade-off
between the transportation cost and the degree of familiarity associated with the solutions.

Table 4.4: The objective function values (in Rand) of the solutions returned for the case study. The
total run time (in seconds) and the optimality gap is also provided.

Familiarity
threshold

Achieved
familiarity

Fixed
cost

Variable
cost

Service
cost

Total cost Run time
Optimality

gap
100% 100% 73 200.00 71 580.88 8 064.27 152 845.15 90 030.39 20.24%
90% 90.33% 61 200.00 53 198.30 6 372.44 120 770.70 90 012.88 25.50%
80% 81.21% 61 200.00 52 568.34 6 012.41 119 780.70 90 011.61 26.44%
70% 71.54% 61 200.00 52 491.26 5 981.05 119 672.30 90 009.89 28.77%
60% 64.61% 61 200.00 52 416.08 6 135.98 119 752.10 90 010.52 29.26%

During the first execution, corresponding to a specified familiarity threshold of 100%, CPLEX was found
to execute slower than expected, and the problem instance could not be solved optimally within the
specified time limit. As a result, an optimality gap of 20.24% was returned for the solution, which
indicated that the difference between the upper and lower bound of the CPLEX search tree was 20.24%
and the feasible solution returned by CPLEX is not proven to be optimal. An increase in the solution
run time is observed upon comparing the results obtained from the case study and the results of the test
problem instances in §3.3. This increase is primarily due to an increase in the number of stores in the
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Figure 4.3: A graphical representation of the solution data tabulated in Table 4.4, based on various
familiarity threshold percentages. The total run time in seconds and the optimality gap is provided for
each solution.

problem instance and the number of delivery vehicles available. A larger vertex set results in a larger
number of arcs which may be traversed, and an increase in the number of vehicles implies more possible
ways in which these arcs may be traversed via different delivery vehicle combinations, which may result
in a larger number of possible feasible solutions. Nevertheless, the solution returned by CPLEX may still
be implemented in practice and provides valuable insight into the workings of the model. The solutions
returned by CPLEX for the initial familiarity threshold of 100% is summarised in Table 4.5. In total,
22 routes were created, and the sequence of stores visited in each route is shown. The service start time
at each of these stores (and the departure time at the depot) is provided and may be used to confirm
adherence to the time-window constraints. Furthermore, 16 large delivery vehicles and six small delivery
vehicles are utilised. The utilisation of delivery vehicles vary between 50.53% and 100%.

The DST is able to return high-quality routing solutions to a real-world problem instance. It is possible,
as proven in this chapter, to invoke the computerised model of Chapter 3 for solving problem instances
containing 25 customers, however, due to computing power and memory restrictions, it may not be
possible to solve these instances to optimality within a realistic time-frame. It is recommended that
delivery routes be computed well in advance to allow for a longer run time of the exact solution approach.
A larger run time (accompanied by an increase in available computing power and memory) may allow for
a larger number of iterations of the branch-and-cut algorithm (employed by CPLEX) to be performed,
which may consequently result in higher quality solutions returned.

4.4 Chapter summary

In this chapter, the DST developed in Chapter 3 was applied to a case study using real world data
provided by the industry partner attached to this project, in order to showcase its practical applicability.
Furthermore, the verification and validation procedure was concluded in this chapter, as a full systems
testing with live (real-world captured) data was performed on the computerised model. In §4.1, a brief
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Table 4.5: A feasible solution returned for the OSK depot of the industry partner upon specifying a
familiarity threshold of 100%. The sequence of stores and the type of delivery vehicle performing the
deliveries are provided. The depot upon departure is indexed by 0, and the depot upon return is indexed
by 26. Service start times are measured in minutes after 08:00. The distances travelled for each route it
specified in kilometres, and the utilisation of each delivery vehicle is specified.

Vehicle
type

Route Start times
Travel
distance

Vehicle
utilisation

Large (0, 19, 24, 26) (129.50, 252.50, 466.73, 600.00) 400.60 0.79
Large (0, 23, 26) (332.02, 383.42, 600.00) 116.65 1.00
Large (0, 5, 26) (369.27, 377.06, 600.00) 8.19 1.00
Large (0, 3, 21, 20, 26) (13.57, 170.04, 320.08, 527.31, 600.00) 533.50 1.00
Large (0, 7, 15, 26) (39.12, 108.07, 400.97, 526.20) 184.92 1.00
Large (0, 13, 26) (273.13, 310.18, 526.20) 71.13 1.00
Large (0, 10, 23, 26) (31.04, 102.25, 309.62, 526.20) 211.82 0.81
Large (0, 11, 4, 26) (285.35, 316.43, 415.32, 526.20) 67.08 0.65
Large (0, 16, 26) (400.35, 409.35, 526.20) 10.60 0.64
Large (0, 5, 1, 26) (229.64, 237.43, 445.57, 526.20) 8.76 0.73
Large (0, 18, 7, 26) (6.80, 60.00, 205.30, 526.20) 221.90 0.83
Large (0, 15, 12, 8, 26) (37.15, 65.66, 189.26, 347.77, 507.68) 71.61 1.00
Large (0, 7, 14, 26) (0.00, 68.98, 344.65, 507.68) 221.85 1.00
Large (0, 6, 25, 17, 26) (72.14, 163.96. 284.89, 377.27, 507.68) 230.58 0.96
Large (0, 8, 26) (341.63, 347.77, 507.68) 6.89 0.96
Large (0, 23, 9, 2, 26) (81.31, 132.71, 307.57, 436.52, 507.68) 152.66 0.71
Small (0, 6, 26) (311.98, 395.45, 600.00) 230.17 1.00
Small (0, 15, 26) (451.40, 477.32, 600.00) 67.07 1.00
Small (0, 13, 4, 26) (274.28, 307.96, 492.15, 600.00) 71.59 1.00
Small (0, 19, 24, 26) (155.28, 267.10, 473.55, 600.00) 400.60 0.64
Small (0, 22, 10, 23, 26) (67.00, 112.50, 185.24, 388.10, 600.00) 211.82 1.00
Small (0, 3, 21, 20, 26) (47.07, 189.32, 331.23, 527.97, 600.00) 533.50 0.51

background discussion on the industry partner attached to this project was presented. Thereafter, a
discussion on the data provided by the industry partner was presented in §4.2. The results obtained
when invoking the DST of Chapter 3 was documented in §4.3, which included an overview of the practical
considerations concerning the computerised model. The solutions returned by CPLEX were found to be
satisfactory, however, solving instances containing a larger number of customers may result in the return
of lower quality solutions.
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Figure 4.4: The routes generated for the case study problem instance, corresponding to a familiarity
threshold of 100%. The index of each vertex is shown next to its location and the depot is represented
by a red vertex. Two additional enlarged plots reveal the clustered stores within the blue circles.
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This conclusion chapter consists of five distinct sections. It opens in §5.1 with an overview of this project
and what has been achieved. The contributions made by this project are critically appraised in §5.2,
whereafter recommendations for future follow-up work based on the work performed in this project are
provided in §5.3. The project’s potential societal impact is discussed in §5.4, and followed by a discussion
on the lessons learnt by the author during the course of this project in §5.5.

5.1 Project summary

This section provides a brief overview of what was achieved in this project, by presenting a summary of
each chapter’s contents. This report has four supplementing chapters in addition to this concluding one,
which is an introduction in Chapter 1, a literature review in Chapter 2, a DST in Chapter 3, and a case
study in Chapter 4.

An overview on the context in which this project was executed, was detailed in Chapter 1. The chapter
served as a justification for the research conducted in this project. The chapter opened with a brief
background description of the problem and highlights the significance of transportation costs in logistics
when an organisation wants to sustain a competitive advantage. This concept was explained in further
detail concerning retail organisations in the context of South Africa. A critical activity within these
organisations, known as routing and scheduling support, was introduced. Thereafter, a brief introduction
to VRPs as important combinatorial optimisation problems was provided, which was followed by a dis-
cussion on some of the general difficulties that often arise when retail organisations attempt to implement
the solutions stemming from solving VRP instances. Thereafter, a concise description of the problem
addressed by this project was provided, followed by a list of the objectives pursued, and a delimitation
of the scope boundaries concerning the research conducted in this project. The research methodology
adopted in pursuit of the project objectives was also explained, whereafter the chapter closed with a
description of the organisation of the report.

Chapter 2 was devoted to a concise review of the literature relevant to the work done in this project, in
fulfilment of Objective I in §1.3. An in-depth discussion of the classical VRP and other VRP variants
relevant to the problem addressed in this project was presented in pursuit of Objective I(a). In order
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to fulfil Objective I(b), formulations of the CVRP, the VRPTW, the HFVRP, and the SDVRP in the
form of MIP problems were presented, and a small example problem instance was solved for each vari-
ant. Thereafter, a discussion on exact solution methodologies for solving MIP problem instances were
presented in pursuit of Objective I(c). This section comprised a discussion on the simplex algorithm for
solving LP problems, upon which three subsequently discussed exact solution approaches (the branch-
and-bound method, the cutting plane method, and the branch-and-cut method) for solving MIP problem
instances are based. Finally, in fulfilment of Objective I(d), a review on the verification and validation of
mathematical models and the accompanying computer software implementation thereof was delivered.

In Chapter 3, an MAVRP in the form of a MIP problem was derived to obtain high-quality routing
solutions capable of creating driver-route familiarity. The mathematical model formulated was inspired
by previously researched VRP variants, in pursuit of Objective II. The parameters, decision variables,
constraints and objective function of the model were derived, after which an exact solution approach and
the implementation thereof in the CPLEX environment were described in partial fulfilment of Objec-
tive III. This section also initiated the model verification and validation strategy adopted by including
an illustration of the workings of the computerised mathematical model via a small hypothetical prob-
lem instance. Randomly formulated test data were provided as input to the computerised mathematical
model as a continuation of the model verification process. A user-friendly DST, capable of computing
high-quality delivery routes and demonstrating the capabilities of the computerised mathematical model,
was proposed in pursuit of Objective IV. Through the incorporation of a GUI within the DST, users with
varying technical skills are able to employ the computerised mathematical model to customised problem
instances. The verification and validation strategy was employed once more to ensure the reliability and
credibility of the DST, in pursuit of Objective V.

Chapter 4 was devoted to conducting a proof-of-concept case study in which the computerised mathe-
matical model was applied to a real-world problem instance supplied by the industry partner attached
to this project, in pursuit of Objectives VI and VII. A background discussion on the industry partner
attached to this project was presented, describing the logistical operations of the industry partner and
how the MAVRP proposed in this project is capable of taking these operations into account. Thereafter,
details about the input data of the case study were described, along with some of the key characteristics
of the data set and a brief description of the environment in which the case study was conducted. A
critical evaluation on the results returned after conducting the case study was presented, in fulfilment of
Objective VII. Even though the case study could not be solved to optimality, the DST generated a set
of high-quality routing solutions capable of creating driver-route familiarity.

5.2 Project appraisal

The literature review of VRP variants performed in §2.1 not only serves as an introduction to the concept
of VRPs, but it also presents a MIP model for each variant. Each of these variants was implemented in
CPLEX and invoked to generate solutions for a small example problem instance. Furthermore, in §2.2,
exact methodologies for solving VRPs were discussed in great detail and demonstrated using an example
problem instance. As a result, the reader is given the opportunity to thoroughly understand the for-
mulation of various VRP variants and the workings of different exact solution methods for solving these
variants.

The MAVRP proposed in this project is intended to aid a retail organisation in vehicle routing decisions
with the aim of increasing driver-route familiarity. The model makes use of a set of standard delivery
routes with which drivers are familiar with to address the lack of driver-route familiarity prevalent in
current modelling approaches employed in industry. Aside from providing a user-friendly GUI through
which the user can export the recommended delivery vehicle routes and corresponding objective function
value to an Excel file, the DST can instantaneously display the recommended routes for review purposes
after they have been computed. The DST also allows the user to generate new master routes or to
import master routes that were created previously. The DST is able to import data sets from Excel
files, allowing the user to create problem instances in a widely used software suite. The DST furthermore
enables the user to specify their preferred familiarity threshold and run time limit. This versatility enables
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retail companies to experiment and find routing and scheduling solutions that best suit their operational
environment.

An advantage of the DST is that it may help to maximise the utilisation of a retail company’s available
delivery vehicles by providing acceptable solutions to VRP instances that are not possible to achieve
using human intuition. An exact solution approach was implemented by employing CPLEX. CPLEX
was able to find feasible solutions quickly, proving the model’s functionality. Furthermore, as a proof-of-
concept, the proposed DST was employed to demonstrate its applicability to practical problem instances
by conducting a real-world case study. The results of the case study confirmed that by invoking the
MAVRP when planning delivery routes, it is possible to achieve a desired level of driver-route familiarity,
while optimising the suggested routing solutions and delivery vehicle fleet composition.

The MAVRP formulation proposed in this project takes multiple VRP attributes into account, which
enables it to be applied to a wide range of practical problems. The model takes a heterogeneous fleet
of delivery vehicles into account, it enforces adherence to customer time-windows, and it enables split
deliveries, all while creating driver-route familiarity within solutions. The model successfully serves as
a proof-of-concept for creating driver-route familiarity in planned delivery routes. Depending on the
operational requirements of the user, the MAVRP may easily be adapted to include other VRP variants
such as, for example, considering multiple depots. Including additional variants, however, may increase
the complexity of the problem. CPLEX requires a significant amount of computer memory and solution
run time to solve a realistically sized problem instance optimally. In practice, retailers having depots
that serve a large number of customers may have to invoke a different solution methodology.

5.3 Suggestions for future work

This section is devoted to a discussion of suggestions for potential future work related to the work done
in this project, in pursuit of Objective VIII. There are several potential future research avenues that may
be pursued to improve and expand on the work accomplished by this project, but were not pursued due
to time or scope limitations.

Proposal I Proposing a metaheuristic solution approach for obtaining high-quality solutions within a
shorter time-frame.

The use of CPLEX as a solution method limits the number of customers within problem instances that
may be solved within a realistic time-frame. Due to the inherent complexity of real-world problems,
implementing an exact solution approach is not always feasible, and an optimal solution may not be
attainable in practice [24]. In these cases, a good feasible solution being reasonably close to optimality
may be obtained by invoking a heuristic method — a method that is likely to uncover a good feasible
solution for the particular problem under consideration, but not necessarily an optimal solution. Although
the quality of the solution obtained cannot be guaranteed, a well-designed heuristic method can typically
deliver a close-to-optimal solution (or conclude that no such solutions exist) [24]. Heuristic methods,
however, is designed to solve a specific type of problem rather than being applicable to a variety of
applications. A solution methodology, termed metaheuristics, addresses these shortcomings.

A metaheuristic is an approach towards problem solving that offers a general framework and strategic
guidelines for tailoring a particular heuristic method to a particular class of problems. In order to perform
a robust search of the feasible region of a problem instance, a metaheuristic is a general solution method
that governs the interaction between local improvement procedures and higher-level exploration strategies.
This enables the search process to bypass local optima and, ideally, approach a global optimum [22].
Particularly, metaheuristics have served as a popular solution method for solving VRP instances [21].
Metaheuristics are widely employed and generally generate feasible solutions much faster than exact
solution methods. It is therefore recommended that the MAVRP developed in this project may rather be
solved by invoking a metaheuristic solution method when problem instances containing a large number
of customers must be solved.
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Proposal II Including the periodic VRP variant.

In a periodic VRP (PVRP), customers require service during one or more decision periods within a
planning period and routes are constructed over a longer period of time [20]. The PVRP was first
introduced by Beltrami and Bodin [8] in 1974 and entails generating routes to be assigned over multiple
decision periods. The objective of the PVRP is to find a set of routes for available delivery vehicles that
minimises total travel costs across multiple decision periods, while adhering to operational constraints
(for example delivery vehicle capacities and customer requirements). Instead of considering each decision
period individually, the PVRP takes all decision periods into account simultaneously, which may reduce
the operational costs of satisfying the demand of customers over the entire planning period.

Proposal III Incorporating a component that assists the user in determining an appropriate familiarity
threshold and cost trade-off solution.

Depending on the operational environment of an organisation, there may exist confusion on which fa-
miliarity threshold to specify. The incorporation of increasing driver-route familiarity may be better
suited as an additional objective function, thereby modifying the MAVRP to be a multi-objective VRP.
In multi-objective optimisation problems, the optimal objective function value of each objective is not
necessarily suggested by the same solution, and there may exist conflict between objectives. In these
cases, a so-called satisfactory solution, which is a feasible solution that meets or exceeds the decision
maker’s minimum expected level of achievement of objective values, may be accepted [40]. Incorporation
of such a notion would require a solution approach where multiple non-dominated solutions are returned,
and the user is able to choose their preferred solution according to a specific criteria. Rules and guidelines
may assist users to make an informed decision. By incorporating such a mechanism that may guide the
user in choosing a familiarity threshold and cost trade-off solution, the benefit of utilising master routes
is still obtained, but at a lower expense.

Proposal IV Including data collection from the Google Maps application programming interface within
the DST.

Problem instances include distance and travel time matrices that represent the travel distances and ex-
pected travel times between each pair of vertices in the transportation network. For real-world problems,
exact travel distances and travel times may be obtained by providing the coordinates of customers and
the depot as an input to the Google Maps application programming interface. In the DST proposed by
this project, the user currently performs this process manually before providing it as input to the com-
puterised mathematical model. The incorporation of data collection from the Google Maps application
programming interface to determine route distances and travel times will eliminate this manual process
and enable the DST to execute this task during the calculation of routing solutions.

5.4 Project contribution to society

The MAVRP proposed in this project aims to improve the problems that the retail industry currently faces
when implementing the routes stemming from solving VRP instances using standard and commercially
available software. Current delivery vehicle routing software does not allow drivers to become familiar
with the recommended routes. When unplanned external events occur during the execution of planned
delivery routes, human planners and schedulers must often make uninformed and rapid decisions. If
drivers are familiar with the routes on which they must travel, it is expected to increase the efficiency
with which they perform deliveries. The DST proposed by this project addresses these problems by
providing delivery vehicle drivers with the opportunity to become familiarised with regularly travelled
routes. Moreover, driver-route familiarity has the potential to reduce driving errors while also increasing
driver confidence.

Besides the increased familiarity, the requirement for efficient routing solutions is essential for retail com-
panies whose expenses are heavily reliant on transportation costs. Significant cost savings are possible if
computerised vehicle routing and scheduling decision support is implemented, by ensuring the shortest
routes are assigned to delivery vehicles. Significant cost savings may also result from more efficient utili-
sation of the capacities of delivery vehicles. By utilising the fleet of available delivery vehicles optimally,
the number of delivery vehicles required may be reduced, resulting in a further reduction in cost. As a
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result, the model proposed in this project may assist human planners and schedulers in making decisions
pertaining to the routing solutions and fleet of delivery vehicles that should be made available or hired.

There are no ethical considerations pertaining to the contributions of this project, as the industry partner
attached to this project and the data provided for the case study were anonymised. The DST does not seek
to replace the role of human schedulers and planners in an organisation, but allows employees to shift their
focus from generating optimal routing and scheduling solutions by hand, to rather focusing on decisions
related to disruptions or unforeseen operational events. In particular, this project has contributed a DST
as a concept demonstrator to retail organisations while creating driver-route familiarity.

5.5 Reflection on what was learnt

This section is dedicated to highlighting the technical and personal skills the author has acquired through-
out the execution of this project. Continuous exposure to new knowledge domains in the field of industrial
engineering was obtained. A practical overview of the industrial engineering field as a whole was obtained,
as well as a deeper understanding of the field of Operations Research. Furthermore, the development and
improvement of technical writing skills, the opportunity to practice time management skills, and a gain
in personal development and confidence was acquired. The culmination of this knowledge base and skill
set applied together resulted in the successful completion of this project. This wide range of expertise
obtained included theoretical knowledge and practical skills acquired through the undergraduate degree
at Stellenbosch University, but also extends further through self-taught courses and research conducted
by the author.

Being an industrial engineer requires one to constantly look for innovative ways to improve processes or re-
design systems to make them more efficient. This includes streamlining processes to save money and time.
At the core of every successful industrial engineer is practical experience and knowledge. The execution
of this project provided the author with the opportunity of applying the skills and knowledge obtained
through the undergraduate industrial engineering curriculum at Stellenbosch University to gain practical
experience. The complex process of conducting research, investigating a complex real-world problem,
following a methodology, and synthesizing the results, among other things, were accomplished. Further-
more, a comprehensive and original solution was required, which necessitated the use of independent
thinking and intuitive reasoning, which are skills that were not necessarily taught in the undergraduate
course. On the technical side, exposure to complex algorithms and mathematical formulations improved
the author’s understanding of how such algorithms are implemented in practice. The author realised,
through the help of the industry partner attached to this project, the practical considerations that are
involved during the modelling of real-world systems.

The author was awarded the opportunity to improve proficiency in the field of Operations Research.
The author acquired insight into the broad field of vehicle routing and combinatorial optimisation. The
multifaceted nature of VRPs in general allows for a diverse set of methodologies and solution approaches
to be implemented. The author was exposed to a variety of exact solution methodologies and was
given the opportunity to master the CPLEX environment through its Python programming language
interface. The author derived a mathematical formulation of a VRP and was able to verify and validate
the derivation through the development of a computerised mathematical version. Invaluable support and
expertise was received from the Stellenbosch Unit for Operations Research in Engineering (SUnORE)
through the guidance and cooperation of its members. The author was exposed to the fields of data
science, decision science, optimisation, computer science, and many more through regular meetings with
both the supervisor and the group. The author developed a keen interest in the field of Operations
Research, and an eagerness and desire to explore the field in more depth was prompted. An appreciation
for the specialised fields within the Operations Research literature was developed by attending regular and
interesting research feedback sessions from peers, master’s and doctoral students, and academic personnel.

The ability to conduct professional and scientific research and of writing a technical report was exercised
through this project. The author has been granted the opportunity to master the technical software
environment, LATEX, wherein this professionally formatted report was produced. Within the SUnORE
research group, the author was granted an opportunity to present on the research performed in this
project. This presentation was prepared by utilising the LATEX accompanying presentation package,
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Beamer. The supervisor’s regular feedback and support on what constitutes a good scientific research
report had a significant impact on the author’s confidence in technical writing. Moreover, the group’s
commitment towards achieving excellence and their passion for learning inspired the author to consistently
give her all in the pursuit of a higher quality deliverable.

Effective time management was critical towards completing this project and the author had to metic-
ulously plan and develop a detailed schedule to ensure that all in-between deliverables were met. A
thorough, in-depth study of a real-world problem had to be conducted, while attending to responsibilities
other than those related to this project. Due to the demanding nature of the other modules pursued this
year, the author had to prioritise them alongside this project. The author realised the responsibility of
producing professional research outputs, and that each inclusion had to be planned rigorously to ensure
the outputs are reproducible and extendable. Through successfully producing benchmark deliverables in
time, the author gradually gained trust in her own competence.

In closing, the author has realised and learnt how little knowledge they actually possess, and a desire to
improve on this has been prompted. A new appreciation for the available literature as a foundation for
knowledge development has emerged, and the author is inspired to make a valuable contribution towards
the existing Operations Research literature. It is for this reason that the author has decided to conduct
further research by continuing with postgraduate studies.
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APPENDIX A

Project Timeline

The expected timeline is given in Figure A.1 (on the next page) in Gantt-chart form.
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Figure A.1: Expected timeline in Gantt-chart form.
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