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A B S T R A C T

A new ‘‘rich’’ variation on the multi-objective vehicle routing problem (VRP), called the multi-tiered vehicle routing
problem with global cross-docking (MTVRPGC), is introduced in this paper. With respect to previously studied
VRPs, the MVRPTGC includes the following novel features: (i) segregation of facilities into different tiers that
distinguish them in terms of different processing and storage capabilities, (ii) cross-docking at a pre-specified
subset of facilities in the network (a feature referred to as global cross-docking), and (iii) the possibility of spill-
over into subsequent planning periods of demand for facility visitation. The problem originated from a real-life
application concerning the collection and delivery of pathology specimens in the transportation network of
a pathology health-care service provider. Other industrial applications may, however, benefit from this type
of VRP, such as mail sorting. A mixed integer linear programming (MILP) model for this VRP is proposed, and
tested computationally in respect of seventeen small hypothetical test instances. A multi-objective ant colony
optimisation (MACO) algorithm for solving larger real-world instances of the MTVRPGC is also proposed. The
solutions returned by the MACO algorithm are compared with those achieved by the MILP in respect to sixteen
instances and also compared to actual collection and delivery routes of a real pathology healthcare service
provider operating in South Africa and it is found that adopting the routes suggested by the algorithm results
in substantial improvements of all the objectives pursued relative to the status quo.
ation in commodity type may be due to the nature of the commodities
themselves, such as their purpose and processing requirements, as well
as maintaining standards associated with a commodity, or may even be
due to the intended destinations of the commodities. We segregate the
1. Introduction

The class of vehicle routing problems (VRPs) has enjoyed a long and
colourful history since its inception in 1959 by Dantzig and Ramser
(1959), resulting in numerous variations introduced to accommodate
practical considerations (see, e.g., Toth and Vigo, 2014).

In this paper, we consider the multi-tiered vehicle routing problem with
global cross-docking (MTVR-PGC), a variation on the multi-objective
VRP with time-windows that arises in a real-life application related to
the collection and delivery of pathology specimens (called commodities
in the following description). With respect to previously studied VRPs,
the MVTRPGC includes the following three novel features:

(i) Segregation of facilities into different tiers. There are different types
of commodities that have to be collected from a set of facilities (e.g.,
hospitals and clinics) and processed in potentially different ways at a set
of facilities (e.g., laboratories) within a transportation network. The vari-
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available processing facilities according to their respective processing
and storage capabilities into a set of tiers. This tier allocation is nested
in the sense that a facility of tier 𝑖 can process any type of commodity
that can be processed at a facility of tier 𝑗 if 𝑗 < 𝑖, but there exist certain
commodity types which can be processed at a facility of tier 𝑖 that can-
not be processed at any facility of a lower tier. Facilities of the lowest
tier represent facilities at which the commodities originate and have to
be collected—these facilities have no commodity processing or storage
capabilities—their only role is that they introduce new commodities
into the system. Facilities of higher tiers may or may not introduce
new commodities into the system, but their distinguishing feature is
that they all offer commodity processing capabilities or intermediate
commodity storage capabilities. All facilities, excluding facilities of the
lowest tier, are assumed to offer the same storage capabilities.
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(ii) Global cross-docking at a pre-specified subset of facilities. We allow
for handover of commodities at facilities in the sense that a commodity
requiring processing at a facility of a specific tier may be transported
by one vehicle to a facility of a lower tier than the required one, and
then be collected later by some other vehicle(s) which transport it
to a facility of the required tier. We refer to this type of commodity
handover, which may occur at a facility of any tier (save the lowest
and the highest1), as global cross-docking.2

(iii) Rolling demand horizon. We allow demand for commodity col-
lection to spill-over into a subsequent planning period. We essentially
assume that the time continuum may be partitioned into planning
periods of fixed length. One planning period is considered at a time,
and if demand for commodity collection occurs at a facility after the
last vehicle has departed from that facility, then this commodity is
simply collected from the facility during the following planning period
(all demand for commodity collection is assumed to be the same in
each planning period and is known at the beginning of the planning
period). Individual commodities are not tracked as they travel through
the system, but they nevertheless all require collection at their originat-
ing facilities and transportation to facilities with adequate processing
capabilities. This requirement is met by constructing a model which
produces a flow route (perhaps consisting of several individual vehicle
sub-routes) for commodities from any facility (except facilities of the
highest tier) to a facility of a strictly higher tier, thereby facilitating
delivery of the commodities to facilities of the tiers required, perhaps
after repeated global cross-docking operations, performed in one or
more planning periods.

The requirements of the aforementioned problem conform to sug-
gestions in the so-called Maputo Declaration (WHO, 2008) to which
a large number of countries are signatories. The declaration suggests
that the pathology specimen processing facilities of a national health
laboratory service should be segregated into different tiers indicative
of their processing capabilities (in terms of both specimen processing
variation and quantity). There are typically four tiers of specimen
processing laboratories: A tier-one laboratory is typically referred to as
a primary laboratory where only doctors, nurses, and medical assistants
are stationed, whereas a tier-two laboratory additionally has laboratory
specialists and senior technologists available. A tier-three laboratory
has staff of the same qualifications as those at a tier-two laboratory,
but additionally has equipment available which enables it to offer a
complete menu of testing blood samples for HIV/AIDS, tuberculosis and
malaria as well as many other diseases at a much higher throughput.
Finally, a tier-four laboratory performs the tasks of the lower-tiered
laboratories, and additionally acts as a reference laboratory providing
linkages with research laboratories, academic institutions and other
public laboratories that can provide assistance in clinical trials, the
evaluation of new technology and surveillance. The clinics at which
specimens originate are referred to as laboratories of tier zero as
they do not offer any processing capabilities. In rural settings, the
distribution of the specimen processing laboratories is such that for
specimens to reach a processing laboratory of the required tier, global
cross-docking and spill-over into subsequent planning periods are a
necessity since it would be impossible for a single vehicle to deliver
during a single planning period specimens originating in such settings
over the long distances required to reach a suitable tier of processing
facility in view of legal maximum driving times.

1 Global cross-docking of commodities at facilities of the highest tier is not
ecessary as we assume that all commodities considered in the transportation
etwork can be processed at facilities of the highest tier. Global cross-docking
f commodities may also not occur at facilities of the lowest tier as they do
ot offer any processing or storage capabilities.

2 As opposed to the traditional notion of cross-docking in the supply
chain literature where goods are consolidated at a dedicated cross-docking
2

facility (Liao et al., 2010), referred to here as local cross-docking.
The MVRPTGC considered in this paper can also model a postal
service collection and consolidation network. In this case, the segre-
gation of facilities may refer to the extent to which mail sorting takes
place in each sorting centre within the system. There may, for example,
be local, provincial, national, and international mail sorting centres in
the system, giving rise to four tiers of mail sorting facilities. Letters
destined to be sent abroad may then conceivably experience repeated
global cross-docking operations—first at a local sorting centre, then at a
provincial sorting centre and finally at a national sorting centre before
finally being consolidated, within one or more planning periods, at an
international sorting centre.

The commodity collection and processing system with global cross-
docking and demand spill-over to subsequent planning periods de-
scribed above is modelled in this paper as a tri-objective VRP which
may form the basis of a decision support system capable of assisting
tiered-facility services in respect of cost-effective planning, routing and
scheduling of a fleet of homogeneous vehicles dedicated to commodity
collection. An acceptable trade-off between the three objectives is
pursued in the model, namely minimisation of the total time required
to transport commodities, minimisation of the maximum travel time
associated with the vehicles utilised and, finally, minimisation of the
number of vehicles required to implement the commodity collection
routing schedule.

The paper is organised as follows. Section 2 is devoted to a brief
review of various VRPs from the literature that are related to the prob-
lem considered here. After carefully noting the assumptions underlying
our novel VRP in Section 3, we proceed to cast the problem as a mixed
integer linear programming (MILP) model in Section 4. The MILP model
formulation builds on a combination of well-known model components
proposed in the literature for various VRP variants, and on new model
components introduced for accommodating the novel features outlined
above. We then validate the model logic in Section 5 by implementing
the model in the commercial MILP solver CPLEX and applying it to sev-
enteen small-size, hypothetical problem instances. For the solution of
larger real-world instances, we propose a novel multi-objective ant colony
optimisation (MACO) algorithm in Section 6, customised to the unique
requirements of the MTVRPGC, which incorporates several novel al-
gorithmic components, such as a global cross-docking component, in
an attempt to yield approximate solutions of a high quality to the
MTVRPGC. A case study is carried out in Section 7 in order to compare
the performance of a solution returned by the MACO algorithm with the
status quo in a real tiered pathology service network. Finally, the paper
closes in Section 8 with a brief summary. The main goal of the paper is
to introduce a new rich variation of the VRP, having many possible real-
world applications and to propose a MILP model and a MACO algorithm
for solving the model, taking into account the objectives and constraints
of the problem considered.

2. Literature review

The MTVRPGC considered in this paper, which is described in
further detail in Section 3, belongs to the family of the so-called rich
VRPs, since it represents a real-world VRP. In particular, the MTVRPGC
is a generalisation on the classical VRP with Time Windows, the Multi-
Depot VRP and the Multi-objective VRP. In addition, it represents a
variation of the Pickup and Delivery Problem, the Multi-echelon VRP and
the VRP with Cross-docking. A short review of the literature on the
above-mentioned problems is given in this section. For a more extensive
review of these problems, see also Irnich et al. (2014).

The classical Vehicle Routing Problem with Time Windows (VRPTW)
is an extension of the VRP in which each facility is associated with a
time interval (called a time window) and a service time. It is required that
servicing of a facility must start within the associated time window,
and that the vehicle must stop at the facility location for a time period
equal to the associated service time. In addition, in case of arrival at
a facility before the start of the associated time window, the vehicle
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is allowed to wait until servicing may commence. The VRPTW has
been considered, among others, in the surveys by Kolen et al. (1987),
Bräysy and Gendreau (2005a,b), Kallehauge (2008), and Desaulniers
et al. (2014).

When the available vehicles are homogeneous, but must start and
end their routes at different depots, the corresponding variation on the
VRP is called the Multi Depot VRP (MDVRP). Although each available
ehicle could potentially have its own specific starting and ending
ocations, the vehicles are generally grouped and assigned to a limited
umber of depots in the classical MDVRP. Recent reviews on the
DVRP may be found in Montoya-Torres et al. (2015) and Braekers

t al. (2016).
Most of the existing variations on the VRP involve the optimi-

ation of a single objective (i.e., minimisation of the global distance
travelled by the vehicles utilised), or of hierarchical objectives (e.g., first
minimising the number of vehicles utilised, and then minimising the
global distance). Other variations on the VRP reside within the realm
of multi-objective optimisation, where the aim is to find an acceptable
compromise between the optimisation of several conflicting objectives
(e.g., global distance, completion time, or the balancing of the routes).
See Jozefowiez et al. (2008) for a survey on the variations on the
Multi-objective VRP.

In the basic version of the Pickup and Delivery Problem (PDP), each
transportation request consists of the transportation of a commodity
between two locations: One where the commodity is picked up (the
origin), and a corresponding location where the commodity is delivered
(the destination). It is generally required that each transportation re-
quest is served by a single vehicle, which first visits the origin and then
the destination. The PDP has been considered, among many others,
in surveys by Savelsbergh and Sol (1995), Desaulniers et al. (2002),
Battarra et al. (2014), and Doerner and Salazar-Gonzalez (2012). The
MTVRPGC considered in this paper differs from the classical PDP in that
each commodity has to be transported from its origin to any destination
belonging to a specific subset of facilities having the appropriate tier.
In addition, each transportation request can be served, possibly over
consecutive planning periods, by more than one vehicle.

There are variations on the VRP that consider more than one level
of the distribution network, referred to in the literature as Multi-
echelon VRPs, with city logistics and multi-modal transportation systems
among the most cited examples of such a network. Two-echelon VRPs
involve transportation networks in which the goods are available from
different origins and have to be delivered to the respective destina-
tions while necessarily moving through intermediate facilities. Models,
exact algorithms and metaheuristics for the two-echelon VRP have
been proposed in Baldacci et al. (2013), Cuda et al. (2015), Dondo
et al. (2011) and Perboli et al. (2011). See Cuda et al. (2015) for
a survey on two-echelon routing problems. The MTVRPGC presented
in this paper differs from Multi-echelon VRPs in that consolidation at
intermediary facilities is not compulsory as the commodities may be
delivered directly to appropriate facilities.

Cross-docking has been applied in industry since the 1980s, but has
only recently attracted attention from academia with more than 85% of
the papers on this subject published from 2004 onwards Van Belle et al.
(2012). The two key points of cross-docking are, typically, simultaneous
arrival and consolidation. If all vehicles do not arrive simultaneously,
some vehicles have to wait and therefore the core issue is to synchronise
the arrival of vehicles at cross-docking facilities. The cross-docking
facilities typically do not offer any processing or storage capabilities
and are known a priori. Several applications of cross-docking exist
in the supply chain management literature (Dondo et al., 2011; Liao
et al., 2010). Models, exact algorithms and metaheuristics for the VRP
with Cross-docking have been proposed in Grangier et al. (2017),
Maknoon and Laporte (2017) and Rais et al. (2014). Recent reviews
of VRPs with cross-docking may be found in Buijs et al. (2014) and
Van Belle et al. (2012). The global cross-docking component of the
3

MTVRPGC presented in this paper differs from typical cross-docking m
model components in that the cross-docking facilities offer both storage
and processing capabilities, and in addition, the facilities acting as
consolidation centres are not known a priori, but must be selected by
considering the objectives and the constraints of the VRP considered in
this paper.

3. Problem description

The MVRPTGC introduced in Section 1 is described in more detail
in the form of an assumptions list in this section.3 The section closes
with a description of the input data required.

1. The nature of the facilities. The transportation network consists of
facilities, consolidation points, and facilities of varying commod-
ity processing and storage capabilities, which are collectively
referred to as facilities. The facilities are segregated into a col-
lection of nested tiers according to their processing capabilities,
with a higher tier indicative of superior processing capabilities.
The lowest-tier facilities only require collection, the highest-tier
facilities only offer processing capabilities, and all the other fa-
cilities both require collection, and offer processing capabilities
as well as the same storage or consolidation capabilities.

2. The nature of the vehicles. It is assumed that a fleet of ho-
mogeneous vehicles is available for commodity collection. The
capacities of the vehicles are assumed to be sufficiently large
to handle any demand requirements. This is usually a realistic
assumption in the case of pathology specimen or mail trans-
portation, because these commodities typically exhibit negligible
volume and weight. A capacity constraint may nevertheless
easily be included in the model formulation and in the MACO
algorithm described in Section 4 and Section 5, respectively, if
required. Each vehicle may perform at most one route during the
planning period considered.

3. Home depot allocation. It is assumed that each vehicle has a fixed
home depot which may be located at any of the facilities within
the network. All vehicles must begin and end their routes at their
respective home depots.

4. Multiple visits and global cross-docking. Each lowest-tier facility
must be visited by exactly one vehicle during the planning
period. The other facilities may each be visited by more than one
vehicle during the planning period, although any specific vehicle
may visit any facility at most once during the planning period.
In particular, according to the global cross-docking feature, a
commodity may be delivered to a facility of a tier different
from the lowest and the highest tiers by a vehicle, and later
be collected from this facility by a different vehicle for further
transportation in the network.

5. Service times. The service time of a facility by a vehicle is limited
to the loading and/or unloading of commodities at the facility
and does not include the processing times of the commodi-
ties. The collection and delivery of commodities by vehicles
must be performed within certain time windows that reflect the
operational hours of each facility.

6. Rolling demand horizon. It is assumed that demand for commodity
collection is the same during each planning period and that
demand not fully satisfied during the previous planning period
may be brought forward to the current planning period. This
allows for a vehicle to deliver and collect commodities at the
same facility without having to wait at the facility for all demand
to be realised there. These assumptions allow one to consider a
single planning period, representative of all the demand to be
satisfied in a problem instance.

3 These assumptions have been agreed in conjunction with a senior decision
aker at a large pathology healthcare service provider in South Africa.
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7. Facility visitation sequence. For feasibility of a solution, it is
required that every facility (except the highest-tier facilities)
should be visited by at least one vehicle that also visits a higher-
tier facility at a later stage within the planning period or should
participate with another vehicle in cross-docking at a consoli-
dation facility such that the commodities of the facility reach
a strictly higher-tier facility (this allows a facility of a tier
different from the lowest and the highest tiers to be visited
by a vehicle that later visits a facility of the same tier, if this
facility is visited by another vehicle visiting a higher-tier facility
at a later stage). In other words, any facility 𝑖 having a tier
different from the lowest and the highest tiers must be visited, as
a ‘‘collection facility’’, by a vehicle which later visits at least one
facility having an equal or higher tier. In particular, if facility
𝑖 is visited as a ‘‘consolidation facility’’ by vehicle ℎ which
has earlier visited facilities having the same tier, then facility
𝑖 must be visited, as a ‘‘collection facility’’, by a vehicle 𝑘 (with
𝑘 ≠ ℎ) which later visits at least one facility having a higher
tier. These vehicle visitation sequence feasibility requirements
are elucidated in Fig. 1, with Fig. 1(a) representing a feasible
solution and Fig. 1(b) representing an infeasible solution.

8. Commodity destinations. Individual commodity collection and
transportation is not tracked explicitly in the model formulation
as numerous types of commodities may be collected and an even
larger number of possible types of commodity processing may
be required by these commodities. The only constraint is that a
commodity should eventually be delivered to a facility capable
of processing it (perhaps over the course of several successive
planning periods).

Suppose there are 𝑓 + 1 different tiers of facilities in the system,
and that each facility tier (save the lowest) is associated with specific
commodity processing capabilities. Suppose, furthermore, that indices
are assigned to these facility tiers in such a manner that a facility
of tier 𝑑 > 1 possesses a superset of the processing capabilities of
a facility of tier 𝑒 for any 𝑒 ∈ {1,… , 𝑑 − 1}, but that all facilities
of the same tier have identical processing capabilities. An indexing
convention is followed where all facilities exhibiting no processing
capabilities are referred to as facilities of tier zero, while all processing
facilities of tier 𝑑 ∈ {1,… , 𝑓} are referred to as facilities of tier 𝑑. Let
𝑑 denote the set of all facilities of tier 𝑑 ∈ {0, 1,… , 𝑓}, and define
 = ∪𝑓𝑑=0

𝑑 as the set of all the facilities. Any facility in 0 therefore
has no commodity processing capability, but only exhibits demand for
commodities to be collected there. Any facility in 𝑓 , on the other
hand, only processes commodities, and exhibits no demand for the
collection of such commodities. Finally, any facility in  ⧵ (0 ∪ 𝑓 )
exhibits demand for commodity collection as a result of cross-docking
operations there and also offers certain processing capabilities. Facility
𝑖 ∈  furthermore has an associated vehicle arrival capacity 𝛾𝑖 (i.e. a
limit on the number of vehicle arrivals the facility can accommodate
during the planning period), a required service time of 𝑠𝑖 time units
and a service time window [𝑎𝑖, 𝑔𝑖] during which vehicles have access
to the facility. It is assumed that if there a vehicle arrives at facility
𝑖 ∈  before the beginning 𝑎𝑖 of the associated time window, it must
wait until time 𝑎𝑖 to start its service at facility 𝑖.

Let  represent the set of homogeneous vehicles that constitute the
commodity collection fleet. As mentioned previously, it is assumed that
this set of vehicles is sufficiently large to facilitate feasible commodity
collection routing and scheduling at a 100% service level. The homo-
geneity of the fleet implies that all vehicles have the same autonomy
level 𝜇 (the maximum allowable route duration of a vehicle, measured
in units of expected travel time) and that any two vehicles are expected
to traverse a given road link in the same amount of time. Denote the
subset of facilities acting as home depots for vehicles by  and denote
the home depot of vehicle 𝑘 ∈  within this set by 𝑏𝑘. As is customary
in the VRP literature, each home depot 𝑏 is associated with a virtual,
4

𝑘

identical copy of the depot, denoted by 𝑏+𝑘 , in order to be able to
distinguish between the departure time of a vehicle from its home depot
and the later arrival time of the vehicle when returning to its home
depot. In particular, 𝑏𝑘 represents the home depot of vehicle 𝑘 ∈ 
when it departs from the depot, while 𝑏+𝑘 represents the same home
depot when the vehicle returns to the depot upon completion of its
route. The departure time 𝑇 ′

𝑏𝑘𝑘
of vehicle 𝑘 ∈  from the depot 𝑏𝑘 is

nown a priori.
The set of all commodities that have to be collected is partitioned

nto 𝑓 distinct types, indexed by the set  = {1,… , 𝑓}, according to
the convention that a commodity of type 𝑐 ∈  can be processed at
ny facility in ∪𝑓𝑑=𝑐

𝑑 .
Let  = ( , ) be a complete directed weighted graph with vertex

set  and arc set  representing all possible road network connections
between facilities in  , where the weight of an arc (𝑖, 𝑗) ∈  is the
expected travel time 𝑡𝑖𝑗 of a vehicle traversing the arc from facility 𝑖 ∈ 
to facility 𝑗 ∈  . It is assumed that the triangle inequality is upheld and
that the travel times are positive.

The planning period is limited to a schedule of fixed length, im-
plemented (possibly in slightly altered form as a result of demand
non-realisation at certain facilities) along a rolling horizon.

4. Mathematical model formulation

This section contains a detailed description of the sets of constraints
and planning objectives of the MTVRPGC in a formal MILP model of
the problem. The objectives and constraints of the model proposed
were developed in consultation with the manager of a transportation
network within South Africa. In order to determine the global ordering
of vehicle arrivals, a set of global event numbers is introduced in
Section 4.1. After defining the model variables in Section 4.2, the model
objectives are formulated mathematically in Section 4.3. The focus then
shifts in Section 4.4 to the formulation of the model constraints.

4.1. Global ordering of vehicle arrivals

Let  denote a set of global event numbers associated with the
vehicle routing schedule over the planning period. The elements of this
set induce a global ordering of vehicle service starting times at the
various facilities in the spirit of Dondo et al. (2011) (who considered
the special case of local cross-docking in supply chain management).
In their application, the service starting times of each vehicle at a
pre-specified local cross-docking facility was associated with a unique
integer value in such a manner that a later service starting time of
any vehicle at the facility was associated with a larger integer value.
These values were employed in a two-echelon VRP so as to reflect
real-life distribution problems in which several vehicles may stop at
the same manufacturing site or warehouse to accomplish pickup or
delivery operations. In this kind of application, a vehicle may be
visiting a source node several times during the same tour, and product
requirements at some destination may be satisfied through various
partial shipments using more than one vehicle. Therefore, a sequence
of operations may be performed at every location and a vehicle stop
is no longer characterised by just the visited node. Dondo et al. (2011)
overcame this obstacle by including an ordered set of event numbers in
their model. In our application, we also adopt the practice of assigning
the service starting time of each vehicle a unique integer value. Our
application, however, differs from that of Dondo et al. (2011) in that
we consider the service starting times of all vehicles at all the facilities
in the network as opposed to at a specific cross-docking facility only.
The integer values included in the set  are representative of the
lobal service starting time sequence of vehicles at all destination
acilities of the network. This sequence facilitates monitoring of the
lobal cross-docking and tier-visitation of vehicles.

A summary of all the sets and parameters, described in detail
ere and in Section 3, that are required to model the MTVRPGC
athematically may be found in Table 1.
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Table 1
Table of notations.

Notation Description

𝑓 The cardinality of the set used to denote the different tiers
associated with the respective facilities based on their
commodity processing capabilities.

𝑑 (𝑑 ∈ {0,… , 𝑓}) The subset of all facilities that are capable of processing a
commodity of type 𝑑 or lower.

 The set of all facilities within the transportation network.
𝛾𝑖 (𝑖 ∈  ) The maximum number of vehicles facility 𝑖 ∈  can process

within a single planning horizon.
𝑠𝑖 (𝑖 ∈  ) The service time associated with facility 𝑖 ∈  .
[𝑎𝑖 , 𝑔𝑖] (𝑖 ∈  ) The time window during which facility 𝑖 ∈  is able to

process arriving commodity vehicles.
 The set of all available commodity collection vehicles within

the transportation network.
𝜇 The maximum allowable time associated with a single

vehicle’s route.
 The subset of facilities that act as the home depot for

vehicles within the transportation network.
𝑏𝑘 (𝑘 ∈ ) The home depot of vehicle 𝑘 ∈  , with 𝑏𝑘 ∈ .
𝑏+𝑘 (𝑘 ∈ ) An identical copy of the home depot of vehicle 𝑘 ∈  with

𝑏+𝑘 ∈  used to denote the depot at the subsequent return
time of the vehicle at its depot.

𝑇 ′

𝑏𝑘𝑘
(𝑘 ∈ ) The departure time of vehicle 𝑘 ∈  from its respective home

depot 𝑏𝑘 ∈ .
𝑆 The set of all the possible different commodity types.
 = ( , ) A complete directed weighted graph with vertex set  and

arc set  representing all possible road connections between
facilities in  .

𝑡𝑖𝑗 The travel time associated with traversing arc (𝑖, 𝑗) ∈  .
 A global set of event numbers associated with the vehicle

routing schedule over the planning period.

4.2. Model variables

In our model formulation, decision and auxiliary variables are
required to keep track of the movement of vehicles and their service
allocation to facilities. In order to facilitate the orchestration of global
cross-docking operations, a global ordering is assigned to the service
starting times of all vehicles in the routing schedule, as described
above. The auxiliary variables

𝑦𝑛𝑖𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

1, if the service starting time of vehicle 𝑘 ∈  at facility
𝑖 ∈  is global event 𝑛 ∈ 
during the current planning period,
5

⎩

0, otherwise d
achieve this purpose in conjunction with the auxiliary variables

𝑧𝑖𝑗𝑘𝑛 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1, if the service starting time of vehicle 𝑘 ∈ 
at facility 𝑖 ∈  ⧵ (0 ∪ 𝑓 ), visited as a
collection facility, is global event 𝑛 ∈  , following
which vehicle 𝑘 also visits
facility 𝑗 ∈ 𝓁 (with 𝑗 ≠ 𝑖) as a consolidation
facility at some later stage, where
facilities 𝑖 and 𝑗 are of the same tier 𝓁,

0, otherwise.

It follows that | | ≤ |0
| + ||| ⧵ 0

|. The assignment decision
variables

𝑟𝑖𝑘𝑛 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1, if global event 𝑛 ∈  involves the assignment
of vehicle 𝑘 ∈  to visit facility
𝑖 ∈  ⧵ 𝑓 as a collection facility and this vehicle
later visits a facility of a higher
tier than that of facility 𝑖,

0, otherwise

are used in a disjunctive fashion to enforce appropriate facility visita-
tion sequences. Finally, the flow decision variables

𝑥𝑖𝑗𝑘 =

⎧

⎪

⎨

⎪

⎩

1, if vehicle 𝑘 ∈  travels directly from facility 𝑖 ∈ 
to facility 𝑗 ∈  ,

0, otherwise

monitor the movement of vehicle 𝑘 ∈  , while the non-negative, real
auxiliary variables 𝑇𝑖𝑘 denote the time at which vehicle 𝑘 ∈  starts its
ervice at facility 𝑖 ∈  , with 𝑇𝑖𝑘 assuming the value zero if vehicle 𝑘
oes not visit facility 𝑖.

4.3. Model objectives

Following the discussion in Section 1, the aim of the model proposed
in this paper is to pursue an acceptable trade-off between the realisation
of three objectives. The first of these objectives is to minimise the
expected global travel time4 associated with the transportation of all
commodities from the various original commodity collection facilities

4 The decision not to minimise the distance travelled by vehicles stems
rom possibly very rural locations of some of the facilities. The potentially
oor quality of roads leading to these remote facilities in a developing context
ould bring about considerable deviations in the expected travel time per unit
istance.
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to appropriate facilities where they are to be processed or stored
(during a single planning period). This objective may be formulated
mathematically as

minimise
∑

𝑖∈

∑

𝑗∈

∑

𝑘∈
𝑡𝑖𝑗𝑥𝑖𝑗𝑘. (1)

The second objective is to minimise the longest travel time of the
delivery vehicles in terms of their total service travel times, that is to

minimise max
𝑘∈

(𝑇𝑏+𝑘 𝑘 − 𝑇
′
𝑏𝑘𝑘

). (2)

The final objective is to

minimise
∑

𝑘∈

∑

𝑗∈
𝑥𝑏𝑘𝑗𝑘, (3)

which is equivalent to minimising the number of vehicles required
for commodity collection at a service level of 100% by reducing the
number of vehicles departing from their home depots.

4.4. Model constraints

The model includes numerous constraints reflecting the various
commodity transportation requirements outlined in Section 3. The first
set of such constraints states that every vehicle utilised must initially
depart from and eventually return to its home depot at the end of
its route, as required by Assumption 3 of Section 3. This constraint is
enforced by requiring that
∑

𝑗∈
𝑥𝑏𝑘𝑗𝑘 ≤ 1, 𝑘 ∈ 

and that
∑

𝑗∈
𝑥𝑗𝑏+𝑘 𝑘 =

∑

𝑗∈
𝑥𝑏𝑘𝑗𝑘, 𝑘 ∈  .

The constraint set
∑

𝑖∈
𝑥𝑖𝑗𝑘 ≤

∑

𝓁∈
𝑥𝑏𝑘𝓁𝑘, 𝑗 ∈  , 𝑘 ∈ 

ensures that any vehicle 𝑘 ∈  visits a facility 𝑗 ∈  at most once during
the planning period according to Assumption 4. The flow conservation
constraint set
∑

𝑖∈
𝑥𝑖𝑗𝑘 −

∑

𝓁∈
𝑥𝑗𝓁𝑘 = 0, 𝑗 ∈  ⧵, 𝑘 ∈ 

states that if any vehicle 𝑘 ∈  arrives at facility 𝑗, then the same
vehicle must traverse an arc departing from facility 𝑗, for all 𝑗 ∈  ⧵.
Since all facilities 𝑖 ∈  ⧵ (𝑓 ∪ ) necessarily exhibit demand for
commodity collection during the planning period, the constraint set
∑

𝑗∈

∑

𝑘∈
𝑥𝑖𝑗𝑘 ≥ 1, 𝑖 ∈  ⧵ (𝑓 ∪)

ensures that at least one vehicle 𝑘 ∈  should visit facility 𝑖 ∈  ⧵ (𝑓 ∪
). In addition, the constraint set
∑

𝑗∈

∑

𝑘∈
𝑥𝑖𝑗𝑘 = 1, 𝑖 ∈ 0

ensures that each facility 𝑖 ∈ 0 is visited by exactly one vehicle (see
Assumption 4). The constraint set

𝑇𝑖𝑘 + 𝑠𝑖 + 𝑡𝑖𝑗 − 𝑇𝑗𝑘 ≤ (1 − 𝑥𝑖𝑗𝑘)𝑀, 𝑖 ∈  , 𝑗 ∈  , 𝑘 ∈ 

is included to monitor the service starting time of vehicle 𝑘 ∈  at
each vertex along its route. This constraint set ensures, if vehicle 𝑘 ∈ 
travels from facility 𝑖 ∈  to facility 𝑗 ∈  , that the time instant
at which it starts to service facility 𝑗 is bounded from below by the
time instant at which it started servicing facility 𝑖 together with the
combined service time duration at facility 𝑖 and the time required to
travel from facility 𝑖 to facility 𝑗. Here 𝑀 is a large positive number.
6

The services provided by the processing facilities should furthermore be
rendered within acceptable time windows associated with each facility
according to Assumption 5. Since there is a possibility that not all
vehicles 𝑘 ∈  are utilised, the constraint set

𝑇 ′
𝑏𝑘𝑘

+ 𝑡𝑏𝑘𝑗 −𝑀(1 − 𝑥𝑏𝑘𝑗𝑘) ≤ 𝑇𝑗𝑘, 𝑗 ∈  , 𝑘 ∈ 

efines the service starting time of vehicle 𝑘 ∈  at the first facility
∈  visited by vehicle 𝑘, where 𝑀 is again a large positive number.
he constraint set

𝑖
∑

𝑗∈
𝑥𝑗𝑖𝑘 ≤ 𝑇𝑖𝑘 ≤ 𝑔𝑖

∑

𝑗∈
𝑥𝑗𝑖𝑘, 𝑖 ∈  , 𝑘 ∈ 

states that vehicle 𝑘 may not start its service at a facility 𝑖 ∈  outside
f its associated time window and enforces the requirement mentioned
bove that if vehicle 𝑘 ∈  does not visit facility 𝑖 ∈  , the value of 𝑇𝑖𝑘
s equal to zero. If vehicle 𝑘 is not utilised, the values of 𝑇𝑖𝑘 should be
qual to zero for all 𝑖 ∈  . The constraint set

𝑏+𝑘 𝑘
− 𝑇 ′

𝑏𝑘𝑘
≤ 𝜇, 𝑘 ∈ 

nsures that vehicle 𝑘 ∈  does not undertake a route that is expected
o take longer to complete than the allowable time autonomy level
ssigned to the vehicle.

Every facility tier has an associated processing capability in respect
f commodities. As the model does not, however, track individual com-
odity processing requirements, the more practical approach described

n Assumption 8 is adopted whereby the number of vehicles arriving
t a facility is limited in order to prevent processing bottlenecks. The
onstraint set
∑

∈

∑

𝑖∈
𝑥𝑖𝑗𝑘 ≤ 𝛾𝑗 , 𝑗 ∈  ⧵ 0

equires that the number of vehicles arriving at facility 𝑗 ∈  ⧵ 0

should not exceed the arrival capacity of the facility over the scheduling
window. The novelty of the MTVRPGC is further showcased by the
remaining constraint sets, which all contribute to controlling the se-
quencing of vehicle service starting times at facilities so as to facilitate
global cross-docking. The constraint set
∑

𝑗∈
𝑥𝑗𝑖𝑘 =

∑

𝑛∈
𝑦𝑛𝑖𝑘, 𝑖 ∈  , 𝑘 ∈ 

ensures that an event 𝑛 ∈  cannot be assigned to the service starting
time of a vehicle 𝑘 ∈  at a facility 𝑖 ∈  , unless vehicle 𝑘 actually visits
facility 𝑖, and each service starting time is assigned a unique global
event index. It is required that the global event indices assigned to
vehicle service starting times should reflect the order of their service
starting time sequence in global time. The constraint set

𝑇𝑗𝓁 − 𝑇𝑖𝑘 ≥𝑀(𝑦𝑛𝑖𝑘 + 𝑦𝑚𝑗𝓁 − 2), 𝑖, 𝑗 ∈  , 𝑘,𝓁 ∈  , 𝑚, 𝑛 ∈  ∶ 𝑚 > 𝑛

chieves this requirement by ensuring that 𝑇𝑗𝓁 ≥ 𝑇𝑖𝑘 if 𝑦𝑛𝑖𝑘 = 1 and
𝑦𝑚𝑗𝓁 = 1. Here 𝑀 is again a sufficiently large positive number. For
every facility 𝑖 ∈  ⧵ 𝑓 there must be some vehicle 𝑘 ∈  visiting
a higher-tier facility at some time after having visited facility 𝑖, as
explained in Assumptions 7 and 8. The disjunctive constraint sets
∑

𝑘∈

∑

𝑛∈
𝑟𝑖𝑘𝑛 = 1, 𝑖 ∈ 0

and

∑

𝑘∈

∑

𝑛∈

⎛

⎜

⎜

⎝

𝑟𝑖𝑘𝑛 +
∑

𝑗∈𝓁⧵{𝑖}

𝑧𝑖𝑗𝑘𝑛
⎞

⎟

⎟

⎠

= 1, 𝑖 ∈ 𝓁 , 𝓁 ∈ {1,… , 𝑓 − 1}

enforce this requirement. These constraint sets ensure that for each
facility 𝑖 of tier 𝓁 < 𝑓 there exists a vehicle 𝑘 ∈  visiting the
facility with a corresponding event number 𝑛 ∈  such that 𝑟𝑖𝑘𝑛 = 1
(indicating that vehicle 𝑘 later visits some facility of a tier higher than
𝓁) or (if 𝑖 ∈ 𝓁 with 𝓁 ∈ {1,… , 𝑓 − 1}) 𝑧𝑖𝑗𝑘𝑛 = 1 for some facility
𝑗 of tier 𝓁, provided that 𝑗 ≠ 𝑖 (indicating that vehicle 𝑘 later visits
facility 𝑗), in accordance with Assumption 7. The second disjunctive
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constraint set may, however, allow for the situation where a commodity
is transported by several vehicles to facilities of the same tier without
eventually reaching a facility of a higher tier (as shown in Fig. 1(b)).
In order to avoid this kind of situation, the constraint set
∑

𝑘∈

∑

𝑛∈
𝑟𝑖𝑘𝑛 ≥

∑

𝑗∈𝓁⧵{𝑖}

∑

ℎ∈

∑

𝑛∈
𝑧𝑗𝑖ℎ𝑛∕|𝓁

|, 𝑖 ∈ 𝓁 , 𝓁 ∈ {1,… , 𝑓 − 1}

is introduced, which implies that if facility 𝑖 acts as a ‘‘consolidation
facility’’ for one or more facilities of tier 𝓁, visited as collection facilities
by a vehicle ℎ which later visits facility 𝑖, i.e.
∑

𝑗∈𝓁⧵{𝑖}

∑

ℎ∈

∑

𝑛∈
𝑧𝑗𝑖ℎ𝑛 ≥ 1,

the facility 𝑖 is visited as a collection facility by a vehicle 𝑘 which later
visits a facility of a higher tier, i.e.
∑

𝑘∈

∑

𝑛∈
𝑟𝑖𝑘𝑛 = 1.

The above constraint set still allows for multiple vehicles to visit the
same facility (as shown in Fig. 1(a)), but 𝑧𝑖𝑗𝑘𝑛 may only assume the
value 1 for one of the routes along which the facility is visited by a
vehicle that visits a facility of the same tier at a later stage. The linking
constraint set

| |𝑦𝑛𝑖𝑘 +
∑

𝑚∈
𝑚>𝑛

∑

𝑗∈∪𝑓
𝓁=𝑐+1

𝓁

𝑦𝑚𝑗𝑘 ≥ (| | + 1)𝑟𝑖𝑘𝑛, 𝑖 ∈  𝑐 , 𝑐 ∈ {0,… , 𝑓 − 1},

𝑘 ∈  , 𝑛 ∈ 

furthermore ensures that the variable 𝑟𝑖𝑘𝑛 may only assume a value of
1 if vehicle 𝑘 ∈  actually visits facility 𝑖 ∈  𝑐 and at some later stage
also visits facility 𝑗 of a tier higher than 𝑐. The powerful disjunctive
constraint sets above depend on the values of the auxiliary variables
𝑟𝑖𝑘𝑛. The linking constraint set
∑

𝑛∈
𝑟𝑖𝑘𝑛 ≤

∑

𝑛∈
𝑦𝑛𝑖𝑘, 𝑖 ∈  ⧵ 𝑓 , 𝑘 ∈ 

enforces the correct assignment of values to these binary variables. The
global cross-docking component of the model allows for facilities of the
same tier to have their commodities consolidated at any facility of that
tier within the transportation network. The constraint set

𝑦𝑛𝑖𝑘+
∑

𝑚∈
𝑚>𝑛

𝑦𝑚𝑗𝑘 ≥ 2𝑧𝑖𝑗𝑘𝑛, 𝑖, 𝑗 ∈ 𝓁 , 𝓁 ∈ {1,… , 𝑓−1}, 𝑛 ∈  , 𝑘 ∈ 

ensures that the auxiliary variable 𝑧𝑖𝑗𝑘𝑛 only assumes the value 1 if
vehicle 𝑘 visits facility 𝑖 ∈ 𝓁 (with 𝓁 ≠ 0, 𝑓 ) and then at a later time
also visits facility 𝑗 ∈ 𝓁 , allowing for consolidation of commodities
of facility 𝑖 at facility 𝑗, to be collected by a different vehicle 𝑘 ∈ 
for transportation to a higher-tier facility. Finally, the computational
burden associated with satisfying the aforementioned constraints may
be lowered by introducing the symmetry-breaking constraint set
∑

𝑖∈

∑

𝑗∈
𝑥𝑖𝑗𝑘 ≥

∑

𝑖∈

∑

𝑗∈
𝑥𝑖𝑗𝑘+1, 𝑘 ∈ {1,… , || − 1}.

This constraint set ensures that the number of facilities visited by
vehicle 𝑘 ∈  is not smaller than the number of facilities visited by
vehicle 𝑘 + 1.

5. A worked example

The logic of the model in Section 4 is verified in this section by
implementing it in a commercially available MILP solver within the
context of small, hypothetical problem instances. A worked example,
based on a hypothetical instance with seven facilities, is first described
in detail. Computational results on an additional sixteen hypothetical
instances (with up to ten facilities) are reported later. In these hypo-
thetical instances, the number of facilities within each respective tier
and the number of vehicles vary. The aim of the worked example is
7

Fig. 2. True Pareto fronts for the first hypothetical test problem instance consisting
of the seven facilities of Tables A.6 and A.7 in the cases of using one, two and three
vehicles, respectively.

not to evaluate experimentally the computational performance of the
proposed MILP model (which could be substantially improved upon
by applying effective preprocessing procedures to decrease the number
of variables and constraints while also incorporating more efficient
branch-and-bound protocols), but to demonstrate its capability and
robustness to deal with the novel global cross-docking properties and
the peculiar constraints of the model proposed in Section 4.

5.1. First hypothetical instance

In the first hypothetical instance there are seven facilities (i.e. | | =
7) of three different tiers, and so 𝑓 = 2 in this case. The first of these
facilities is depot (acting as home depot for all vehicles). Facilities 2,
5 and 6 are hospitals or clinics at which pathology samples originate.
These collection stations have no commodity processing capabilities,
and so they are classified as facilities of tier zero. Facilities 3 and 4 are
hospitals at which commodity processing laboratories of tier one are
located, while Facility 7 is a tier-two laboratory.

The coordinates of the seven facilities and the travel times (ex-
pressed in minutes) between these facilities are shown in Tables A.5
and A.6 of Appendix A, respectively, and were calculated as the corre-
sponding Euclidean distances (rounded up) between the facilities.

This instance was constructed in a manner to highlight the con-
cept of global cross-docking and hence some of the problem input
data described in Section 3 not affecting cross-docking, such as the
imposition of time windows and the adherence to arrival capacities of
facilities, were set to generally unconstraining values so as to reduce
the complexity of finding an initial feasible solution.

A complete enumeration of all feasible routes was performed, im-
plemented in Wolfram’s Mathematica (Wolfram, 2016), in order to
generate the true Pareto front for the hypothetical problem instance,
with a view to validate the logic of the model in the cases where either
|| = 2 or || = 3 delivery vehicles are employed (with 𝑏𝑘 = 1 and
+
𝑘 = 8). The enumeration process is described in Appendix A, yielding
nly three (for || = 2) and two (for || = 3) Pareto-optimal vehicle
outing combinations, as depicted in objective function space in Fig. 2.

Although it violates the maximum travel time bound of 740 mins
er vehicle, the objective function values of the optimal solution single-
ehicle travelling salesman problem (TSP) are also included for reference
urposes in Fig. 2.
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Table 2
Computational times (expressed in seconds) required by CPLEX 12.9 to generate the
solutions in Figs. 3(b) and 3(f) on an i7-8550 processor running at 1.80 GHz with a
working memory limit of 6 GB within the Windows 10 operating system.

Solution 2 6

Time to find initial feasible solution 418.65 s 370.10 s
Time to find an optimal solution 1 741.68 s 1 980.07 s
Time to prove optimality 8 995.54 s 14 518.33 s

The six numbered solutions in Fig. 2 are depicted in solution space
n Fig. 3. Among these solutions, the concept of global cross-docking is
learly illustrated in Solutions 3 and 5.

The mathematical model of Section 4 was also implemented in
PLEX 12.9 in respect of the problem instance described above in an
ttempt to validate the logic of the mathematical model formulation. In
rder to accommodate the pursuit of trade-offs between minimising the
otal travel time and minimising the longest travel time of the vehicles
n a solution, the number of vehicles utilised was fixed first as || = 2

and then as || = 3. Since CPLEX 12.9 can only handle multi-objective
MILPs in a hierarchical way, we decided to focus our CPLEX search
on replicating Solutions 2 and 6, respectively. This allows for single-
objective consideration, since the number of vehicles may be fixed,
as described above, after which the non-relevant model objective may
simply be disregarded.

Accordingly, the number of vehicles was fixed at two and objective
(2) (see Section 4.3) was removed from consideration in order to
replicate Solution 2. The values of the non-zero decision variables
returned by CPLEX in this case are shown in Table A.7 of Appendix
A. The facility index 8 in the tables refers to the virtual copy of the
depot (Facility 1).

The total travel time of the two vehicles in Solution 2 is 899.53 min,
while the times spent travelling by vehicles 1 and 2 are, respectively,
171.87 and 727.66 min, giving a maximum travel time of the vehicles
of 727.66 min.

Similarly, the number of vehicles was fixed at three and objective
(1) (see Section 4.3) was removed from consideration in order to
replicate Solution 6. The non-zero decision variables returned by CPLEX
in this case are shown in Table A.8 of Appendix A. The total travel time
of the three vehicles in solution 6 is 1222.79 min, while the times spent
by vehicles 1, 2 and 3 are, respectively, 468.50, 601.97 and 152.32 min,
giving a maximum travel time of the vehicles of 601.97 min.

The solutions presented in Tables A.7 and A.8 of Appendix A are
exactly those depicted in Figs. 3(b) and 3(f), respectively. The compu-
tation times required by CPLEX to reach these solutions are listed in
Table 2.

5.2. Additional hypothetical instance

The numerical experiment described above was repeated for eight,
nine, and ten facilities, respectively. The data and parameter values for
these sixteen instances are available online (Smith, 2019a). Objective
(2) was removed from consideration for all instances. The combina-
torial explosion associated with solving these problem instances is
elucidated in Appendix B. The CPLEX implementation was allocated a
computational budget of 200 000 s and was not able to prove optimality
for the instances with ten facilities within the allotted time.

It is evident from Tables B.9–B.12 that the computational time
required to solve the mathematical model exactly is extremely high,
even for small instances. This is to be expected in view of the model
versatility and complexity. In order to find good approximate solutions
to large, real-world instances of the MTVRPGC, a MACO algorithm is
proposed in the following section.
8

C

6. Description of the MACO algorithm

It was decided to employ a MACO algorithm to solve the MTVRPGC
approximately based on the results published by García-Martínez et al.
(2007) and the underlying constructive behaviour of MACO algorithms.
The basic notion is for the algorithm to emulate the foraging behaviour
of ants and through the use of residual pheromone trails, guide the algo-
rithm towards high-quality solutions. The MACO algorithm presented
in this paper differs from existing algorithms within the literature due
to the mechanisms developed to handle the unique constraints of the
MTVRPGC, such as the facility visitation sequence. The principles and
mechanisms of the MACO algorithm are described in detail in the
remainder of this section.

Our underlying algorithmic approach towards solving instances of
the MTVRPGC approximately is to employ three single-objective ant
colony systems (ACSs) for the construction of initial vehicle routes
based on a colony heuristic and a collection of pheromone matrices.
Local update mechanisms are subsequently employed in respect of each
colony’s pheromone. Routing sequences that are infeasible with respect
to higher-tier visitations are then identified and corrected by means of
several procedures tailored specifically to the MTVRPGC, adopting a
top-down correction paradigm. The algorithm employs three colonies,
each focusing on a single objective (i.e. minimisation of the total travel
ime, minimisation of the maximum travel time of the vehicles, and
ompromise solutions between total travel time and maximum travel
ime for vehicles). The minimisation of the number of vehicles is
ot explicitly modelled in the MACO algorithm. The routes are then
ollectively examined and penalty weights are applied with respect to
he remaining constraints, such as time windows and maximum travel
ime for vehicles violations, after which a global ranking of the solution
opulation is determined according to the standard NSGA-II ranking
echanism (Deb et al., 2002), complemented by a crowding distance

unction. Finally, a global pheromone update mechanism is applied to
he respective pheromone matrices.

The initial route construction mechanism consists of 𝑄 ants concur-
ently building routes from starting vertices chosen randomly within a
et  of facility vertices. At each construction step, each ant applies a
robabilistic proportionality rule, as suggested by Wang et al. (2016),
o determine which vertex to visit next. The vertex selection mechanism
nvolves the following three parameters:

1. A heuristic value 𝜂𝑖𝑗 denotes the attractiveness of a move along
the arc joining vertex 𝑖 to vertex 𝑗.

2. A parameter 𝜏𝑖𝑗 denotes the pheromone level along the arc
joining vertex 𝑖 to vertex 𝑗, which is an indication of the past
usefulness of the arc in previous route constructions.

3. A parameter 𝑠𝑖𝑗 denotes the savings value5 associated with the
inclusion of vertices 𝑖 and 𝑗 in a single vehicle route.

he route construction process also involves three parameters, 𝛼, 𝛽, and
. During route construction, ant 𝑞, located at vertex 𝑖, moves to an ad-

acent vertex according to the following pseudo-random proportionality
ule: A real number 𝜆 is randomly generated within the interval [0, 1]
ccording to a uniform distribution, and if 𝜆 is below a pre-determined
hreshold 𝜆𝑜, the index of the vertex visited next is

= argmax𝑗∈𝑞𝑖 {(𝜏𝑖𝑗 )
𝛼(𝜂𝑖𝑗 )𝛽 (𝑠𝑖𝑗 )𝜑}, (4)

here 𝑞𝑖 denotes the set of feasible neighbours of vertex 𝑖 for ant 𝑞.
he maximum travel time 𝜇 for vehicles in the MTVRPGC is utilised
s a stopping criterion during route construction, as opposed to the
ypical capacity constraint in the capacitated VRP. In an attempt to
llow for more flexibility during the correction phase of the algorithm,

5 The savings values are calculated according to the method proposed by
larke and Wright (1964).
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Fig. 3. The numbered solutions reported in objective function space in Fig. 2 are depicted here in solution space. The travel times reported in the figures are rounded to the
nearest integer.
a random number 𝑟𝑎 is generated within the interval [𝓁𝑏, 1], where 𝓁𝑏 ∈
(0, 1) is a predefined parameter. The new maximum travel time 𝜇′ for
vehicles is determined as 𝜇′ = 𝜇𝑟𝑎. The adjusted maximum travel time
for vehicles value 𝜇′ is uniquely determined for each vehicle utilised
for commodity transportation and incorporated in the identification of
feasible neighbours. Otherwise, if 𝜆 is not below the threshold 𝜆𝑜, the
probability of visiting vertex 𝑗 ∈ 𝑞𝑖 next is given by

𝑖𝑗 =
(𝜏𝑖𝑗 )𝛼(𝜂𝑖𝑗 )𝛽 (𝑠𝑖𝑗 )𝜑

∑

𝓁∈𝑞𝑖
(𝜏𝑖𝓁)𝛼(𝜂𝑖𝓁)𝛽 (𝑠𝑖𝓁)𝜑

. (5)

This probability is employed in conjunction with a roulette wheel
mechanism to determine which vertex ant 𝑞 should visit next, allowing
for a biased exploration of the arcs. There are, however, multiple
vehicle depots under consideration. The route construction begins by
9

probabilistically selecting a depot based on the distance between the
depots and their respective nearest facilities.

The MACO algorithm allows for two phases of pheromone updates,
a global updating step and a local updating step. The local pheromone
update mechanism is only applied to the specific pheromone matrix
under consideration. It is adapted from Tan et al. (2012), and is
performed every time an arc is traversed. This local pheromone level
along the arc (𝑖, 𝑗) is updated as

𝜏𝑖𝑗 ←
(

𝜌 + 𝛿
𝐿𝑘

)

𝜏𝑖𝑗 , (6)

where 𝜌 and 𝛿 are both user-defined parameters. The parameter 𝜌 is
referred to as trail persistence in the literature and is typically a real
value in the interval [0, 1], while 𝛿 is an elitist-related parameter which
typically takes an integer value in the interval [0, 𝐿∗], where 𝐿∗ is the
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total travel time of the incumbent solution. The variable 𝐿𝑘 refers to
the total travel time of the route traversed by ant 𝑞.

A global updating step is, however, only applied to those arcs that
appear in the best solutions uncovered by the entire colony of ants, by
applying the substitution

𝜏𝑖𝑗 ← 𝜏𝑖𝑗
𝜎
∑

𝑟=1
𝛥𝜏𝑟𝑖𝑗 + 𝛥𝜏

∗
𝑖𝑗 (7)

to the relevant arcs, where

𝛥𝜏𝑟𝑖𝑗 =

{ (𝜎−𝑟)
𝐿𝑘

, if the 𝑟th best ant traverses arc (𝑖, 𝑗)

0, otherwise

and

𝛥𝜏∗𝑖𝑗 =

{

𝜎
𝐿∗ , if arc (𝑖, 𝑗) is contained within the incumbent solution
0, otherwise.

Accordingly, only the 𝜎 most elitist ants will deposit a pheromone
trail in which the solution quality returned by the ant determines the
quantity of pheromone deposited by the ant. The value of 𝜎 is known
a priori. This approach was suggested by Bullnheimer et al. (1997)
in an attempt to provide strong additional reinforcement of the edges
belonging to the best solutions found so far. The incorporation of the
ranking mechanism is aimed at avoiding the danger of over-emphasised
pheromone trails caused by many ants following suboptimal routes.

The 𝜎 most elitist ants are determined based on the objective under
consideration. The global pheromone update for the colony focusing
on minimising the total travel time is performed only in respect of
the best solutions in terms of the shortest total travel time. The global
pheromone update for the colony focusing on minimising maximum
travel times of vehicles occurs in a similar manner, although only the
best solutions are considered with respect to minimisation of maximum
travel time of vehicles.

The global pheromone update for the colony aiming to discover
compromise solutions is designed to improve solution diversity with
a view to encourage exploration and discovery of multiple compromise
solutions. The first mechanism employed to this effect is a dynamic
archive of best solutions found. The dynamism of the archive refers
not only to the storage of non-dominated solutions, but also to the
storage of solutions that are dominated by 𝑒 other solutions, with
the value of 𝑒 tending towards zero as the algorithm execution pro-
gresses. The calculation of a crowding distance 𝑐𝑖 (Deb et al., 2002)
is required for each solution 𝑖 in the archive, excluding the extremal
solutions (i.e. solutions on either ends of the respective approximate
Pareto front). The crowding factor for solution 𝑖 is determined as

𝐹𝑖 =
𝑐𝑖 − 𝑐
𝑐

, (8)

where 𝑐 is the mean crowding distance of all the solutions in the archive
(excluding the extremal solutions). Each solution 𝑠 in the archive is
ranked twice—once according to the overall travel time and once
according to the maximum travel time of the vehicles—with a crowding
factor incorporated into each ranking. The two mixture pheromone
matrices, an overall travel time pheromone matrix 𝝉𝑎 and a maximum
travel time of the vehicles pheromone matrix 𝝉𝑏, are updated by the
global pheromone update mechanism based on their respective weight-
ings. The overall pheromone matrix for colonies aiming to discover
compromise solutions is calculated by applying the substitution

𝝉 = 𝜓𝑟𝝉𝑎 + (1 − 𝜓𝑟)𝝉𝑏, (9)

where 𝜓𝑟 is a randomly generated number in the interval [0.25, 0.75] in
an attempt at biasing the compromise solution search into unexplored
areas of the solution space.

Minimisation of the number of vehicles utilised for commodity
transportation is not explicitly modelled in the MACO algorithm. In-
stead, a separate Pareto front is traced out for each distinct number of
delivery vehicles employed.
10

f

The (𝑖, 𝑗)th entry of the heuristic matrix, 𝜼 = [𝜂𝑖𝑗 ]𝑖,𝑗∈ , of the colony
dedicated to minimising the total travel time is simply calculated as the
inverse of the travel time for the arc (𝑖, 𝑗) under consideration.

Determination of the heuristic matrix for the colony that aims to
minimise the maximum travel time of all vehicles is slightly more
complicated. The constructive nature of ACSs does not allow for the
fitness evaluation of the maximum travel time of the vehicles as it is
not able to predict the outcome of adding a vertex to a route in respect
of the vehicles’ travel times. This problem is remedied by generating
an initial population of routes that are feasible in terms of maximum
travel time for vehicles, but not necessarily in terms of the increasing
tier visitation requirement of the MTVRPGC. This initial population is
then used to determine the heuristic values for the individual arcs,
as described in pseudocode form in Algorithm 1. Each of the routes
generated in the initial population is ranked according to its travel
time and the arcs constituting the various routes are assigned weighted
values according to the ranking of the route. The travel times between
the respective facilities are sorted and the corresponding arcs in the
heuristic matrix are assigned travel time values based on their weighted
values previously assigned. The heuristic value is then taken as the
inverse of the travel time value assigned to it so that the heuristic
matrices employed by the different colonies are of the same order of
magnitude.
Algorithm 1: Heuristic determination of maximum travel time of
the vehicles
nput : Initial population generated randomly, travel time matrix of

arcs between facilities
utput: Heuristic matrix
for 𝑖← 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) do

for 𝑗 ← 1 to 𝑛𝑢𝑚.𝑟𝑜𝑢𝑡𝑒𝑠(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑖]) do
𝑟𝑜𝑢𝑡𝑒.𝑡𝑟𝑎𝑣𝑒𝑙.𝑡𝑖𝑚𝑒𝑠[𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑜𝑢𝑡𝑒.𝑡𝑟𝑎𝑣𝑒𝑙.𝑡𝑖𝑚𝑒𝑠) + 1] =
traveltime(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑖, 𝑗]);

end
end
𝑟𝑜𝑢𝑡𝑒.𝑡𝑟𝑎𝑣𝑒𝑙.𝑡𝑖𝑚𝑒𝑠 = sort(𝑟𝑜𝑢𝑡𝑒.𝑡𝑟𝑎𝑣𝑒𝑙.𝑡𝑖𝑚𝑒𝑠, ascending);
for 𝑖← 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑜𝑢𝑡𝑒.𝑡𝑟𝑎𝑣𝑒𝑙.𝑡𝑖𝑚𝑒𝑠) do

𝑟𝑜𝑢𝑡𝑒 = which(traveltime(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) == 𝑟𝑜𝑢𝑡𝑒.𝑡𝑟𝑎𝑣𝑒𝑙.𝑡𝑖𝑚𝑒𝑠[𝑖]);
for 𝑗 ← 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑜𝑢𝑡𝑒) − 1 do

ℎ𝑒𝑢𝑟𝑠𝑖𝑡𝑖𝑐.𝑎𝑟𝑐[𝑟𝑜𝑢𝑡𝑒[𝑗], 𝑟𝑜𝑢𝑡𝑒[𝑗 + 1]] =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑜𝑢𝑡𝑒.𝑡𝑟𝑎𝑣𝑒𝑙.𝑡𝑖𝑚𝑒𝑠) − 𝑖;

end
end
𝑢𝑛𝑖𝑞𝑢𝑒.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 = unique(ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐.𝑎𝑟𝑐);
𝑝𝑒𝑟𝑐 = percentiles(unique(𝑟𝑜𝑢𝑡𝑒.𝑡𝑟𝑎𝑣𝑒𝑙.𝑡𝑖𝑚𝑒), 𝑢𝑛𝑖𝑞𝑢𝑒.𝑒𝑛𝑡𝑟𝑖𝑒𝑠);
for 𝑖 ← 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢𝑛𝑖𝑞𝑢𝑒.𝑒𝑛𝑡𝑟𝑖𝑒𝑠) do

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐.𝑎𝑟𝑐[ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐.𝑎𝑟𝑐 == 𝑢𝑛𝑖𝑞𝑢𝑒.𝑒𝑛𝑡𝑟𝑖𝑒𝑠[𝑖]] = 1∕𝑝𝑒𝑟𝑐[𝑖];
end
Return ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐.𝑎𝑟𝑐

The heuristic matrix of the colony searching for compromise so-
lutions is simply taken as a mixture of the two heuristics previously
described, weighting each matrix equally so as to create a single
matrix. The route construction process employs the aforementioned
probabilistic rule with respect to vertex selection.

The algorithmic implementation incorporates a function aimed at
fixing the sequence in which vehicles visit the facilities (i.e. ensuring
hat a facility is visited by a vehicle that later visits a facility of a
trictly higher tier or another facility of the same tier visited by a
ehicle that later visits a facility of a strictly higher tier). As previously
entioned, the sequence fix function adopts a top-down approach

owards rectifying the visitation sequence of facilities. The first stage is
imed at ensuring that at least one route ends at a facility of the highest
ier. If the routes generated do not contain such a sequence, a facility of
he highest tier is inserted at the end of one of the routes, according to
he roulette wheel mechanism with the probabilities calculated based
n the insertion costs with respect to travel time.

A middle-tier sequence fix algorithm then considers all infeasible
acilities of tiers other than the lowest and highest with respect to

acility sequence visitation. These middle-tier sequence infeasibilities
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Algorithm 2: Middle-tier sequence fix
nput : Candidate routes, locations of the facilities together with

their respective tiers
utput: Candidate routes with the tier visitation sequence fixed
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 =
determine.sequence.infeasibilities(𝑟𝑜𝑢𝑡𝑒𝑠, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑡𝑖𝑒𝑟);
for 𝑖← 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠) do

𝑛𝑒𝑤.𝑟𝑜𝑢𝑡𝑒[1] = insert.before(𝑟𝑜𝑢𝑡𝑒𝑠, 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑖]);
𝑛𝑒𝑤.𝑟𝑜𝑢𝑡𝑒[2] = add.higher.after(𝑟𝑜𝑢𝑡𝑒𝑠, 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑖]);
𝑛𝑒𝑤.𝑟𝑜𝑢𝑡𝑒[3] = cross.docking(𝑟𝑜𝑢𝑡𝑒𝑠, 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑖]);
𝑛𝑒𝑤.𝑟𝑜𝑢𝑡𝑒[4] = higher.tier.end(𝑟𝑜𝑢𝑡𝑒𝑠, 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑖]);
𝑡𝑜𝑡𝑎𝑙.𝑡𝑟𝑎𝑣𝑒𝑙𝑠 = travels(𝑛𝑒𝑤.𝑟𝑜𝑢𝑡𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠);
𝑟𝑎𝑛𝑑𝑜𝑚 = runif(1,0,1);
if 𝑟𝑎𝑛𝑑𝑜𝑚 ≤ 𝑏𝑒𝑠𝑡.𝑠𝑒𝑙𝑒𝑐𝑡 then

𝑟𝑜𝑢𝑡𝑒𝑠 = 𝑛𝑒𝑤.𝑟𝑜𝑢𝑡𝑒[which.min(𝑡𝑜𝑡𝑎𝑙.𝑡𝑟𝑎𝑣𝑒𝑙𝑠)];
end
else

𝑖𝑛𝑠𝑒𝑟𝑡 = roulette(𝑡𝑜𝑡𝑎𝑙.𝑡𝑟𝑎𝑣𝑒𝑙);
𝑟𝑜𝑢𝑡𝑒𝑠 = 𝑛𝑒𝑤.𝑟𝑜𝑢𝑡𝑒[𝑖𝑛𝑠𝑒𝑟𝑡];

end
end
Return 𝑟𝑜𝑢𝑡𝑒𝑠

are rectified according to four paradigms incorporated within a proba-
bilistic sequence fix function. A pseudocode description of this function
is given in Algorithm 2.

The first paradigm, insert.before, removes those facilities that are
ot visited by a vehicle that later visits a facility of a higher tier
nd places them in a different route in which this requirement is
ndeed satisfied. The route and position is determined from a pool of
andidates by means of a weighted probability function. The second
aradigm, add.higher.after, adds a facility of a higher tier to the route at
later stage with respect to the infeasible facility, with the position of

his facility insertion determined probabilistically, based on insertion
ost with respect to travel time. The third paradigm, cross.docking,
ncourages the facilitation of global cross-docking. According to this
aradigm, all facilities are determined which are visited by a vehicle
hat later visits a facility of the appropriate tiers. Facilities are selected
rom this set based on a weighted probability function biased towards
ower insertion costs, and they are inserted at a later stage with respect
o the infeasible facility. The final paradigm, higher.tier.end, simply
ssesses each infeasible route and adds an appropriately tiered facility
t the end of the route. The overall algorithm functions based on a
niformly generated random number. If the random number is smaller
han a pre-defined threshold, the repair paradigm associated with the
owest travel time is selected. Otherwise, a paradigm is selected by
eans of the roulette wheel mechanism.

The final phase of the sequence fix function is to rectify all sequence
nfeasibilities of facilities of the lowest tier. The lowest-tier fix function
imilarly incorporates two paradigms, aimed at moving an infeasible
acility to a different route, resulting in feasibility (based on insertion
ost), or adding a higher tiered facility at a later stage within the route.
he algorithm is biased towards adding a higher tiered facility at a later
tage of a route if there are numerous infeasible facilities within the
oute; otherwise, a paradigm is selected according to the roulette wheel
echanism.

The aforementioned sequence fix function is rather disruptive in
espect of the quality of vehicle routes, resulting in sub-optimal facil-
ty sequence visitation within the routes. Accordingly, a probabilistic
euristic is applied to the routes once all the sequence infeasibilities
ave been rectified. Three simple paradigms are employed in an at-
empt to improve the solution quality. According to the first paradigm,
t is determined whether cross-docking is present within the route. If
ross-docking indeed occurs, then the facility at which consolidation
ccurs is swapped with another facility of the same tier within the
oute. The selected facility serves as the new consolidation point and

2-opt mechanism is performed on the route, keeping the selected
acility as the consolidation point. This also involves switching the
11

t

riginal consolidation facility with the new facility in all routes that
ontain the original consolidation facility. A 2-opt mechanism that
espects sequence visitation feasibility is applied and if this results in an
mprovement in solution quality, the proposed swap is adopted. It may,
owever, happen that only one objective function value is improved,
hile the other objective function value deteriorates. In such a case,
oth solutions are stored in the archive. The second paradigm involves
imply applying a 2-opt mechanism to the route under consideration
hile still respecting the sequence visitation constraint. Finally, the

hird paradigm involves determining which depot is best to act as the
ome depot for the vehicle under consideration. The three paradigms
re selected probabilistically by generating a random number according
o a uniform distribution and employing the roulette wheel mechanism
ased on equal proportions of each paradigm being selected.

A pseudocode description of the entire MACO algorithm is pro-
ided in Algorithm 3, highlighting all the relevant components of the
lgorithm.
Algorithm 3: MACO algorithm
nput : Locations and tiers of facilities, number of ants employed,

mean and standard deviation for normal distribution,
maximum travel time of the vehicles for all routes, travel
time matrix

utput: Non-dominated front of solutions
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = initialpopulation(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦);
ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐.𝑡𝑟𝑎𝑣𝑒𝑙.𝑡𝑖𝑚𝑒 = initial.heuristic.time(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛);
ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐.𝑎𝑟𝑐𝑠 = initial.heuristic.arcs(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛);
𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒.𝑡𝑖𝑚𝑒 = pher.time(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠);
𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒.𝑎𝑟𝑐𝑠 = pher.arcs(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛);
𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒.𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 0.5 × 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛.𝑎𝑟𝑐𝑠 + 0.5 × 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒.𝑡𝑖𝑚𝑒;
for 𝑖 ← 1 to iterations do

for 𝑐𝑦𝑐𝑙𝑒 ← 1 to 3 do
if 𝑐𝑦𝑐𝑙𝑒 = 1 then

𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 = 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒.𝑡𝑖𝑚𝑒;
ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐.𝑡𝑖𝑚𝑒;

end
else if 𝑐𝑦𝑐𝑙𝑒 = 2 then

𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 = 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒.𝑎𝑟𝑐𝑠 ;
ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐.𝑎𝑟𝑐;

end
else

𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 = 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒.𝑚𝑖𝑥𝑡𝑢𝑟𝑒 ;
ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐.𝑚𝑖𝑥𝑡𝑢𝑟𝑒;

end
for 𝑚 ← 1 to 𝑛𝑜 𝑜𝑓 𝑎𝑛𝑡𝑠 do

𝑟𝑜𝑢𝑡𝑒 = 𝑎𝑛𝑡𝑐𝑜𝑙𝑜𝑛𝑦(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦, 𝑡𝑖𝑚𝑒𝑤𝑖𝑛𝑑𝑜𝑤𝑠);
𝑟𝑜𝑢𝑡𝑒 = 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.𝑓 𝑖𝑥(𝑟𝑜𝑢𝑡𝑒);
𝑟𝑜𝑢𝑡𝑒 = 𝑝𝑜𝑠𝑡.𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑢𝑡𝑒)
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑟𝑜𝑢𝑡𝑒;

end
for 𝑑 ← 1 ∶ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) do

𝑎 = autonomy.penalty(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑑]) ×
sequence.penalty(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑑]);
𝑥[𝑑] = total.travel.time(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑑]) ×𝑎;
𝑦[𝑑] = arc.travel.times(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑑]) ×𝑎;

end
𝑟𝑎𝑛𝑘𝑖𝑛𝑔 = NSGA2.ranking((𝑥, 𝑦));
𝑟𝑎𝑛𝑔𝑒 = (𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥), 𝑚𝑎𝑥(𝑦) − 𝑚𝑖𝑛(𝑦));
𝑓𝑟𝑜𝑛𝑡 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛[𝑟𝑎𝑛𝑘𝑖𝑛𝑔 <= 𝑝𝑜𝑝.𝑘𝑒𝑒𝑝];
𝑐𝑟𝑜𝑤𝑑𝑖𝑛𝑔 = crowdingdistance(𝑓𝑟𝑜𝑛𝑡, 𝑐𝑦𝑐𝑙𝑒);
𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 =
globalpheromone(𝑓𝑟𝑜𝑛𝑡, 𝑐𝑦𝑐𝑙𝑒, 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒, 𝑐𝑟𝑜𝑤𝑑𝑖𝑛𝑔);
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑓𝑟𝑜𝑛𝑡;

end
end
Return remove.infeasibilities(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

If a vehicle 𝑘 arrives at a facility 𝑖 outside the relevant time window,
the time-window penalty factor for facility 𝑖 in the archive is calculated
as

𝑠(𝑖) = max
{

𝑎𝑖 − 𝑇𝑖𝑘
𝑎𝑖

,
𝑇𝑖𝑘 − 𝑔𝑖
𝑔𝑖

}

+ 1, (10)

where 𝑇𝑖𝑘 is the service starting time of vehicle 𝑘 at facility 𝑖, 𝑎𝑖 is the
arliest possible service starting time of a vehicle at facility 𝑖 and 𝑔𝑖 is

he latest possible service starting time of a vehicle at that facility. The
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Fig. 4. Geographical distribution of 388 healthcare facilities in the regional network of a Southern African pathology service provider.
autonomy penalty factor for solution 𝑗 within the archive is

𝑒(𝑗) = max
{

1, 1 +
𝐿𝑚𝑎𝑡 − 𝜇

𝜇

}

, (11)

where 𝐿𝑚𝑎𝑡 is the maximum travel time of all the routes contained
within the solution and 𝜇 is the maximum allowable travel time for
vehicles.

Suitable values for the parameters employed in the MACO algorithm
(as determined during a sensitivity analysis) are finally summarised
in Table 3. The parameters 𝛼, 𝛽 and 𝜑 are employed in (4) to select
the next vertex to visit during route construction probabilistically. The
number of ants employed in the MACO algorithm determines how
many different potential routes are built during each iteration. As
mentioned, a probabilistic rule is utilised to determine which vertices
to append to each route. If the random number (generated according
to a uniform distribution) is below the best-select parameter value,
then the vertex associated with the largest probability is selected;
otherwise, the roulette wheel mechanism is employed. The best-select
parameter also affects the sequence-fix function, as it determines which
of the four routes proposed by the function sequencefix is implemented.
The practice of including a best-select parameter is popular in the
literature (Bell and McMullen, 2004; Wang et al., 2016). It is, in fact,
a key component in maintaining solution diversity. The parameter
𝛿 serves as an elitist-related parameter, ensuring that solutions of a
higher quality are associated with a larger pheromone deposit among
12
Table 3
The parameter values employed in the MACO algorithm for solving a realistic instance
of the MTVRPGC, based on a sensitivity analysis.

Parameter 𝛼 ants 𝛽 best-select 𝛿 diversity 𝜑 𝓁𝑏 𝜌 𝛾𝑝𝑒𝑛
Value 2 20 5 1 300 0.7 2 0.6 0.8 1.5

the relevant arcs during the local pheromone update mechanism. The
diversity parameter determines the percentage of the archive for that
specific colony which consists of solutions with a large crowding dis-
tance. The parameter 𝓁𝑏 is employed to allow the MACO algorithm the
necessary flexibility, after having constructed the initial routes, in order
to adhere to the tier-visitation constraint with respect to maximum
travel time for vehicles. The parameter 𝜌 is employed in both the local
and global pheromone update mechanisms, where it affects the rate of
decay within the local pheromone update mechanism and the rate of
convergence within the global pheromone update mechanism. Finally,
the parameter 𝛾𝑝𝑒𝑛 determines the magnitude of the penalty function
implemented in the MACO algorithm.

Upon extensive numerical experimentation, the algorithmic param-
eter values in Table 3 were found to perform well in respect of small
to medium sized TVRPGC instances.

The MACO algorithm was applied to the same sixteen instances as
the CPLEX implementation, as described in Section 5.2, and was able to
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Fig. 5. Approximate Pareto front returned by the MACO algorithm for the case study MTVRPGC instance, utilising 𝑘̄ vehicles.
find the optimal solutions for all the instances in a fraction of the time
required by the CPLEX model. The results may be seen in Appendix B.

7. A real case study

The results returned by the MACO algorithm (described in the
previous section) are presented in this section for a real case study
involving 388 healthcare facilities within the South African Western
Cape. Of these, there are three facilities of tier three, four facilities of
tier two, eleven facilities of tier one and 359 facilities of tier zero, as
well as eleven vehicle depots located at the facilities of tier one. The
locations of these facilities are illustrated in Fig. 4 and their (longitude,
latitude) coordinates, offset by a constant value for anonymisation
purposes, are available online (Smith, 2019b). The matrix of expected
travel times between the facilities shown in Fig. 4 is also available
online (Smith, 2019b). The travel times were calculated using estimates
provided by Open Source Routing Machine (OSRM) (OSRM, 2017).

The routes currently employed by a Southern African pathology
service provider to collect and deliver specimens within this regional
network result in a total travel time of 15 175.7 minutes and a maximum
travel time of the vehicles of 1 080.9 minutes. The aforementioned
routes are followed by a total of 64 vehicles, although the motivation
behind the choice of this number of vehicles remains unclear as it
would seem from the data that two or more routes may often be
serviced by a single vehicle. It is possible that the vehicles in question
may also have been used for other purposes. In order to generate a
more reasonable estimate of the number of vehicles required to service
13
the currently implemented routes for the purpose of comparison with
the results generated by the MACO algorithm, the following logic was
applied: The maximum travel time of a vehicle was set to 1 081 minutes
and routes that end at a facility at which another route begins were
allocated to a single vehicle if the maximum travel time for a vehicle
constraint was not violated. This process resulted in an estimated
36 vehicles required to service the routes currently employed by the
pathology service provider.

Time window information was not available. Accordingly, all the
time window model information was specified in a manner so as not
to be limiting constraints or result in any penalisation of the objective
function values during the algorithmic implementation. The maximum
travel time of a vehicle was taken as 1 100 minutes.

The MACO algorithm was applied to the MTVRPGC instance de-
scribed above and was allowed a limit of 1 000 search iterations after
which the incumbent solutions were recorded. All the numerical work
reported here was performed on an i7-4770 processor running at
3.40 GHz with 8GB of memory within the Windows 7 operating system
after having implemented the MACO algorithm of Section 6 in R.

The approximate Pareto front returned by the MACO algorithm for
the case study MTVRPGC instance may be seen in Fig. 5. The non-
dominated front contains nine feasible solutions. During execution of
the algorithm, approximately thirty non-dominated ‘‘solutions’’ were,
however, uncovered, with the majority being removed from final con-
sideration due to constraint violations. This highlights the nature of the
MTVRPGC—its solution space is typically tightly constrained, allowing
for even heavily penalised infeasible solutions to be competitive with
feasible solutions.
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Fig. 6. Approximate Pareto fronts returned by the MACO algorithm utilising 𝑘̄ vehicles with global cross-docking and without global cross-docking for the case study MTVRPGC
instance.
The algorithmic implementation took eight hours and sixteen min-
utes to execute a thousand iterations. This computational burden is
deemed acceptable in terms of current industry practice as the routes
employed in the case study are typically fixed and repeated on a
daily basis. Additionally, the planning period adopted by the pathology
healthcare service provider is typically a monthly schedule, with min-
imal alterations affected to the routes within a single planning period.
The non-dominated front of Fig. 5 exhibits a considerable trade-off in
solution choices with respect to the total travel time and the number of
vehicles utilised. The variation in maximum travel time of the vehicles
is, however, relatively small (the trade-off with respect to maximum
travel time for a vehicle is limited to approximately 230 min). The
routes associated with the points in Fig. 5 are presented in Tables
C.13–C.21 of Appendix C.

The improvement potentially to be experienced if Solution 9 of
Fig. 5 were to be adopted on a daily basis is summarised in Table 4
with respect to the three objectives pursued in the MTVRPGC. These
improvements are considerable—such improvements are typically not
achievable when comparing optimisation results against industry stan-
dards. The operations in the case study are, however, not presently
coordinated centrally, but are instead independently managed in vari-
ous sub-regions of the case study. Some of the improvements presented
here may therefore be attributed to the efficiency gains that one would
expect to see when managing the logistics of a network of this size
and type in a centralised rather than a decentralised manner. As such,
the results reported in this section may be valuable, as they may be
cited in support of a case to adopt centralised logistics management
14
Table 4
Comparison between vehicle routes currently employed by the pathology service
provider and Solution 9 of Fig. 5 for the MTVRPGC case study instance.

Objective Current MACO Percentage
improvement

Total travel time (min) 15 175.7 9 690.8 36.1
Maximum travel time of the vehicle (min) 1 080.9 992.1 8.1
Number of vehicles 36 13 63.8

instead of a decentralised approach in an attempt to save on specimen
transportation costs.

The largest potential improvement realises in the reduction of the
number of vehicles required to perform the necessary collection and
delivery of pathological specimens between the respective facilities. A
reduction of over sixty-three percent was achievable when considering
all facilities collectively and exploiting the cross-docking capability of
the MACO algorithm, which is absent in the current vehicle routing
implementation of the pathology healthcare service provider.

The significant improvements of Table 4 are to be expected for
three main reasons, namely centralised management, utilisation of an
effective metaheuristic algorithm and the possibility of exploiting the
global cross-docking component. A further investigation was performed
to determine the contribution of the global cross-docking component
towards the improvements attained by the MACO algorithm with the
results elucidated in Fig. 6. The incorporation of global cross-docking
has a significant impact, as highlighted in Fig. 6, on both the number
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of vehicles employed and the total travel time of the vehicles within
the MTVRPGC network.

8. Conclusion

A new rich type of VRP, called the MTVRPGC, was introduced in this
paper. It is an extension of the celebrated VRP in which commodities
have to be collected from a number of facilities and which facilitates
global cross-docking (i.e. cross-docking that can occur at any vertex
within a subset of vertices). The problem involves the segregation of
intermediate facilities into a variety of tiers, arranged according to
unique commodity processing capabilities and allows for the possibility
of the spill-over of unmet demand for commodity collection into a next
planning period. An MILP formulation was proposed for finding optimal
solutions to small hypothetical MTVRPGC test instances.

A novel MACO algorithm for the solution of larger MTVRPGC
instances was also introduced in Section 6. The MACO algorithm was
validated against a real MTVRPGC instance within the Western Cape
province of South Africa in which 388 healthcare facilities are present.
The vehicle routes returned by the MACO algorithm realised significant
improvements in all three objectives of the MTVRPGC relative to the
routes currently employed by the pathology healthcare provider in
question.
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